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Abstract

We derive necessary conditions for linear instability of shear flows and prove linear
stability of plane Couette, Poiseuille and Kolmogorov flows for viscous flow with stress
boundary conditions (i.e. free-slip perturbations) thereby generalizing well-known in-
viscid stability results. We give a straightforward derivation of classic inviscid results by
combining the perturbation energy and enstrophy equations. We then summarize the
stability of various canonical shear flows and conclude the implications of energy stabil-
ity and linear theory. Furthermore, we examine inflectional instabilities and introduce
their role in the self-sustaining process.

1 Necessary conditions for linear instability

In the previous lecture the full flow v has been decomposed into a base shear flow U(y)x̂
and a perturbation u. The Navier-Stokes equations have been linearized about the base
flow U(y)x̂ and this led us to the Squire and Orr-Sommerfeld equation after elimination
of the pressure. Since the equations for u have been linearized and its coefficients
depend only on U(y), we can reduce the solution to the consideration of perturbations
of the form u = û(y)eλteiαxeiγz with α, γ real (i.e. Fourier-Laplace expansion of u).
Then Squire’s theorem shows that it suffices to consider 2D perturbations (γ = 0) to
investigate exponentially growing modes, that is solutions with 2<(λ) = λ+ λ∗ = 2σ >
0. We define λ = σ − iω where i2 = −1 and σ and ω are real.

We derived an energy and enstrophy equation for those linear 2D perturbations
and both equations include a production term that involves the perturbation ‘Reynolds
stress’ −uv ≡ α−2T (y)e2σt, where

T (y) = −α2 (û∗v̂ + ûv̂∗) = iα (v̂Dv̂∗ − v̂∗Dv̂) , (1)

such that T = 0 at the walls at y = y1 and y = y2 since v = 0 there. We write D ≡ d/dy
for compactness. We drop the hat over v̂ below.

The perturbation energy equation derived in the previous lecture implies that for
an instability, σ > 0, we must have

2σ

∫ (
|Dv|2 + α2|v|2

)
+

2

R

∫
|φ|2 =

∫
U ′T = −

∫
(U − U0)T ′ > 0, (2)

where
∫

(· · · ) is short for
∫ y2
y1

(· · · )dy, the integral from the bottom wall at y = y1
to the top wall at y2, the prime (·)′ ≡ D(·) ≡ d(·)/dy, that is U ′ = dU/dy, U ′′ =

1
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d2U/dy2,. . . The function φ = (D2 − α2)v is effectively the perturbation vorticity (see
lecture 3).1

Equation (2) follows from multiplying the Orr-Sommerfeld equation (17) by v∗,
integrating over the full channel from y = y1 to y2 using integration by parts and
taking the real part of the result. The last expression in (2) was obtained by integration
by parts of

∫
U ′T and U0 is an arbitrary constant since

∫
U0T

′ = U0

∫
T ′ = 0 because

T = 0 at the walls.
For free-slip boundary conditions, that is v = D2v = 0 at the walls (corresponding

to stress boundary conditions on the full flow, that is v · ŷ = 0 with ∂yv‖ fixed), the
perturbation enstrophy equation derived in lecture 3 reads

2σ

∫
|φ|2 +

2

R

∫ (
|Dφ|2 + α2|φ|2

)
=

∫
U ′′T ′ =

∫
(−U ′′′)T > 0, (3)

and the enstrophy production
∫
U ′′T ′ =

∫
(−U ′′′)T should be positive for an instability

σ > 0. This equation was obtained by multiplying the Orr-Sommerfeld equation (17)
by φ∗ = (D2 − α2)v∗, integrating over the channel using multiple integrations by parts
then taking the real part of the integral equation (i.e. adding its complex conjugate).
This yields the enstrophy equation (3) together with the boundary term

1

R

[
φ∗Dφ+ φDφ∗

]y2
y1

(4)

on the right hand side of (3). This boundary term vanishes for v = D2v = 0 on the
boundary since φ = D2v−α2v. For no-slip, v = Dv = 0, the boundary term (4) is sign
indefinite and corresponds to the generation or destruction of enstrophy at the walls.

