Strongly Suggested Problems for Math 221
Lectures 1 and 2, Fall 2001

If you run out of exercises, try the "Review questions and exercices" and the "Miscellaneous problems" at the end of each chapter.

Section Subject Problems
1.2 Coordinates 1,13,15,16
1.4 Slope of a line 1, 17, 18
1.5 Equation of Straight lines 10,11,15,19, 26, 27
1.6 Functions and graphs 2, 10, 11, 17, 21, 28, 39, 49, 51
1.7 Slope of a curve 1,2,12,13, 16
1.8 Derivative of a function 1,2,3,6,8,12, 14, 22, 23, 24
1.9 Velocities and rates 1 (see Pblm12, § 1.8), 2, 8, 13-17, 19, 20
1.10 Limits 1,2,4,6,7,9,12,15,16,17,18
2.2 Derivatives of polynomials 1,3,10,16,18,20,25,27
2.3 Product and Quotient rules 2,3,6,7,8,9,14
2.4 Inverse functions 1,2,3,4
2.5 Implicit Functions 1,2,7,8,19,30, 36
2.8 Chain rule 1,6, 8, 9
2.9 Trigonometry review Your choice: trig is a prereq for 221
2.10 Derivatives of sin, cos and tan 1,2,3,7,18,23,25,29,33,35,40
2.6 increments 6,7,8
3.1 Sign of 1st derivative 2,6,8,9
3.2 Related rates 1-5,7,8,9,11,12,15
3.3-3.4 Sign of 2nd derivative, curve sketching 1,2,3,5,7,8,18,19,21,24 (x(1+x)-3 in class)
3.5-3.6 Maxima and Minima 1-5,7,14,15,24,26,34
3.7 Rolle's Theorem 1,4,5 (2, 3, x tan x =1 done in class)
3.8 Mean Value Theorem 1,4,8,9
3.9 l'Hôpital's rule 1,2,5,8,10,13. Solve each problem two ways.
3.10 Taylor's formula Extra problems (posted 10/19/2001)
4.2 Indefinite integral and differential equations 1,2,3,6,9,10,14,15,16,18,20,24,25
4.3 Applications of indefinite integration 1,3,5,6, 7,8,12,13,14,17
Optional challenge problem:
Solve y'=y with y(0)=1
(Hint: use Taylor's formula)
4.4 Integration of sines and cosines 1-4,6,8-10,12,25
4.5 Area under a curve all problems
4.6 Areas as limits 3,6
4.7 Areas by calculus 1-4,9,10,12-17
4.8 Definite integral and the
Fundamental Theorem of Calculus
1-15, 18-24
4.9 Approximating integrals 10-12
5.2 Area between curves 6--9,11
5.3 Distance and Velocity 1,4,6,7,9,11,13
5.4 Volumes by slices 1,2,11 (with letters),12,15,18
5.5 Shells and Washers 1,3,6,8,10,11,12
(5.7) Circle by polygons Estimate the length of a circle by using
(1) Inscribed polygons with 3,6,12,24,... sides
(2) Circumscribed polygons with 3,6,12,24,... sides
You cannot use sine, cosine or Pi! use sqrt only
6.1 Trig functions review 9,33,34,38,40,45,46,47,49,50,51
6.2 The inverse trig functions 1,2,3,8(abcd)(without calculator!!); 6,9
On your graphing calculator look at the graph of y=sin-1(sinx) for 0< x< 2 Pi Explain.
6.3 Derivatives of inverse trig functions. 5,6,8,10,15, 16,17,18,20
6.4 Natural log 2, 3, 5, 6, 7
6.5 Derivative of ln(x) 1, 2, 3, 7, 9, 18, 19, 23, 25, 28, 29, 31, 32, 34bc
6.6 Graph of ln(x) 4
6.11 Compound interest; Continuous compounding:
the Diff Eq dA/dt = r A ; Inverse ln : exp(x)
1, 6 + Miscellaneous problems 58, 60.
Extra problems
6.8 Exponential 1abcdijmn, 5, 6, 8, 17, 18, 20, 21, 23, 24, 27, 28, 31, 32, 35, 38, 39, 40.
6.9 ax 5, 8, 11, 15, 16
6.10 loga x 1a, 2a, 5, 7

Probably NO More will be posted later!!