FW Math 221

1. [50 pts] Calculate the following expressions. Show your work but NO PARTIAL CREDIT. Full credit only for correct answer with correct derivation.

(1)
$$\lim_{a \to \infty} \int_{0}^{a} \frac{dx}{1+x^{2}} = \lim_{a \to \infty} [\arctan x]_{0}^{a} = \lim_{a \to \infty} \arctan a = \pi/2.$$
(2)
$$\lim_{\theta \to 0^{+}} \sqrt{\theta} \ln \theta = \lim_{\theta \to 0^{+}} \frac{\ln \theta}{\theta^{-1/2}} = "0/0," \text{ so we can use l'Hospital:} = \lim_{\theta \to 0^{+}} \frac{1/\theta}{(-1/2)\theta^{-3/2}} = \lim_{\theta \to 0^{+}} -2\theta^{1/2} = 0.$$
(3)
$$\int_{-3}^{2} \frac{dx}{\sqrt{17-x^{2}}} = \int_{-3}^{2} \frac{dx}{\sqrt{17}\sqrt{1-x^{2}/17}} \text{ now let } u = x/\sqrt{17} \text{ and the integral} = \int_{-3/\sqrt{17}}^{2/\sqrt{17}} \frac{du}{\sqrt{1-u^{2}}} = [\arctan u]_{-3/\sqrt{17}}^{2/\sqrt{17}} \frac{dx}{\sqrt{1-u^{2}}} = [\arctan u]_{-3/\sqrt{17}}^{2/\sqrt{17}} \frac{dx}{\sqrt{1-u^{2}}} = [\arctan u]_{-3/\sqrt{17}}^{2/\sqrt{17}} \frac{dx}{\sqrt{1-u^{2}}} = [\ln x)^{2/2}]_{1}^{2} = -0.5(\ln 2)^{2}.$$
(5)
$$\frac{dx^{x}}{dx} = \frac{d}{dx} \exp(x \ln x) = \exp(x \ln x)(\ln x + 1) \equiv x^{x}(\ln x + 1).$$
(6)
$$\arctan(\cos(cos(7\pi/4))) \text{ Make a sketch of } y = \cos x \text{ to see it. } \cos 7\pi/4 = \cos(7\pi/4-2\pi) = \cos(-\pi/4) = \cos \pi/4.$$
 By definition, arccos has a range of $[0, \pi]$ so arccos($\cos(7\pi/4)$) $= \pi/4.$
(7) $\cos(\arcsin(3)$) Does not make sense. There is no (real) arc with a sine of 3.
(8) $\sin(\arccos(1/3)).$ Let $\alpha \equiv \arccos(1/3)$, then $\cos \alpha = 1/3$ and by Pythagoras $\sin \alpha = \pm \sqrt{1-\cos^{2}\alpha} = \pm \sqrt{8/9} = \pm 2\sqrt{2}/3.$ Which sign is it, \pm ? The arccos is an angle in $[0, \pi]$ but such angles have positive sines (draw unit circle), so we need to select the + sign.
(9)
$$\ln(x^{3}e^{-x^{2}}) = 3\ln x - x^{2}.$$
(10)
$$\lim_{x \to +\infty} \frac{x^{a}}{a^{x}}, \quad \forall a > 0$$
, This limit is $= +\infty$ if $a \le 1$ and $= "+\infty/+\infty"$ if $a > 1$. We can use l'Hospital for that last case: limit $= \lim_{x \to +\infty} \frac{ax^{a-1}}{a^{x}\ln a} = 0$ if $a < 2$ otherwise $= "\infty/\infty"$, so use l'Hospital again to find that the limit is zero if $a < 3$ otherwise ∞/∞ , etc... So the limit is zero if $a > 1$

2. [10pts] Calculate (a) the area between the curves $y^2 = 4ax$ and $y^2 = 8ax - 4a^2$, (b) the volume generated by the rotation of that area about the x = 2a axis.

Here's a sketch of the two curves in nondimensional variables x/a, y/a:

The curves intersect at $y^2 = 4ax = 8ax - 4a^2 \Longrightarrow x = a, y = 2a$.

(a) Enclosed area = $\int_{-2a}^{2a} (x_r(y) - x_l(y)) dy$ where $x_r(y)$ is the rightmost curve and $x_l(y)$ the leftmost, so $x_r = (y^2 + 4a^2)/(8a)$ and $x_l(y) = y^2/(4a)$. The area is = $\int_{-2a}^{2a} (a/2 - y^2/(8a)) dy = 4a^2/3$. (b) Volume by washers: $V = \int_{-2a}^{2a} \pi (r_0^2 - r_i^2) dy$ where $r_0 = 2a - x_l = 2a - y^2/(4a)$ is the outer washer radius and $r_i = 2a - x_r = 2a - (y^2 + 4a^2)/(8a)$ is the inner washer radius. There is only straighforward algebra left to do. **3.** [10pts] A bowl in the shape of a paraboloid is filled with water at the constant rate of $Q \text{ m}^3$ /sec. How fast is the height of water in the bowl rising?

