
FW Math 222 TAKE-HOME 1 Solutions 09/15/99

1.

(a)
d

dx

∫ 8

1

cos(lnx)

x3
dx = d/dx(constant) = 0

(b)
∫ π/2

0

d

dx

(
sin x cos

x

2

)
dx =

[
sin x cos

x

2

]π/2
0

= 1/
√

2

(c) Derivative of
∫ v

0
cosx3dx = cos v3

(d) Derivative of
∫ πx2

3x
sin(u2)du = sin(πx2)2d(πx2)/dx−sin(3x)2d(3x)/dx = 2πx sin(π2x4)−

3 sin(9x2)

(e) “the antiderivative of f(x) that is equal to π at x = 3” is
∫ x

3
f(s)ds+ π.

2. (a)

I(t) = I0 e
−Rt/L +

1

L

∫ t

0
V (s)e(R/L)(s−t)ds, (2)

= I0e
−αt +

e−αt

L

∫ t

0
V (s)eαsds = e−αt

(
I0 +

1

L

∫ t

0
V (s)eαsds

)
,

where α = R/L to simplify the notation. Then, the product rule, (uv)′ = u′v + uv′, and the
fundamental theorem give

dI

dt
= −αI(t) +

e−αt

L
V (t)eαt = −αI(t) +

V (t)

L

Putting it all together (remembering that α = R/L)

L
dI

dt
+RI = −RI(t) + V (t) +RI(t) = V (t).

Done with (a).
(b) V (t) = V0 sinωt, then

I(t) = I0e
−αt +

e−αtV0

L

∫ t

0
sin(ωs) eαsds

we do the integral using two integration by parts. Exactly like Example 4 in Sect. 7.1, p.
419 with a tad more algebra. We get

∫ t

0
sin(ωs) eαsds =

[
eαs

α2 + ω2
(α sinωs− ω cosωs)

]t
0

=
eαt

α2 + ω2
(α sinωt− ω cosωt) +

ω

α2 + ω2

Putting it all together

I(t) = I0e
−αt +

e−αtV0

L

ω

α2 + ω2
+

V0

L(α2 + ω2)
(α sinωt− ω cosωt).
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(c) for long times e−αt → 0 as t → ∞ (if α > 0 which it is, negative resistance and/or
negative inductance do not exist in this world), so a “long time” after flipping the switch

I(t) ≈ V0

L(α2 + ω2)
(α sinωt− ω cosωt),

this is simple alternating current. Note that it is not in phase with the voltage with is
V0 sinωt. I(t) has a cosωt. Indeed using the trig formula sin(a− b) = sin a cos b− sin b cos a,
let cosφ = α/

√
α2 + ω2 and sinφ = ω/

√
α2 + ω2 i.e. tanφ = ω/α then that last formula

can be written

I(t) ≈ V0√
R2 + L2ω2

sin(ωt− φ).

(d) “Long times” means αt � 1 (i.e. αt “much bigger than 1”), so αt ≈ 10 is pretty long.
Indeed e(−10) ≈ 4.5 10−5 (or 4.5E−5 in scientific notation). So long times means t � L/R
(t > 10L/R say). This varies from circuit to circuit.

3. (see #38 p. 421) In ≡
∫ π

0 cosn xdx. Then In = 0 if n odd because
∫ π/2

0 cosn xdx =
−
∫ π
π/2 cosn xdx (plot cosx in [0, π]). So focus on n even, i.e. n = 2k. Let’s use integration

by parts, exactly as in example 6, Sect. 7.1, p. 420, except that we have a cos instead of a
sin. Small change. The relevant formula is actually given to you in exercise 38 p. 421:

In ≡
∫ π

0
cosn xdx =

1

n

[
cosn−1 x sin x

]π
0

+
n− 1

2

∫ π

0
cosn−2 x dx

=
n− 1

n

∫ π

0
cosn−2 x dx

Now if we use this same formula for
∫ π

0 cosn−2 x dx we get

In ≡
∫ π

0
cosn xdx =

n− 1

n

n− 3

n− 2

∫ π

0
cosn−4 x dx

OK, let’s keep going then, with n even,

In ≡
∫ π

0
cosn xdx =

(n− 1)(n− 3)...(3)(1)

n(n− 2)...(4)(2)

∫ π

0
cos0 x dx = π

(n− 1)(n− 3)...(3)(1)

n(n− 2)...(4)(2)
.

