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Exact coherent structures are steady state or traveling wave solutions of the
Navier-Stokes equations that bifurcate from a neutrally stable streaky flow.
Such solutions exist in various shear flows, for example in free-slip and no-
slip plane Couette and Poiseuille flows, and are homotopic to one another.
They are smoothly connected to each other through simple mappings in
parameter space and their forms in physical space are also closely related.
These non-turbulent solutions capture the main structural and statistical
features of turbulent flows, such as the form and characteristic sizes of the
coherent structures, yet they are unstable from onset. A simple 1D discrete
dynamical system illustrates how unstable solutions can be relevant to the
dynamics and are symptomatic of a ‘hard’ transition to turbulence. Fully-
resolved steady states in no-slip plane Couette flow are presented for various
length scales up to Reynolds number 400 where turbulent and time-periodic
solutions have been obtained.

1 Introduction

The question of whether shear turbulence can be understood from the point of view of dy-
namical systems has been discussed many times since the discoveries of the period doubling
and other routes to Chaos in low-order systems. It has been argued that ‘open’ systems such
as shear turbulence are fundamentally different from ‘closed’ systems such as Rayleigh-Bénard
convection. A distinction has been drawn between absolute and convective instabilities and
experiments suggest that the onset of shear turbulence is a complex spatio-temporal process
characterized by the development of turbulent spots.

Nonetheless, I believe that a dynamical-systems understanding of the onset of shear turbu-
lence is forthcoming and intimately tied with the near-wall coherent structures that have been
studied experimentally for about 50 years. The impact of coherent structures on our views
of the statistical nature of turbulence and turbulent transport has been profound but largely
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qualitative because of a lack of an adequate quantitative mathematical model of the coherent
structures. Precise mathematical models of the coherent structures are now available in the
form of steady state and traveling wave solutions of the Navier-Stokes equations. These exact
coherent structures are unstable from onset typically. Therefore, this suggests a precise defini-
tion of Townsend’s notions of ‘active’ and ‘inactive’ motions as the exact coherent structures
and their instabilities, respectively. The study of the exact coherent structures, their insta-
bilities and subsequent bifurcations is expected to lead to an understanding of the onset and
nature of shear turbulence and of the issues of ‘bursting’ and streak spacing. In a second stage,
studies of the self-organization of the coherent structures in large spatial domains and of their
interaction with the laminar flow should lead to an elucidation of complex spatio-temporal
processes such as spots at transitional Reynolds numbers and packets of horseshoe vortices
in fully developed turbulence at moderate Reynolds numbers, studied recently by Adrian and
co-workers [1]. The difficulty in understanding shear turbulence is seen not as a result of the
difference between absolute and convective instabilities, but as a result of the linear stabil-
ity of the laminar flow, essentially for all Reynolds numbers, and the importance of unstable
three-dimensional nonlinear states that appear ‘out-of-the-blue-sky’ at Reynolds numbers of a
few hundreds.

This union of dynamical-systems theory with coherent structures has been pursued by oth-
ers, most notably by Holmes, Lumley and their co-workers [5]. However, their approach has
been aimed at modeling developed turbulence and is based on a projection of the Navier-Stokes
equations on empirical orthogonal functions (EOF, also known as POD modes) that incorpo-
rate dynamical features reflected in the turbulence statistics, such as the self-sustenance of
quasi-streamwise vortices and streaks, through spurious kinematic constraints [15]. Our ap-
proach is aimed first at elucidating the onset of turbulence for the fully resolved Navier-Stokes
equations. Low-order models faithful to the Navier-Stokes dynamics are used for illustrative
purposes only at this stage. In particular, a 4th order model provides a simple mathematical
model of the fundamental dynamical process by which quasi-streamwise vortices and streaks
sustain each other in a shear flow. The model leads to useful insights that apply to fully
resolved solutions of the Navier-Stokes equations as shown below (see [3] for comparison of the
model with experimental observations).