Now, since φ = (D2 − α2)v, integration by parts with v = 0 at the walls gives∫
|φ|2 =

∫ (
|D2v|2 + 2α2|Dv|2 + α4|v|2

)
(5)

so we can combine the energy and enstrophy equation taking (3) - α2 (2) to obtain

2σ

∫ {
|D2v|2 + α2|Dv|2

}
+

2

R

∫
|Dφ|2 =

−
∫

(U ′′′ + α2U ′)T =

∫ (
U ′′ + α2(U − U0)

)
T ′ > 0. (6)

We can go even further and take (6) - β2 (2) to obtain

2σ

∫ {(
|D2v|2 − β2|Dv|2

)
+ α2

(
|Dv|2 − β2|v|2

)}
+

2

R

∫ (
|Dφ|2 − β2|φ|2

)
=

−
∫ (

U ′′′ + (α2 + β2)U ′
)
T =

∫ (
U ′′ + (α2 + β2)(U − U0)

)
T ′ (7)

The left hand side of (7) is not necessarily positive even for σ > 0 unless β is small
enough. Indeed, the left hand side consists of integrals of the form

∫
(|Df |2 − β2|f |2)

and each of these integrals will be positive provided β ≤ π/2 for free slip boundary

1In the classical literature, e.g. [1, Chap. 4], it is common to use a streamfunction φ(y) for the Rayleigh and
Orr-Sommerfeld equations, we prefer to use the vertical velocity v in those equations and our φ = (D2−α2)v
is effectively the vorticity, ω = ∂xv − ∂yu = (iα)−1φ(y)eλteiαx.
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conditions v = D2v = φ = 0 at the walls at y = ±1 since for such functions one can
show by variational calculus that∫ 1

−1
|Dv|2dy ≥ π2

4

∫ 1

−1
|v|2dy, (8)

∫ 1

−1
|Dφ|2dy ≥ π2

4

∫ 1

−1
|φ|2dy, (9)∫ 1

−1
|D2v|2dy ≥ π2

4

∫ 1

−1
|Dv|2dy, (10)

so the left hand side of (7) will always be positive if σ > 0 (instability) and β2 ≤ π2/4.
This yields another necessary condition for instability

−
∫ (

U ′′′ +

(
α2 +

π2

4

)
U ′
)
T =

∫ (
U ′′ +

(
α2 +

π2

4

)
(U − U0)

)
T ′ ≥ 0. (11)

Condition (11) is expressed for a domain normalized to −1 ≤ y ≤ 1, for y1 ≤ y ≤ y2
the factor π2/4 should be replaced by π2/H2, with H = y2 − y1.

Thus for a linear shear flow instability, σ > 0, we must have positive energy produc-
tion

∫
U ′T = −

∫
(U − U0)T ′ > 0 from (2), always, as well as condition (11) for viscous

flow with free-slip perturbations. Note that (11) together with (2) includes and there-
fore supersedes (3) and (6) and we obtain the necessary conditions for linear instability
for viscous flow with free-slip, or for inviscid flow,∫

(−U ′′′)T ≥
(
α2 +

π2

H2

)∫
U ′ T > 0 (12)

which, after integration by parts with T = 0 at the walls, can also be written as∫
U ′′T ′ ≥

(
α2 +

π2

H2

)∫
(U0 − U)T ′ > 0 (13)

where H = y2 − y1 is the total channel height, U0 is an arbitrary constant,
∫
≡
∫ y2
y1
dy

and T = T (y) is the perturbation Reynolds stress (1).

1.1 Linear stability of Couette, Poiseuille and Kolmogorov

The enstrophy equation (3) allows us to conclude that plane Couette flow U = y, plane
Poiseuille flow U = 1−y2 and any combination of Couette and Poiseuille U = a+by+cy2

for any constant a, b, c (i.e. shear flow driven by both a pressure gradient and imposed
stress at the walls) are linearly stable for inviscid or viscous flow with free-slip, since
all these flows have U ′′′ = 0 and no enstrophy production, therefore σ < 0 for any
0 ≤ R <∞ from (3).2

Condition (12), or (13), allows us to show linear stability for free-slip of the Kol-
mogorov flow

U(y) =
sin(βy)

sinβ
(14)