 $y = x^2$ is a parabola but what do x and y mean in that equation? If x is a length then $y = x^2$ is a length squared! (area). We encountered this issue in lecture on Fri Nov 16, 2001. A paraboloid of circular base of radius R and of height H is described by the equation $y = Hx^2/R^2$ which is dimensionally correct, x is a length and y is a length.

н

If the paraboloid is filled with water up to level $h \neq H$ then the volume of water (by slices) is $V = \int_0^h \pi x^2 dy$, where y is the height of a slice, dy its thickness and x its radius. Now $y = Hx^2/R^2$ so $V = \int_0^h \pi R^2 y/H dy = \pi R^2 h^2/(2H)$ which is indeed a volume. Then

$$\frac{dV}{dt} = \pi R^2 \frac{h}{H} \frac{dh}{dt} = Q$$
$$\frac{dh}{dt} = \frac{QH}{\pi R^2 h}.$$

The units on the right-hand side are indeed m/sec. We can solve that differential equation for h(t): $hdh = Cdt \longrightarrow h^2 = 2Ct + D$ where $C = QH/(\pi R^2)$ and D is an arbitrary constant. If we take t = 0 to be the time when there was no water in the bowl, then D = 0 and $h = \sqrt{2QHt/(\pi R^2)}$.

4. [10pts] A radioactive substance disintegrates at a rate proportional to the amount present. If the rate constant is 1 percent per day, how long will it take for the amount to have reduced by half?

$$\frac{dS}{dt} = -0.01S \longrightarrow S(t) = S_0 e^{-0.01t}$$

where S_0 is the initial amount and t is measured in days. $S/S_0 = 1/2 = \exp(-0.01t_*) \longrightarrow \ln(1/2) = -0.01t_*$ or $t_* = 100 \ln 2$, about 69.3 days.

5. [10pts] Suppose you borrow A_0 euros at the rate of r (%/year) and interest is compounded continuously. (a) What is the effective Annual percentage rate? (b) If you pay back the money continuously at the constant rate of p (euros/year), what is the differential equation that determines the amount of money owed at time t? (c) Solve that equation.

$$\frac{dA}{dt} = rA - p \longrightarrow \frac{dA}{rA - p} = dt \longrightarrow \ln(rA - p) = rt + C.$$

We get the constant in terms of the initial amount borrowed by evaluating this at t = 0, yielding $C = \ln(rA_0 - p)$. Then, taking the exp of both sides:

$$\frac{rA-p}{rA_0-p} = e^{rt} \longrightarrow A(t) = \frac{p}{r} + (A_0 - \frac{p}{r})e^{rt}$$

Note that if $A_0 - p/r > 0$ the loan will never be paid back.

6. [10 pts] Sketch $y = x^{1/17}$ and $y = \ln x$ on the same plot. Calculate (a) $\lim_{x \to 0^+} x^{1/17} \ln x$, (b) $\lim_{x \to +\infty} x^{-1/17} \ln x$. Find a number M > 0 such that $x^{1/17} > \ln x$ for all x > M.

(b) $\lim_{x \to +\infty} x^{-1/17} \ln x = \lim_{x \to +\infty} \frac{\ln x}{x^{1/17}} = \infty / \infty''$. Can use l'Hospital again: $\longrightarrow \lim_{x \to +\infty} 17 \frac{1/x}{x^{1/17-1}} = \lim_{x \to +\infty} \frac{17}{x^{1/17}} = 0$. SO $x^{1/17}$ eventually beats the log. It sure does not look like that on the plot! (c) Let's compare $x^{1/17}$ and $\ln x$ further. How big should x be before $x^{1/17}$ become bigger than $\ln x$? x will have to be really, really big, so maybe we should look at its ln, as the log of a big number is much smaller than that number (log increases slowly). Let $y = \ln x$ then

$$x^{1/17} \equiv e^{(\ln x)/17} > \ln x \Longrightarrow \exp(y/17) > y.$$

That's more manageable. With a bit of fiddling (or Newton's method) you can find that y must be bigger than 72.9189179, meaning that x must be bigger than $e^{72.9189179} \approx 4.6589 \, 10^{31}$. A pretty big number indeed.