The underlying physical mechanisms and the methods used to compute the exact coherent
structures in plane Couette and Poiseuille flows are briefly reviewed below. The focus here
is on the steady state solutions in plane Couette flow, first calculated by Nagata [11], and
on drawing connections between the steady states, the time periodic solution discovered by
Kawahara and Kida [9] and turbulent flows.

2 Mathematical and numerical formulation

The mathematical setting of the problem consists of the Navier-Stokes equations for the evo-
lution of the divergence-free velocity field v(x, t)

∂v

∂t
+ v ·∇v = −∇p+

1

R
∇2v + F,

∇ · v = 0,
(1)

where p is the kinematic pressure and R the Reynolds number. F is an external driving force
such as the imposed pressure gradient in plane Poiseuille flow. The flow domain is a channel
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bounded by two parallel rigid walls at y = ±1 with periodic boundary conditions imposed
in the streamwise x and spanwise z directions, with periodicity 2π/α and 2π/γ, respectively.
Pressure is eliminated by the ‘roll-streak’ projection of the equations −ŷ ·∇× (∇× (·)) and
ŷ·∇×(·) and the divergence-free flow is completely described in terms of the three-dimensional
y components of velocity v(x, t) and vorticity η(x, t) together with the one-dimensional mean
flow U(y, t). Numerically, these fields are expanded in terms of Fourier modes in x and z and
integrals of Chebyshev polynomials that satisfy the boundary conditions in y:

v =
LT
∑

l=−LT

MT
∑

m=0

NT
∑

n=−NT

Almne
ilαxeinγzφm(y), (2)

η =
LT
∑

l=−LT

MT
∑

m=0

NT
∑

n=−NT

Blmne
ilαxeinγzψm(y), (3)

U = Ub(y) +
MT
∑

m=0

ûmψm(y). (4)

where D4φm(y) = Tm(y), D
2ψm(y) = Tm(y) − T̄m with T̄m = (1/2)

∫ 1

−1 Tm(y)dy and Ub(y) is
the laminar base flow. An elliptical cutoff that truncates modes with

l2

(LT + 1)2
+

m2

(MT + 1)2
+

n2

(NT + 1)2
≥ 1 (5)

is used to reduce the problem to a finite size. This resolution approximately corresponds to a
direct numerical simulation with resolution (2LT+1)×(MT+5)×(2NT+1) after de-aliasing in
x and z. Steady states and traveling wave solutions of the truncated Navier-Stokes equations
are calculated using Newton’s method together with continuation and homotopy procedures.
Further discussions of the mathematics and numerics are given in [18].

3 Bifurcation from streaky flow and homotopy

The physical mechanisms underlying the coherent structures have been described as a three-
dimensional self-sustaining process in which streamwise rolls redistribute the mean stream-
wise velocity to sustain streaks whose inflectional instability nonlinearly sustains the rolls
[14, 15]. That process, whose main ingredients consist of the one-dimensional mean shear,
two-dimensional x-independent rolls and streaks (kinematically distinct from the rolls) and
a three-dimensional streak instability eigenmode, has been described in simple terms by the
fourth-order model

(

d

dt
+ κ2

m/Re

)

M = κ2
m/R −σu UV +σmW

2

(

d

dt
+ κ2

u/Re

)

U = σuMV −σwW 2

(

d

dt
+ κ2

v/Re

)

V = σvW
2

(

d

dt
+ κ2

w/Re

)

W = σw U W −σv V W −σmMW

(6)
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where the κ’s and σ’s are positive real constants and M(t), U(t), V (t) and W (t) represent
the real amplitudes of the mean shear, the streaks, the rolls and the streak eigenmodes, re-
spectively. The nonlinear terms on the right-hand side are quadratic and energy conserving.
They are organized in columns to show the self-sustaining process and energy conservation.
The mean shear is forced externally by the constant term κ2

m/R; the streaks U originate from
the redistribution of mean shear M by the rolls V ; the streaks U are linearly unstable to W ;
finally, the nonlinear self-interaction of W forces V . The last column represents a feedback of
the streak eigenmode W onto the mean shear M . This is not needed for the self-sustaining
process but exists in general, as shown by the Galerkin derivation from the Navier-Stokes
equations in [15]. Note that that term provides a nonlinear stabilization of the laminar flow.