2We stress again that these results only apply to viscous flows with stress boundary conditions, that is,
v · n and ∂nv‖ fixed (i.e. fixed stress ν∂nv‖), where n is the unit normal to the wall and v‖ = v − (v · n)n
is parallel to the wall. From incompressibility, this yields v = D2v = 0 at the walls. For no-slip, (3) has an
extra boundary term of indefinite sign.
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whenever β ≤ π/2. The Kolmorogov flow (14) is normalized so U(±1) = ±1 as for
Couette flow which it asymptotes to for β → 0, and we can take β ≥ 0 without loss
of generality. The Kolmogorov flow is an inflectional profile with a vorticity maximum
at y = 0. For (14), we have −U ′′′ = β2U ′ = β3 cos(βy)/ sinβ so instability of the
wall-bounded Kolmogorov flow requires, from (12), that∫ 1

−1
cos(βy) T dy > 0 and β2 ≥ α2 +

π2

4
, (15)

where T (y) is defined in (1), so Kolmogorov flow (14) with 0 ≤ β ≤ π/2 is linearly
stable. This includes Couette flow for β → 0 and the flow U(y) = sin(πy/2) used in
the derivation of the SSP model [9], as well as all sinusoidal profiles between those two
flows.

Lou Howard (1997, private communication) provided a proof for the linear stability
of the U = sin(πy/2) viscous flow with free-slip perturbations used in [9]. His proof made
use of the energy (2) and enstrophy (3) equations and U ′′ = (−π2/4)U for U = sinπy/2
to eliminate the production terms through the combination (3) - π2/4 (2).

Linear instability for inviscid or viscous flow with no-slip or free-slip requires positive
perturbation energy production

∫
U ′T > 0 from (2). If we could show that U ′T ≥

0 pointwise, for instance, then we could generalize the classic Rayleigh and Fjortoft
theorems of inviscid flow (see below) to viscous flow with free-slip perturbations. Indeed
if we assume that U ′T is positive pointwise, not just on average as required by (12),
then ∫

(−U ′′′)T ′ =

∫ (
−U ′′′

U ′

)
U ′T ≤ max

y

(
−U ′′′

U ′

)∫
U ′T

and (12) would yield the necessary condition3

max
y1≤y≤y2

(
−U ′′′

U ′

)
≥ α2 + π2/H2. (16)

This would be a stronger version of Fjortoft’s theorem, implying for instance that a
flow such as U = y3 with U ′ = 3y2 ≥ 0 and U ′′′ = 6 > 0 could not be unstable but
other inflectional flows such as U = tanh(βy) could be unstable provided β is large
enough. This would be a nice result since the linear stability of shear flows (see e.g.
[1, Chap. 4 ]) is in an unsatisfactory state of affairs, with classic inflectional instability
results derived only for inviscid flows. If we could extend those results to viscous flow
with free-slip, this would certify that the difference is not between inviscid or viscous
flow, but between free-slip or no-slip, as numerical calculations indicate. The physical
difference arising because no-slip allows the generation of enstrophy at the walls but
free-slip or viscosity-free do not.

1.2 Inviscid results

The energy (2) and enstrophy (3) integrals, and the instability conditions (12), (13),
still apply for inviscid flow with 1/R ≡ 0 in which case the Orr-Sommerfeld equation
for v(y) [

λ+ iαU − 1

R
(D2 − α2)

]
(D2 − α2)v − U ′′iαv = 0. (17)

3as claimed in the lecture but flagged by Matt Chantry as only valid for U ′T ≥ 0 pointwise, which we
have not shown. Good eye, Matt!



WHOI GFD 2011 Lecture 4 5

reduces to the Rayleigh equation

(U − c)(D2 − α2)v − U ′′v = 0 (18)

with λ , −iαc, that is c = iλ/α = ω/α + iσ/α for λ = σ − iω with i2 = −1 and σ,
ω real. So an instability for Rayleigh’s equation occurs when =(c) = σ/α > 0, taking
α > 0 without loss of generality. The only boundary condition for Rayleigh’s equation
is no-flow through the walls, that is v = 0 at y = y1 and y2.

