
c©FW Math 321, 10/27/2003 n-space and Determinants

Our concept of vectors can be generalized to n-dimensions. The vector space Rn consists of the
ordered set of n-tuplets of real numbers x ≡ (x1, x2, . . . , xn). These elements can be added by
adding respective components:

x+ y ≡ (x1 + y1, x2 + y2, . . . , xn + yn) = y + x (1)

This corresponds to the parallelogram addition rule in 2D and 3D.
Vectors can be multiplied by a scalar α ∈ R:

αx ≡ (αx1, αx2, . . . , αxn) (2)

Those two operations, addition of elements and multiplication by a scalar, are the key ingredients
that define a vector space.
The dot product is a scalar given by

x · y ≡ x1y1 + x2y2 + · · ·+ xnyn. (3)

The norm (i.e. size) of vector x is defined by the positive number

||x|| ≡
(
x2

1 + x2
2 + · · ·+ x2

n

)1/2 =
√
x · x. (4)

The dot product allows us to define the angle θ between two n-dimensional vectors:

cos θ ≡ x · y
||x|| ||y||

. (5)

Then two vectors are orthogonal if their dot product is zero, x · y = 0 ⇔ x ⊥ y.

How do we measure volumes in an n-dimensional space? with determinants! Let’s review what we
know about them in 2D and 3D, then generalize to nD.
In 2D-space R2:

det(a, b) ≡
∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ = a1b2 − a2b1 =
∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ = −
∣∣∣∣ b1 a1

b2 a2

∣∣∣∣ . (6)

This scalar that we call determinant represent the signed area of the parallelogram spanned by a, b.
Det(a, b) = Area, if the orientation of a, b corresponds to the natural orientation of the space i.e.
x̂, ŷ and counter-clockwise rotation to go from a to b. Det(a, b) = −Area, if a, b has opposite
orientation, i.e. clockwise rotation to go from a to b. Make your own picture!!
In 3D-space R3: The signed volume is given by the mixed (or “triple scalar”) product: ±V =
(a×b)·c. This is the volume V of the parallelepiped spanned by a, b, c if those three vectors have the
same orientation (i.e. right-handed) as x̂, ŷ, ẑ, it is −V otherwise (left-handed). The mixed product
has the well-known (?) geometric properties of invariance under cyclic rotation of the vectors and
commutativity of the dot product, d · c = c · d, and anti-commutativity, a × b = −b × a: of the
cross-product

(a× b) · c = (b× c) · a = (c× a) · b =
a · (b× c) = b · (c× a) = c · (a× b) =
−a · (c× b) = −b · (a× c) = −c · (b× a) =
−(b× a) · c = −(c× b) · a = −(a× c) · b

(7)
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The mixed product can be expressed as a 3-by-3 determinant in terms of the Cartesian components
of the vectors and that determinant can be evaluated in various ways

det(a, b, c) ≡

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a · (b× c)

= εijkaibjck = a1b2c3 + a2b3c1 + a3b1c2 − a2b1c3 − a1b3c2 − a3b2c1

= a1

∣∣∣∣ b2 c2

b3 c3

∣∣∣∣− a2

∣∣∣∣ b1 c1

b3 c3

∣∣∣∣+ a3

∣∣∣∣ b1 c1

b2 c2

∣∣∣∣ , etc.
(8)

In nD-space Rn, we can define the signed volume spanned by the n vectors a1,a2, . . . ,an as the
determinant D ≡ det(a1,a2, . . . ,an) = ±V through the geometric properties of
(i) Parallel shearing does not change volume: Parallel shearing the n-parallelepiped corresponds to
adding to one vector, ak say, a linear combination of the other vectors ak → ãk = ak +

∑
i6=k αiai

keeping all other vectors the same. The determinant (signed volume) does not change under such
a parallel shearing (“base” and “height” remain the same):

det(a1, . . . , ãk, . . . ,an) = det(a1, . . . ,ak, . . . ,an), ∀αi, k,aj .

(ii) Stretching one vector by factor α, stretches volume by factor α:

det(a1, . . . , αak, . . . ,an) = α det(a1, . . . ,ak, . . . ,an), ∀α, k,aj .