These equations have a simple laminar fixed point (M,U, V,W ) = (1, 0, 0, 0) which is stable
for all Reynolds numbers. But there are also non-trivial fixed points, typically unstable from
onset, that exists above a certain finite Reynolds number. Homoclinic bifurcations to periodic
solutions have also been observed (see [14, 15] for details) but it is noteworthy that chaotic
solutions have not been seen. This simple 4th order characterization of the self-sustaining
process suggests that the self-sustaining process could lead to non-trivial steady states (or
traveling waves) as well as time-periodic states in the full Navier-Stokes equations. Indeed,
the work of Kawahara and Kida reveals the existence of time-periodic solutions, first suggested
by the work of Hamilton et al. [6], that are fully consistent with the self-sustaining process.
In addition, we have demonstrated that the steady states can be calculated by continuation
of three-dimensional solutions that bifurcate from two-dimensional streaky flows thereby es-
tablishing a direct link between the streaky flow instability, the self-sustaining process and
three-dimensional self-sustained solutions of the Navier-Stokes equations that consist of wavy
streaks flanked with staggered quasi-streamwise vortices.

That procedure was carried out in [16, 18] for the full Navier-Stokes equations, but will be
illustrated here in simple terms using the 4th order model. The procedure consists in tracking
solutions that bifurcate from an unstable, two-dimensional streaky flow. To do so, a small
O(1/R2) external forcing is added to the right of the streamwise rolls V -equation which then
reads

(

d

dt
+
κ2
v

R

)

V =
κ2
vF

R2
+ σvW

2 (7)

where F is a positive parameter. The laminar state then becomes the (2D) streaky flow

(M,U, V,W ) = (M0, U0, V0, 0) ≡
(

κ2
mκ

2
u

κ2
mκ

2
u + σ2

uF
2
,

σuκ
2
mF

κ2
mκ

2
u + σ2

uF
2
,
F

R
, 0

)

. (8)

Clearly M0 ≤ 1 and U0 are O(1) while V0 = F/R is O(1/R). Inspection of the W equation
shows that this streaky flow (8) is unstable if the exponential growth rate of W , λw say, is
positive:

λw ≡ (σwU0 − σvV0 − σmM0)−
κw
R

> 0. (9)

Inspection of (8) shows that this is always possible if F and R are sufficiently large. In fact,
λw = 0 (neutral stability) occurs at F ≡ F0 with

F0 =
κ2
uσm
σuσw

+O(1/R). (10)

Therefore, for fixed R sufficiently large, a branch of non-trivial steady states bifurcates from
the point (F,W ) = (F0, 0) in the F–W plane. It is clear from eqn. (7) that the W 2 term
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can take the place of the weak external roll forcing κvF/R
2 if W = O(1/R). At large R, the

W 2 terms can then be neglected in the M and U equations but not in the V equation and
approximate non-trivial steady states are (M,U, V,W ) ≈ (M0, U0, V0,W ), with M0, U0 and V0

as in (8) but with F0 in place of F for neutral stability, and F and W such that

F ≈ F0 − (σv/κ
2
v)R

2W 2. (11)

This equation describes the branch of solutions in the neighborhood of (F0, 0) and indicates
that the bifurcation from streaky flow is subcritical, as should be if the process is indeed
self-sustaining.