Rayleigh’s equation (18) allows us to derive an expression for T ′, the Reynolds force.
Substituting for D2v from (18) into T ′ ≡ DT = dT/dy calculated from (1) gives

T ′ = iα(vD2v∗ − v∗D2v) = 2σ
U ′′

|U − c|2
|v|2 (19)

hence T ′ has the sign of U ′′ when σ = <(λ) > 0 (instability).
Rayleigh’s theorem (1880). Since T = 0 at the walls (1), T ′ and therefore U ′′ must

change sign in the domain for instability. Thus U ′′ must vanish somewhere in the
domain but not everywhere (Couette flow) since σ = 0 from (2) and (19) when 1/R ≡ 0
and U ′′ = 0 everywhere.

Fjortoft’s theorem (1950). Substituting for T ′ from (19) into (2) shows that insta-
bility requires (U0 − U)U ′′ ≥ 0 somewhere in the domain, for any U0, which again gives
Rayleigh’s theorem that U ′′ must change sign in the domain. Picking U0 = U(ys) = Us
where U ′′(ys) = 0, so both Us − U and U ′′ change sign when y crosses ys, gives the
perturbation energy equation (2) as∫ y2

y1

(
|Dv|2 + α2|v|2

)
dy =

∫ y2

y1

(Us − U)U ′′

|U − c|2
|v|2 dy ≥ 0, (20)

for σ 6= 0 and Fjortoft’s theorem that (Us − U)U ′′ ≥ 0 somewhere in the domain is
necessary for instability. This implies linear stability of flows such as U = y3 for which
(Us − U)U ′′ = −6y4 ≤ 0, but possible instability of flows such as U = sin(βy)/ sinβ
that have U ′′ = β2(Us − U), see e.g. [1, Fig. 4.2].

We can go further by substituting for T ′ from (19) into (11) or (13), with U0 = Us,
to find that (U ′′)2 ≥ (α2 + π2/H2)(Us − U)U ′′ somewhere in the domain. If we now
assume that (Us − U)U ′′ ≥ 0 everywhere, we obtain that

max
y1≤y≤y2

(
U ′′

Us − U

)
≥ α2 +

π2

H2
(21)

is necessary for instabilitym where H is the full height of the channel. This implies
stability of the Kolmorogov flows U = sin(βy)/ sinβ when |β| ≤ π/H as we already
established for viscous flow with free-slip, but now also includes other similar flows such
as U = tanhβy which are only unstable for β large enough (left to the reader). Condition
(21) effectively contains the results of Friedrichs (1942) and Drazin and Howard (1966)
[1, p. 133, 134]. Our derivation is more straightforward but the result is not quite
identical since Friedrichs provides an expression for a neutral wavenumber. Condition
(21) shows that inflectional instabilities are larger scale instabilities, that is, they require
0 ≤ α2 ≤ β2

s − π2/H2, where β2
s ≡ max(U ′′/(Us − U)).

Since the production integral on the right hand side of (20) can written for any
constant U0 in place of Us and in particular for U0 = cr = <(c), and since |U − c|2 =
(cr − U)2 + c2i with ci = =(c) = σ/α, we can infer that while U ′′ = 0 somewhere is
necessary for instability, the maximum instability (max ci) occurs for values of cr that
tend to maximize U ′′/(cr − U) and functions v(y) that are largest near those maxima.
For profiles that are anti-symmetric about the inflection point, such as U = sinβy or
tanhβy, this will likely be for cr = Us.
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2 Rayleigh’s piecewise linear models

Rayleigh’s eigenvalue problem (18) is difficult to solve when U(y) is a smoothly varying
function (figure 1(a)). However, if U(y) is defined as a piecewise linear function (as
shown in figure 1(b)), then the solutions of Rayleigh’s equation are simple exponential
or hyperbolic functions which must satisfy certain matching conditions at a discontinuity
of U(y) or U ′(y) [1].

(a) (b)

-h

h

yy

xx

U(y)x̂

Figure 1: (a) Unbounded smooth shear flow. (b) Piecewise-linear unbounded shear flow.