These two properties (i) and (ii) can be combined into a single shearing and stretching rule. If
one and only one vector, ak say, is replaced by a linear combination of all the vectors, then the
determinant is multiplied by the coefficient of ak:
1. Shearing and Stretching Rule

If ãk =
∑n

i=1 αiai then

det(a1, . . . , ãk, . . . ,an) ≡ αk det(a1, . . . ,ak, . . . ,an), ∀αi, k,aj . (9)

2. Orientation Rule
The determinant changes sign if any two vectors are permuted:

det(a1, . . . ,ak, . . . ,al, . . . ,an) ≡ −det(a1, . . . ,al, . . . ,ak, . . . ,an), ∀k, l,aj . (10)

3. Volume of Natural Basis
The ‘natural basis’ for Rn consists of the n vectors e1, . . . ,en, where ei has all components zero
except for the i-th component which is 1, i.e. e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), etc. These are
orthogonal vectors of magnitude 1. The signed volume spanned by these vectors is

det(e1, . . . ,en) =

∣∣∣∣∣∣∣∣∣∣
1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣
≡ 1. (11)



c©F. Waleffe, Math 321, 10/27/2003 3

These three rules imply many other properties but they also fully specify the determinant. The
basic idea is to use rules (9) and (10) to transform the determinant into a multiple of det(e1, ..., en).
Then by (11), the multiplication factor is in fact the determinant.
Two useful properties that can be deduced from these three rules are:
(P1) If two vectors are equal then the determinant is zero (by rule (10), permuting the two identical
vectors leaves the det unchanged and changes its sign, so it must be zero).
(P2) If one vector is identically zero (i.e. all its components are zero), the determinant is zero (by
(9), add any vector to the zero vector, then two vectors are identical, hence by (P1) it is zero).
(P3) If the n vectors a1, . . . ,an do not form a basis for Rn, i.e. if they are “co-planar”, then their
det (signed volume) is zero (by (9) ãk can be made to vanish for some k, then by (P2) det=0).

The shearing and stretching rule (9) can be replaced by the more fundamental multi-linearity rule.
This rule can be induced from geometry also (as well as from algebraic properties of cross and
mixed products e.g. (αa+βb) · (c×d) = αa · (c×d)+βb · (c×d), etc.). This is the rule (property)
that the determinant is a multi-linear function of the vectors, i.e.
1’. Multi-linearity

If ak =
∑n

i=1 βibi, for any k, βi, bi, then

det(a1, . . . ,ak, . . . ,an) ≡
n∑
i=1

βi det(a1, . . . , bi, . . . ,an), (12)

where each of the bi are replacing vector ak in the n determinants on the right-hand side and all
other vectors are identical in all determinants on both sides. It is clear that multi-linearity and
(P1) imply the shearing and stretching rule (9). The converse is also true but it’s less obvious. The
multi-linearity rule, together with the orientation rule and (P1), includes shearing, stretching and
“parallel breaking.”

Further useful properties of determinants are best expressed using matrices. We can view the n
vectors a1, . . . ,an as the n columns of a matrix A and the latter can be viewed as a “row of
columns” or a “column of rows”:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 = [a1 a2 · · ·an] ≡


r1

r2
...
rn

 (13)

where

aj =


a1j

a2j
...
anj

 and ri = [ai1 ai2 · · · ain] . (14)

Note the square brackets for the matrix, i.e. the table of n2 elements, and the vertical bars for the
determinant, i.e. the scalar representing signed volume. Those bits of horizontal lines on the ends
of the vertical bars mean a lot!
Some key determinant properties are then
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(P4) The determinant of a triangular matrix is the product of the diagonal elements. A triangular
matrix is a matrix for which all the elements above or below the diagonal are zero.∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

0 a22 · · · a2n
...

. . .
...

0 · · · 0 ann

∣∣∣∣∣∣∣∣∣ = a11a22 · · · ann. (15)

This can be proved by application of the three principal rules.
(P5) The determinant of the columns is equal to the determinant of the rows

det(a1, . . . ,an) = det(r1, . . . , rn). (16)

In matrix language, this is det(A) = det(AT ), the determinant of a matrix equals the determinant
of its transpose. This is an important and deep property. It means that all the rules and properties
apply to the rows as well as to the columns (but rows and columns cannot be mixed up randomly!).
The transpose of A is the matrix obtained by permuting rows and columns (keeping the order!),
with A as in (13):

AT ≡


a11 a21 · · · an1

a12 a22 · · · an2
...

...
. . .

