
Solutions to Take Home Exam 2 Boian Popunkiov

Problem 1
We wish to integrate numerically the following integral:

∫ π
0

sin x
x dx, using the trapezoidal and midpoint

methods. First note that that even though the integral looks improper, lim
x→0

sin x
x = 1; hence it exists. The

graph looks fairly smooth and “well-behaved”; therefore we should not expect any problems. We wish to
know the answer to 3 decimal digits, then we can use the estimates for the error bounds for the Trapezoidal
and Midpoint Rules. Using Theorem 5 on page 460, we respectively get:

|ET | ≤
Kπ3

12n2
(1)

|EM | ≤
Kπ3

24n2
(2)

where n is the number of intervals used in the method and K is an upper bound for the absolute value of
the second derivative of sin x

x . Differentiating twice we get

d2

dx2
(
sinx
x

) = −2 cosx
x2

+ 2
sinx
x3
− sinx

x

Using the following inequalities for x ∈ [0, π]:

1 ≥ cosx ≥ 1− x2

2

x ≥ sinx ≥ x− x3

x
,

we obtain − 1
3 ≤ −

2 cos x
x2 +2 sin x

x3 ≤ 1 Hence, | d
2

dx2 ( sin x
x )| ≤ |2( 1

2−
1
x2 )+ 2x

x3 −| sin xx || ≤ |2( 1
2−

1
x2 )+ 2x

x3 |+| sin xx | =
1 + | sin xx | ≤ 2.

Hence, we can use K = 2 in the formulas 1 and 2. Since we want at least 3 correct deciamal digits we
need, |ET | ≤ 10−4, for the Trapezoidal Rule and |EM | ≤ 10−4, for the Midpoint one. The solutions to these
inequalities are, respectively: nT ≥ 228, and nM ≥ 161 for the Trapezoidal and Midpoint Rules. These
values for nT and nM ensure that we will get the answer correct to at least 3 decimal places. When we apply
the formula we get the following approximations:∫ π

0

sinx
x

dx ≈ 1.851932. for the Trapezoidal Rule;

and
∫ π

0

sinx
x

dx ≈ 1.851942 for the Midpoint Rule.

In both of these methods we’ve defined sin x
x

∣∣
x=0

= 1, because lim
x→0

sin x
x = 1.

Comparing these number to the value 1.851937, given by Mathematica, with the Trapezoidal rule we got
5 correct decimal places; with the Midpoint Rule we got 4 correct decimal places. Also, the Trapezoidal rule
underestimates the “true” value by about −5× 10−5; the Midpoint rule overestimates it by 5× 10−5. So the
two methods are essentially the same. Also note that the formulas 1 and 2 are only upper bounds for the
error. The actual error may well be smaller than the given bound. In fact, in most of the cases, the actual
error is, indeed, less than the predicted. Furthermore, more often than not, it is difficult to estimate K. So,
what is usually done in practice is to run successive approximations by increasing the value of n, and stop
when you get the difference of two successive estimates less than the desired accuracy. As you will see, in
Problem 2, this method is much more efficient than simply applying the formulas from the book.
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Problem 2 We saw in the exam that∫ 1

−1

ex√
1− x2

dx =
∫ π

2

−π2
esin tdt (3)

Looking at the graph of f(t) = esin t, we again see no “irregularities”; hence a good approximation can be
given by the Trapezoidal Rule. Using n = 100, we obtain∫ π

2

−π2
f(t)dt ≈ 3.97746326050642263725660983266469716408

Using formula 1 from problem 1, we get the following upper bound for the error: |ET | ≤ 0.00140473, which
means that the estimated value of the integral is correct to at least 2 decimal places. On the other hand,
Mathematica estimates the actual error to be about 4.96 × 10−435, which is amazing!. So, the Trapezoidal
rule gives an excellent approximation to the integral. In fact it gives a correct answer to 15 decimal places
using only n = 5. This shows that one should use given formulas wisely . As you can see in this problem
blind application of the error bound formula leads to a very inefficient method. This argues the case of the
alternative method, suggested in Problem 1—successive approximation. Once again, the given formulas are
simply guides. One should think how they apply to the particular problem. In this case, even though the
given bound for |ET |, even though correct, is vastly inflated. So, we need a better theory for bounds in this
case.

Finally, the result |ET | ≤ 0.00140473 is obtained by using formula (1) and noting that f ′′(t) = esin x cos(x2)−
esin x sinx. Because both the cosine and the sine functions are bounded by 1, and the exponential is an in-
creasing function, we get |f ′′(t)| ≤ 2e.