The matching conditions can be derived by going back to the primitive equations [1,
§23] and [8, §6.2.1] and the reader should study those derivations. Here, we start from
Rayleigh’s equation (18) and imagine a continuous deformation from a smooth profile to
a piecewise linear profile, for instance a continuous deformation of U = tanh(y/h) into
the piecewise linear profile in fig. 1(b)). Then Rayleigh’s equation applies but U ′′ →∞
at corners and 0 everywhere else, i.e. U ′′ tends to a sum of Dirac delta functions and
Rayleigh’s equation implies that D2v → ∞ at those points also, to balance the U ′′

divergences. That is, the jumps in U ′ must be balanced by jumps in v′ as governed by
Rayleigh’s equation. Indeed, Rayleigh’s equation (18) can be rewritten in the form(

(U − c)v′ − U ′v
)′ − α2(U − c)v = 0, (22)

and integrating (22) across a vanishing rapid transition region for U ′, say from y = y0−ε
to y = y0 + ε with ε→ 0+ gives the jump condition[

(U − c)v′ − U ′v
]y+0
y−0

= 0. (23)

This jump condition corresponds to continuity of pressure [1, §23] and [8, §6.2.1].
If we also allow for jumps in U , these must be matched by jumps in v and that

balance is revealed by rewriting (22) as(
(U − c)2

(
v

U − c

)′ )′
− α2(U − c)v = 0. (24)

which shows that v/(U − c) cannot jump since such a jump could not be balanced in
Rayleigh’s equation. Thus, the jump conditions for v at a jump of U is[

v

U − c

]y+0
y−0

= 0. (25)
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A discontinuous U profile corresponds to the Kelvin-Helmholtz model with a sharp
interface between two differentially moving fluid layers. The jump condition (25) cor-
responds to the linearized material interface condition [1, §23] and [8, §6.2.1].

Away from jumps, when the velocity profile is piecewise linear, U ′′ = 0, and so
Rayleigh’s stability equation (18) has the general solution

v(y) = Aeαy +Be−αy (26)

for arbitrary constants A,B. Therefore, we can use conditions (23) and (25) to match
solutions of the form (26) to solve any problem with a piecewise linear velocity profile.

For the piecewise linear unbounded shear flow, we take

U(y) =


U0 if y ≥ h,
U0y/h if − h ≤ y ≤ h,
−U0 if y ≤ −h,

(27)

as in figure 1b. Note that U ′′ = (−U0/h)δ(y − h) + (U0/h)δ(y + h) where δ(·) is the
Dirac delta function and that U ′′ changes sign. We could consider this problem as the
limit for ε→ 0+ of the smooth profile with U ′′ = (−U0/h)G(y−h, ε)+(U0/h)G(y+h, ε)
where G(y, ε) = (πε)−1/2 exp(−y2/ε) is the standard Gaussian.

Solving (18) for (27) with v → 0 as y → ±∞ gives

v(y) =


Ae−α(y−h) if y > h,

Beαy + Ce−αy if − h < y < h,

Deα(y+h) if y > −h,
(28)

with α > 0 (and D here is a constant not the d/dy shorthand as before). Since U is
continuous, the jump condition (25) reduces to continuity of v at y = ±h, hence

A = Beαh + Ce−αh,

D = Be−αh + Ceαh.
(29)

It is now convenient to let
ĉ =

c

U0
, α̂ = αh, (30)

(or equivalently taking h and U0 has length and velocity scales leading to h ≡ 1 and
U0 ≡ 1) then applying the jump condition (23) at y = ±h, substituting for A and D
from (29) gives (

2α̂(1− ĉ)− 1
)
Ceα̂ = Be−α̂,(

2α̂(1 + ĉ)− 1
)
Beα̂ = Ce−α̂,

(31)

which after elimination of B and C yields
(
(2α̂− 1)2 − 4α̂2ĉ2

)
= e−4α̂ and

ĉ2 =
(1− 2α̂)2 − e−4α̂

4α̂2
, (32)

such that ĉ2 → −1 as α̂ → 0, ĉ2 = 0 at α̂ ≈ 0.63 and ĉ2 < 0 in 0 < α̂ . 0.63. A
negative ĉ2 means c = cr + ici with cr = 0 and ci = ±|c|, hence instability. The growth

rate (18) λ = −iαc = αci is real when c2 is negative. Define λ̂ = α̂ĉi = αci(h/U0), so