For the low-order model it is easy enough to get the full F–W equation describing the
manifold of steady states. Eliminating M , U and V from the equations (6) with d/dt = 0
and the V equation replaced by the forced equation (7), the steady states must satisfy the
multi-cubic polynomial equation

σvσ
2
u(F

3 +X3) + κ2
wσ

2
u(F

2 +X2) + κ2
m(σvκ

2
u − σwσuR)(F +X) +

κ2
v

σv
(σ2

mκ
2
u + σ2

wκ
2
m)X + 2κ2

wσ
2
uFX + 3σvσ

2
uFX(F +X) + σmκ

2
mκ

2
uR + κ2

wκ
2
mκ

2
u = 0 (12)

where X = (σv/κ
2
v)R

2W 2 so V = (F +X)/R. Note that this is a slightly different X definition
than in [15]. This expression is almost perfectly symmetric in F and X except for two terms
linear in X that originate from the nonlinear feedback of the streak ondulation W onto the
streaks U and the mean M . For large R, the solution is F +X = (κ2

uσm)/(σuσw) + O(1/R),
recovering (10) and (11), but in addition, when F = 0, this yields a non-trivial self-sustained
steady state with X = (κ2

uσm)/(σuσw) + O(1/R). More generally, the bifurcation points are
given by the solutions F = F0 of (12) with X = 0, while the non-trivial self-sustained states are
obtained from the solutions of the same equation but with F = 0. The analysis of those two
cases is identical to that in Sect. III.D. of [15]. One concludes that there is a critical Reynolds
number R1 above which there are two F0 > 0 between which the streaky flow (8) is unstable,
and another critical Reynolds number R2 > R1 above which there are two solutions with X > 0
and F = 0, corresponding to non-trivial self-sustained steady states. That analysis suggests
that (12) consists of a closed curve in the right quadrant of the F–X plane that intercepts
the F and X axes if R > R2. There is also a separate branch of solutions of (12) that crosses
the F and X axes at negative values of O(R1/2) as R→∞. That branch is not of interest in
this work as X ≥ 0 and the forcing opposes nonlinear feedback when F < 0. In summary, the
physically interesting branch of solutions of (12) in the F–W plane has the form shown in fig.
1. Remarkably, these features of the bifurcation from streaky flow and of the self-sustained
states in the 4th order model are also observed for the Navier-Stokes equations. Indeed, fig. 1
is actually obtained from the Navier-Stokes equations with resolution (LT ,MT , NT ) = (9, 17, 9)
in the case of plane Couette-flow with imposed stress at the walls. In fig. 1, W is defined as
the y-average of the l = 1, n = 0, η mode.

This bifurcation from streaky flow procedure can be used to calculate steady states in
no-slip plane Couette flow as well as to calculate traveling wave solutions in free-slip and no-
slip plane Poiseuille flow. However, the appropriate roll forcing required for Poiseuille flow is
trickier to determine as it turns out to be more concentrated in the center of the (half) channel
than in plane Couette flow. Once a self-sustained state has been found in one flow, it is simpler
to calculate solutions in other flows by homotopy, i.e. by smoothly deforming plane Couette
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Figure 1: Bifurcation from streaky flow: W (scaled by R) versus roll forcing parameter F cor-
responding to a steady state solution of the Navier-Stokes equations in free-free plane Couette
with (α, γ) = (0.49, 1.5) at R = 150 with resolution (LT ,MT , NT ) = (9, 17, 9).

into plane Poiseuille flow. The appropriate homotopy is to map the full channel plane Couette
flow into a half-channel plane Poiseuille flow according to the formula

Ub(y;µ) ≡ y + µ

(

1

6
− y2

2

)

. (13)

For µ = 0, This is the laminar plane Couette flow when µ = 0 and a half laminar Poiseuille
flow when µ = 1. The boundary conditions corresponding to that half-Poiseuille flow consists
of no-slip at y = −1 and free-slip at y = 1. Therefore, homotopies from free-slip to no-slip are
also required. Those are performed by use of the boundary conditions

v = λt∂yv + κt∂
2
yv = λtη + κt∂yη = 0,

v = λb∂yv − κb∂
2
yv = λbη − κb∂yη = 0

(14)

at y = +1 and y = −1, respectively, where 0 ≤ λ ≤ 1 and κ = 1 − λ. These yield free-slip
when λ = 0 and no-slip when λ = 1.

These homotopies demonstrate the close relationships between the exact coherent structures
in both plane Couette and Poiseuille flows with either free-slip or no-slip. All these solutions
are part of the same manifold of solutions.