Problem 3 We wish to solve the differential equation

x(x+ 1)y′ − y = x(x+ 1) for x > 0 (4)
with y(1) = A

This is a linear differential equation. To convert it into the standard form y′ + P (x)y = Q(x) we divide
both sides of the equation by x(x + 1). Then P (x) = − 1

x(x+1) and Q(x) = 1 and the integrating factor is

e
∫
P (x)dx = x+1

x . Here we also use the fact that x > 0. So d
dx (y x+1

x ) = x+1
x . The solution to the equation

then becomes

y
x+ 1
x

=
∫ x

1

(t+ 1)dt
t

+ 2A.

The formula above uses the initial condition given. Carrying out the integration we obtain the final answer
to (4) as

y =
x

x+ 1
(x− 1 + lnx+ 2A)

Problem 4 Now we wish to solve the differential equation

y′ = ex−y (5)
with y(0) = 1
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Equation (5) is a separable one and it separates into eydy = exdx. Integrating both sides we get the general
solution to be ey = ex + C. Using some algebra and the initial condition we get C = e − 1, and thus the
solution to the equation is

y = ln(ex + e− 1)

.

Problem 5 We are given the following differential equation:

y(x) = 3e−x
2

+
∫ x

1

eu
2−x2

cos(u3)du (6)

To find a differential equation to which (6) is a solution we must differentiate both sides of the equation.
It is useful, however, to write it first as: y(x) = 3e−x

2
+ e−x

2 ∫ x
1
eu

2
cos(u3)du. Now we can differentiate

easily. Using the Fundamental Theorem of Calculus and the product rule we obtain y′(x) = −6xe−x
2

+
2xe−x

2 ∫ x
1
eu

2
cos(u3)du+ cos(x3). Remembering that we started with 6 we rearrange the result into

y′(x) + 2xy = cos(x3).

That is the differential equation we were looking for. The initial condition is given by y(1) = 3e−1.

Problem 6 Given is the pendulum equation:

θ̈ +
g

L
sin θ = 0 (7)

with initial conditions: θ̇(0) = 0
and θ(0) = θ0

For the sake of notation let K = g
L .

Multiply equation (7) by 2θ̇ and you get 2θ̇θ̈ + 2Kθ̇ sin θ = 0. Recall that by the chain rule we have
d(θ̇)2/dt = 2θ̇θ̈ and that −d cos θ/dt = θ̇ sin θ. Hence, we have reduced the order of the original equation;
the new equation, after integrating, becomes(

dθ

dt

)2

= 2K cos θ + C

or
dθ

dt
=
√

2K cos θ + C (8)

Equation (8) is the first order equation for θ that we get from equation (7). We can get the value of C from
the initial conditions. They yield C = −2K cos θ0. Now equation (8) reduces to the following initial value
problem:

dθ

dt
=

√
2K(cos θ − cos(θ0)) (9)

with initial condition: θ(0) = θ0

This is a separable equation. It separates into dθ√
cos θ−cos θ0

=
√

2K. Given the initial condition its solution
is ∫ θ

θ0

dx√
cosx− cos θ0

= t

√
2g
L

(10)
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The only remaining problem is that the integral in the solution (10) is improper. To show that the integral
is convergent, we can prove that cosx − cosα ≥ α2−x2

2 . Let f(x) = cosx − cosα − α2−x2

2 . Then f ′(x) =
x−sinx ≥ 0. Hence, f(x) is an increasing function ofx. Thus, when x ≥ α, f(x) ≥ f(α) = 0. This inequality
shows that

1√
cosx− cos θ0

≤

√
2

x2 − θ2
0

≤ 1√
θ0

1√
x− θ0

.

The last inequality stems from the fact that x2 − θ2
0 = (x+ θ0)(x− θ0), and that x ≥ θ0. Since, the integral∫ θ

θ0
dx√
x−θ0

exists, we claim that the integral in (10) is convergent. So, in that respect we are all right.
Finally, the time it takes for the pendulum to from its initial position at θ0 to the vertical position θ = 0

is given by the equation:

T =
L

2g

(∫ 0

θ0

dx√
cosx− cos θ0

)
And this completes the solution to problem 6.

As a further comment, if you run the integral in (10) in Mathematica, it gives you the following formula:∫ θ

θ0

dx√
cosx− cos θ0

=
2√

1− cos θ0

∫ θ
2

θ0
2

dx√
1− 1

1−cos θ0
sin2 x

. (11)

The second integral in (11) is called an elliptic function. It can be easily verified by differentiation that this
is the same solutions as 10. Then, the period T of the pendulum can also be expressed as:

T =
L

g

0∫
θ0
2

dx√
1− cos θ0 − sin2 x
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