λ̂ = λ(h/U0) and this non-dimensional growth rate is plotted in fig. 2 as a function of
the non-dimensional wavenumber α̂ = αh.
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Kelvin-Helmholtz. The limit h → 0 yields the Kelvin-Helmholtz model with α̂ =
αh → 0 in (32) yielding ĉ2 → −1 so c = ±iU0 and λ = −iαc = ±αU0. The Kelvin-
Helmholtz model is ill-posed since λ = αU0 can be as large as one desires by taking
α large enough, but Rayleigh’s piecewise linear model with a length scale h, eqns.
(27), (32) and fig. 2, is well-posed and gives a qualitatively and quantitatively valid
picture of the instability that only occurs for α . 0.63/h. Although, ‘Kelvin-Helmholtz
instability’ is often used to describe general inflectional instability and vortex roll-up,
the Kelvin-Helmholtz model is a bit too singular to provide insights into the instability
for smooth profiles U(y). The Rayleigh model (27) is more physical and shows that the
instability results from the interaction between two regions where U ′′/(cr − U) is large
and positive with U ′′ of opposite signs. Valis [8, §6.2.4] provides a useful interpretation
of the instability as an interaction between edge waves for the Rayleigh model.

α̂

Re(λ̂)

Figure 2: Growth rate λ̂ = α̂ĉi = αci(h/U0) with c given by equation (32). The flow is
unstable for α̂ = αh < 0.63.

Reynolds stress. The perturbation Reynolds stress is given by (1)

−uv =
i

α

(
v
dv∗

dy
− v∗ dv

dy

)
. (33)

In the case of piecewise linear unbounded shear flow (28) this gives

−uv =


0 if y > h,

2i(BC∗ −B∗C) if − h < y < h,

0 if y > −h.
(34)

then eliminating C using (31) with c = ici and σ̂ = α̂ĉi > 0 gives

−uv = 4σ̂|B|2e2α̂ > 0 (35)

in −h < y < h, where α̂ = αh and σ̂ = σ(h/U0) with σ = αci > 0 for an unstable mode.
Therefore, constant positive perturbation Reynolds stress −uv occurs throughout the
shear layer and U ′T ≥ 0 pointwise (2) (but this is for the inviscid problem). The
Reynolds stress −uv transports momentum from y = h to y = −h and vice-versa. The
Reynolds force onto the mean flow −duv/dy consists of two delta functions, one negative
at y = h and a positive at y = −h, slowing down the mean at y = h and speeding it up
at y = −h.
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3 Instability from viscosity and no-slip

Remarkably, viscosity and no-slip at the walls can lead to linear instability even for
flows with U ′′′ = 0, such as plane Poiseuille flow U = 1−y2, that are stable for free-slip
as shown in sect. 1. In plane Poiseuille flow, Heisenberg [2] found a weak linear 2D
instability, that occurs at R ' 5772 [4] and disappears as R → ∞. In boundary layer
flows Tollmien [7] and Schlichting [6] demonstrated a weak 2D instability which has a
critical Reynolds number of approximately R ' 500 and again disappears as R → ∞.
However, unlike the previous two flows, Romanov [5] proved that plane Couette flow
is linearly stable for all values of R (although this was already believed since the work
of Hopf (1914), [1, §31.1]). While pipe flow (or Hagen-Poiseuille flow) has not been
proven linearly stable for all R, it is believed to be so, and this has been shown up to
Re ' 105 experimentally and R ' 107 computationally (see lecture 1). When the no-slip
boundary conditions are replaced by free-slip boundary conditions for the perturbations
then we showed earlier in sect. 1 that plane Poiseuille and Couette flows are linearly
stable for all R. The instability for viscous flow with no-slip in channel flow arises
because of the generation of vorticity at the boundary (4). This is a delicate process
because viscosity leads to dissipation of enstrophy in the bulk as well as generation
of enstrophy at the boundary (3), these two viscous effects are of the same order and
oppose each other.

(Note: A lecture on the Orr-Sommerfeld equation for R <∞, with a look at Heisenberg
and Tollmien’s work and critical layers was skipped in the GFD program.)