Once a solution has been found in one flow, it can be continued to other values of the
Reynolds numbers and horizontal periodic lengths. Therefore, for a given flow and boundary
conditions, the exact coherent structures form a 3D manifold of solutions parametrized by α,
γ and R. It is particularly interesting to determine the lowest Reynolds number at which
these solutions exist. For no-slip plane Poiseuille flow, this is R = 244.36 achieved at (α, γ) =
(0.5074, 1.3165). That solution has an average velocity with respect to the wall of 〈U〉 = 0.886
and a bulk Reynolds number (based on the full channel width and the average flow velocity)
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of Rm = 866. In wall units, this corresponds to

L+
x = 273.73, L+

z = 105.51, 2h+ = 44.21. (15)

These values are remarkably close to the typical values observed in the near-wall region of
turbulent flows [12]. The lowest Reynolds number for no-slip plane Couette 3D steady states
is

Rsn = 127.7 at (α, γ) = (0.5772, 1.1506). (16)

That solution has
∣

∣

∣dU/dy
∣

∣

∣

wall
= 1.8087, therefore those values correspond to the wall units

values
L+
x = 165, L+

z = 83, 2h+ = 30. (17)

These steady states have been illustrated in [17] and [18]. They consists of wavy streaks flanked
by staggered quasi-streamwise vortices. In the following, I focus on further parametric studies
of the plane Couette flow steady states, complementing the results already reported in [18].

4 No-slip plane Couette flow steady states

The wavenumbers leading to the lowest Reynolds number for the steady states are α = 0.5772
and γ = 1.1506. The studies of Clever and Busse [4] suggest that the relation γ ≈ 2α lead
to the lowest Reynolds numbers. This is understood in terms of the streak instability in [18].
The streak instability is of inflectional nature. Hence one expects that it requires α < γ [14].
The symmetric steady states seem to disappear if α is greater than about 2γ/3 [18] consistent
with the streak instability results. Instability to asymmetric traveling waves occurs for larger
α (see fig. 6 in [15]).

Hamilton et al. [6] focused on the parameters R = 400 and (α, γ) = (8/7, 5/3) ≈ (1.14, 1.67)
in their early investigations of the self-sustaining process. Those values were obtained by
tracking turbulent flows to smaller and smaller box sizes, in a manner similar to that of Jimenez
and Moin [8], and settling on those parameters because they revealed the self-sustaining process
relatively cleanly through a nearly periodic time evolution. Kawahara and Kida [9] recently
re-investigated plane Couette flow for those same parameter values and discovered numerically
true time-periodic solutions. They sought to connect those solutions to the steady states using
the shooting method of Toh and Itano [7]. The steady state solution they calculated was not
directly connected to the periodic solution that is close to the turbulent flow but it is connected
to another weaker periodic solution that has heteroclinic connections with the stronger periodic
solution.

Bifurcation diagrams are given here for no-slip plane Couette flow steady states with (α, γ)
related to the parameters (α0, γ0) ≡ (1.14, 1.67) used in [6], [9] in order to complete the
bifurcation scenario. Figure 2 (top) shows S, the shear rate at the wall normalized by its
laminar value, versus the Reynolds number R for the no-slip plane Couette flow steady states
with γ = γ0 ≡ 1.67 and various α’s. We see that the upper branch steady states collapses
rapidly as α is increased above about 1.00 and the solution disappears, in this range of Reynolds
numbers, for α > 1.08. An ‘isola’ – a closed branch of solutions – is found for α = 1.06. Another
isola was found for α = 1.07 inside this one (not shown). This abrupt disappearance of the
steady states can be understood in terms of the streak instability. In particular, fig. 6 in
[15] indicates that the streaks have a single real zero eigenvalue at R = 400 only if α < 1.1.
Therefore, there is no bifurcation of steady states from the streaky flow for α > 1.1 at R = 400
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when γ = 1.67. That same figure indicates the possibility of bifurcation to asymmetric traveling
waves for larger α. In between those two cases is a co-dimension two bifurcation with a double
zero eigenvalue. It is possible that this could be a bifurcation point for the periodic solutions.