...
a1n a2n · · · ann

 . (17)

Finally, there are two explicit formula for determinants that generalize (8). These are of theoretical
interest. They are useless for computations as soon as n is larger than about 3. The most explicit
formula is the
Permutation formula:

det(A) = εj1j2···jn aj11aj22 · · · ajnn = εj1j2···jn a1j1a1j2 · · · anjn , (18)

where sums over repeated indices are implicit and εj1j2···jn = ±1 depending on whether (j1, j2, . . . , jn)
is an even or odd permutation of (1, 2, . . . , n). Note that this sum as n! terms!
Another useful formula is recursive. It determines an n-by-n determinant in terms of (n − 1)-by-
(n− 1) determinants.
Co-factor formula:

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin = a1jC1j + a2jC2j + · · ·+ anjCnj , (19)

no matter what i or j is selected (no sums over i or j here!). The co-factor Cij is defined as (−1)i+j

times the (n− 1)-by-(n− 1) determinant obtained by suppressing row i and column j from A.

These formulas were invented so the people who love to “plug-and-chug” can stay happy forever.
Try computing a 100-by-100 determinant using either of these formulas. Yes, you can use your
calculator but you must use these formula. If your calculator knows how to compute determinants,
you better hope that it uses rules 1, 2, 3 instead of these explicit formulas.
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Exercises
1. The definition of the alternating, or permutation (or Levi-Civita), symbol is

εj1j2...jn ≡ ±1, or 0,

depending on whether (j1, j2, . . . , jn) is an even (ε = +1) or odd (ε = −1) permutation of (1, 2, 3, . . . , n).
For instance ε1,2,...,n = +1 = ε2,3,1,4,...,n but ε2,1,3,4...,n = −1 = ε1,3,2,4,...,n. The permutation symbol
is 0 if (j1, j2, . . . , jn) is not a permutation of (1, 2, 3, . . . , n). In particular, it is zero if any of the
indices are repeated e.g. ε1,1,3,4,...,n = 0. We assume implicitly that the range of each index ji,
i = 1, . . . , n is 1, . . . , n.
(a) Expand out explicitly εij aibj , i, j = (1, 2) (sum over repeated indices!).
(b) Expand out explicitly εijk aibjck, i, j, k = (1, 2, 3).
(c) Expand out explicitly εijkl aibjckdl, i, j, k, l = (1, 2, 3, 4).

2. We demonstrated in class (W 10/29/2003) how to calculate a 4-by-4 determinant using multiple
shearings of the 4-dimensional parallelepiped to “rectify” it, i.e. transform it into a parallelepiped
whose edges are aligned with the natural basis (e1, e2, e3, e4). We then realized that we had
everything needed to compute the determinant when it was in “triangular” form. Use the same
strategy to calculate explicitly the determinant

D ≡

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣ .
i.e. calculate b′2, c′′3 and D. Compare with exercise 1.(b). Determine the minimum number of
arithmetic operations needed to calculate D this way and the 1.(b) way. Can you generalize this
arithmetic operation count for a n-by-n determinant?

3. In exercise 2, what happens to D ≡ det(a, b, c) if we do several shearings “at once” i.e. replace
b by b+ βa and c by c+ γa “simultaneously”? Imagine we have several ‘computers’ to do the job
and we let computer 1 modify b and computer 2 modify c, simultaneously (or “in parallel”). What
would happen to D if computer 1 made the transformation b → b + βa while computer 2 made
the transformation c→ c+ γb? What if computer 1 transformed b→ b+ βa but computer 2 did
a→ a+ αb?

4. Calculate ∣∣∣∣∣∣
0 0 1
0 1 0
1 0 0

∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

∣∣∣∣∣∣∣∣ .
5. Calculate ∣∣∣∣∣∣∣∣∣∣∣∣

0 a1 0 · · · 0
...

. . . a2
...

...
. . . . . . 0

0 · · · · · · 0 an−1

an 0 · · · · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

[Hint: if you don’t “see it”, start with n = 2, then n = 3, then n = 4, first.]

6. What is the area of the triangle whose 3 vertices have the coordiantes (x1, y1, z1), (x2, y2, z2),
(x3, y3, z3)? What is the volume of the tetrahedron whose 4 vertices have the coordinates (x1, y1, z1),
(x2, y2, z2), (x3, y3, z3), (x4, y4, z4)?
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7. Write a real or pseudo-code to compute the determinant of an n-by-n matrix [aij ], i, j = 1, . . . , n
using shearings and vector swaps (orientation rule), as needed in case one of the “pivots” is zero.
Try it out on your calculator or computer.

8. Show that for any vectors a and b in R3,

|a× b|2 =
∣∣∣∣ a · a a · b
b · a b · b

∣∣∣∣ .
The right hand side can be generalized to any dimension allowing us to calculate the area of the
parallelogram spanned by a and b in any dimension.