4 Failures of linear theories

We now summarise the results derived from linear theory in the last two lectures. From
the previous lecture we have the governing linear equations(

∂

∂t
+ U

∂

∂x
− 1

Re
∇2

)
η = −U ′ ∂v

∂z
, (36)(

∂

∂t
+ U

∂

∂x
− 1

Re
∇2

)
∇2v − U ′′ ∂v

∂x
= 0, (37)

where v = ŷ · v and η = ŷ ·∇ × v = ∂zu − ∂xw. For v = 0, we can show that η → 0
for η = 0 or ∂nη = 0 at the walls, since the homogeneous η equation is an advection
diffusion equation. Exponential instabilities therefore can only originate from the v
equation and Squire’s theorem (lecture 3) shows that 2D (x, y), that is independent
of the spanwise direction z, are more unstable than 3D disturbances. However, the
canonical shear flows (Couette, Poiseuille, pipe) do not have a linear instability, except
for a weak linear instability for viscous plane Poiseuille flow with no slip at the walls.

Energy stability on the other hand (lecture 3 and [1, §53.1]) shows that 2D per-
turbations depending on (y, z) only, independent of the streamwise direction x, lead to
the lowest Reynolds number below which the flow is absolutely stable. Hence linear
stability theory and energy stability theory give, literally, orthogonal results!

The x-independent perturbations of energy stability theory lead to the largest initial
perturbation energy growth since they maximize production over dissipation (lecture
3), but such x independent perturbations ultimately decay. We discussed this in lecture
1 and can show it by considering the full non-linear Navier-Stokes equations with no
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x-dependence,

∂u

∂t
+
�
�
��

0

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
=

�
���

0

−∂p
∂x

+ F +
1

R
∇2u,

∂v

∂t
+
�
�
��

0

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

R
∇2v,

∂w

∂t
+
�
���

0

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

R
∇2w,

(38)

where v = (u, v, w) and where F in the u equation is a driving body force. The
continuity equation reduces to ∇ · v = ∂yv + ∂zw = 0. Hence, the equations for v and
w decouple from the equation for u and the latter is a passive scalar forced by F and
redistributed by v, w. This decoupling implies that v and w do not have any forcing
and therefore they decay because of viscosity, no matter their initial amplitude [3]. This
was discussed and proved in lecture 1. The proof is simple and consists in deriving the
equation for the cross-stream kinetic energy

∫
A

(v2 + w2) where A is the cross-section

and showing that d
dt

∫
A

(v2 + w2) = −(1/R)
∫
A

(
|∇v|2 + |∇w|2

)
≤ 0.

These x-independent perturbations also lead to the largest linear growth of the
perturbation energy. For such perturbations, η = ∂zu− ∂xw reduces to

η =
∂u

∂z
,

and we can therefore integrate equation (36) with respect to z to recover the streamwise
u = U(y) + ũ velocity equation (38) linearized about the base shear flow U(y)

∂ũ

∂t
− 1

R
∇2ũ = −vU ′. (39)

Hence, x-independent but z-dependent v(y, z) perturbations can generate large pertur-
bations of streamwise velocity u and large η = ∂zu. However, they eventually decay in
the linear theory as well as in the full x-independent nonlinear theory, as there is no
feedback upon v. The reader is referred to the discussions and models in lecture 1.

5 3D, nonlinear ‘instability’

Thus linear theory of shear flows fails. Energy stability and upper bound theories
(lecture 2) suggest x-independent perturbations as most effective at initial perturbation
energy growth and maximum momentum transport and energy dissipation, but truly
x-independent perturbations always decay, for all amplitudes. So we need a nonlinear,
3D theory. Ouch!

Yet, we’re not far. The x-independent perturbations indeed are very good at redis-
tributing the streamwise velocity u and transporting momentum, that is maximizing
−uv and perturbation energy production −uv U ′. This is clear from equation (39) which
for large R gives ũ ∼ −vU ′t so −uv ∼ v2 U ′t.

These perturbations are necessarily spanwise z dependent, otherwise continuity and
the boundary conditions would require v = 0. These perturbations typically introduce z-
inflections in the streamwise velocity profile and those lead to instabilities of inflectional
type, but as a result of z inflections, not y inflections as in the classical linear theory.
These inflectional instabilities extract energy and momentum from the u-fluctuations of
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course and will therefore accelerate the return to the laminar flow, unless they manage
to regenerate v. This seems like a lot of ifs, however that is essentially the fundamental
self-sustaining process that leads to the possibility of 3D, nonlinear states disconnected
from the laminar flow, and ultimately the sustenance of turbulent shear flows. The self-
sustaining process will be written up in more detail in the next lectures. (There was
lots of hand-waving and jumping around by the lecturer that is difficult to write-up).
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