Exercises

1. The definition of the alternating, or permutation (or *Levi-Civita*), symbol is

$$\epsilon_{j_1 j_2 \dots j_n} \equiv \pm 1, \text{ or } 0,$$

depending on whether (j_1, j_2, \ldots, j_n) is an even $(\epsilon = +1)$ or odd $(\epsilon = -1)$ permutation of $(1, 2, 3, \ldots, n)$. For instance $\epsilon_{1,2,\ldots,n} = +1 = \epsilon_{2,3,1,4,\ldots,n}$ but $\epsilon_{2,1,3,4,\ldots,n} = -1 = \epsilon_{1,3,2,4,\ldots,n}$. The permutation symbol is 0 if (j_1, j_2, \ldots, j_n) is not a permutation of $(1, 2, 3, \ldots, n)$. In particular, it is zero if any of the indices are repeated e.g. $\epsilon_{1,1,3,4,\ldots,n} = 0$. We assume implicitly that the range of each index j_i , $i = 1, \ldots, n$ is $1, \ldots, n$.

- (a) Expand out explicitly $\epsilon_{ij} a_i b_j$, i, j = (1, 2) (sum over repeated indices!).
- (b) Expand out explicitly $\epsilon_{ijk} a_i b_j c_k$, i, j, k = (1, 2, 3).
- (c) Expand out explicitly $\epsilon_{ijkl} a_i b_j c_k d_l$, i, j, k, l = (1, 2, 3, 4).

2. We demonstrated in class (W 10/29/2003) how to calculate a 4-by-4 determinant using multiple shearings of the 4-dimensional parallelepiped to "rectify" it, *i.e.* transform it into a parallelepiped whose edges are aligned with the natural basis (e_1, e_2, e_3, e_4). We then realized that we had everything needed to compute the determinant when it was in "triangular" form. Use the same strategy to calculate *explicitly* the determinant

$$D \equiv \left| \begin{array}{ccc} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{array} \right|.$$

i.e. calculate b'_2 , c''_3 and D. Compare with exercise 1.(b). Determine the minimum number of arithmetic operations needed to calculate D this way and the 1.(b) way. Can you generalize this arithmetic operation count for a *n*-by-*n* determinant?

3. In exercise 2, what happens to $D \equiv \det(a, b, c)$ if we do several shearings "at once" *i.e.* replace b by $b + \beta a$ and c by $c + \gamma a$ "simultaneously"? Imagine we have several 'computers' to do the job and we let computer 1 modify b and computer 2 modify c, simultaneously (or "in parallel"). What would happen to D if computer 1 made the transformation $b \to b + \beta a$ while computer 2 made the transformation $c \to c + \gamma b$? What if computer 1 transformed $b \to b + \beta a$ but computer 2 did $a \to a + \alpha b$?

4. Calculate

1	Ο	Ω	1	I	0	0	0	T	
	0	0	T	and	0	0	1	0	
	0	1	0			1		0	
	1	Ο	Ω			T	0	0	
	1 0 0	0		1	0	0	0		

5. Calculate

$$\begin{vmatrix} 0 & a_1 & 0 & \cdots & 0 \\ \vdots & \ddots & a_2 & & \vdots \\ \vdots & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 0 & a_{n-1} \\ a_n & 0 & \cdots & \cdots & 0 \end{vmatrix}$$

[Hint: if you don't "see it", start with n = 2, then n = 3, then n = 4, first.]

6. What is the area of the triangle whose 3 vertices have the coordiantes (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) ? What is the volume of the tetrahedron whose 4 vertices have the coordinates (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) , (x_4, y_4, z_4) ?

7. Write a real or pseudo-code to compute the determinant of an *n*-by-*n* matrix $[a_{ij}]$, i, j = 1, ..., n using shearings *and* vector swaps (orientation rule), as needed in case one of the "pivots" is zero. Try it out on your calculator or computer.

8. Show that for any vectors \boldsymbol{a} and \boldsymbol{b} in \mathbb{R}^3 ,

$$|m{a} imes m{b}|^2 = \left|egin{array}{cc} m{a} \cdot m{a} & m{a} \cdot m{b} \ m{b} \cdot m{a} & m{b} \cdot m{b} \end{array}
ight|.$$

The right hand side can be generalized to any dimension allowing us to calculate the area of the parallelogram spanned by a and b in any dimension.