This is the answer when n is even. We already knew it’s zero when n is odd but we can
check it using this recurrence as well. If n = 2k+ 1 then after k integration by parts we end
up with

∫ π
0 cosxdx = 0 multiplying everything.

4. (see #54 p. 422) You can do this in 2 ways but first make some good sketches!. Hard to
see what’s going on without a good sketch.
(1) cylinder of radius π, height ln π MINUS all the cylinder slices (disks) of radius y = ex

and width dx for x = 0 to ln π, i.e.

V = π(π2) ln π −
∫ lnπ

0
π(ex)2dx = ... = π3 ln π − π3

2
+
π

2
.
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(2) cylindrical shells of radius y of width dy and height x(y) = ln y, i.e.

V =
∫ π

a
2πy x(y)dy = 2π

∫ π

1
y ln ydy.

You do this last integral by parts (u = ln y, v′ = y, ...) and obtain same answer as with
method (1), of course.

5. (see #58 p. 428) (a) V (t) = 110 sin 100πt. Period: T = 1/50, so we have 50 cycles/second.

(b) V 2
rms = 1

T

∫ T
0 [V (t)]2dt = 50× 1102

∫ 1/50
0 sin2 100πt dt, let 100πt = x, 100πdt = dx so

V 2
rms = 50×1102

100π

∫ 2π
0 sin2 xdx = 1102

2
, so Vrms = 110/

√
2. See Section 6.5 for background about

averages.

6. (see #18 p. 428)
∫ π/4

0

dx

1− sin x
=
∫ π/4

0

1 + sinx

1− sin2 x
dx =

∫ π/4

0

1

cos2 x
dx+

∫ π/4

0

sin x

cos2 x
dx =

[tanx]
π/4
0 + [1/ cosx]

π/4
0 =

√
2.

7. (see #28 p. 443)
∫ 1

0

x

x2 + 4x+ 4
dx. This is a proper rational function (no need to divide)

(1) expand denominator in product of simple factors, i.e. find roots of quadratic. Pretty
obvious here: x2 + 4x+ 4 = (x+ 2)2, so we have a repeated root. This is Case II in 7.4. The
partial fraction expansion is

x

x2 + 4x+ 4
=

A

x+ 2
+

B

(x+ 2)2
=
Ax+ 2A+B

(x+ 2)2
,

thus A = 1 and B = −2A = −2. So∫ 1

0

x

x2 + 4x+ 4
dx =

∫ 1

0

dx

x+ 2
− 2

∫ 1

0

1

(x+ 2)2
dx = [ln |x+ 2|]10 + 2

[
1

x+ 2

]1

0
= ln

3

2
− 1

3
.

8. (see # 54 p. 443)
∫ π/2

0

sinx cos2 x

5 + cos2 x
dx. Let w = cos x then dw = − sin xdx and

I ≡
∫ π/2

0

sin x cos2 x

5 + cos2 x
dx =

∫ 1

0

w2

5 + w2
dw.

We now have a rational function but the deg(numerator)=deg(denominator) so we need to
divide first. Easy here as w2 = (w2 + 5)− 5. So∫ 1

0

w2

5 + w2
dw =

∫ 1

0
dw −

∫ 1

0

5

5 + w2
dw.

The first integral is trivial, the second is an arctan:

I = 1−
√

5

[
arctan

w√
5

]1

0

= 1−
√

5 arctan
1√
5
.
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