Figure 2 (bottom) shows S versus R for α = α0 with both γ = 2α0, 1.5γ0 and 2γ0,
demonstrating that steady states solutions reappear at α = 1.14 if the spanwise wavenumber
γ is increased. Those solutions are pushed to higher Reynolds number in a natural way as
γ increases. Note that the normalized wall shear rate S is equal to the normalized energy
input rate I used by Kawahara and Kida [9]. Although there is no steady state solution with
(α, γ) = (1.14, 1.67) at R = 400, there are many steady states with related wavenumbers
whose upper branches have S ≡ I of the order of that seen for the strong periodic solution of
Kawahara and Kida i.e. I ≈ 3, and lower branches with S ≡ I of the order of those seen for
the other weaker periodic solution, i.e. I ≈ 1.5.

The structure of one such upper branch solution is illustrated in fig. 3 for α = α0, γ = 1.5γ0

at R = 400 and its mean and RMS velocity profiles are shown in fig. 4. These profiles compare
well with the profiles of the turbulent and strong periodic solution in [9]. This does not
yet elucidate the bifurcation-theoretic origin of the periodic solutions2 but provides a fairly
complete picture of related steady states in the α, γ, R parameter space. It seems likely that
the strong periodic solution bifurcates from an upper branch steady state but it is also possible,
and not contradictory, that the periodic solutions bifurcate directly from the streaky flow at
the codimension two point.

5 A simple model of shear turbulence?

The brief review above suggests a connection between upper branch steady states, ‘strong’
time-periodic solutions and turbulent flows. The structure and statistics of the steady states
and the periodic solutions certainly suggest connections. However, one might wonder why and
how unstable solutions could be dynamically significant and manage to capture structural and
statistical features of turbulent flows.

A simple model 1D map is offered here as an illustration of those issues. The model has
been discussed in [18] and is the simple discrete dynamical system

xn+1 = fµ(xn) ≡ µ
min(xn, 1− xn)

max(xn, 1− xn)
(18)

where 0 ≤ xn ≤ 1 and the parameter µ is related to the Reynolds number R as

µ =
R

R +Rc

(19)

for some Rc > 0. Clearly 0 ≤ µ < 1. This model has some analytical similarity with the
famous logistic map: xn+1 = 4µxn(1 − xn) but it has a cusp at x = 1/2 and is therefore
geometrically similar to the Lorenz map. That cusp leads to sudden transition to chaos at
µ = 1/2, or R = Rc (see fig. 5).

As discussed in [18], the map has one trivial fixed point x = 0 that is stable for all Reynolds
numbers. This is the equivalent of the simple stable laminar state in plane Couette flow. As the
Reynolds number is increased, there is a bifurcation at R = Rc that introduces two non-trivial

2Their physical origin is no doubt the same self-sustaining process.
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Figure 2: Bifurcation diagrams for steady states in no-slip plane Couette flow. Normalized
wall shear rate S versus Reynolds number R. TOP: γ = 1.67 and α = 0.57, 0.84, 0.95, 1.00,
1.05 and 1.06. At R = 400, S increases with α on the lower branch but decreases with α when
α > 0.84 on the upper branch. BOTTOM: α = 1.14 and γ = 2.28, 2.505 and 3.34. Various
resolutions (LT ,MT , NT ) = (13, 25, 13), (13, 27, 13), (15, 27, 15), and (15, 29, 15).
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Figure 3: No-slip plane Couette flow steady state: upper branch for α = 1.14, γ = 2.505 at
R = 400. Top: isosurfaces of streamwise vorticity ±(0.6 maxωx) = ±0.56 (red positive, blue
negative). Bottom: isosurfaces of ∇2p = 2Q = WijWij − SijSij = 0.15 = 0.48max(2Q) in red.
Green: isosurface of streamwise velocity u = min[u(x, y = 0, z)]. (Box shifted by 12Lx/64)
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Figure 4: Mean and RMS velocity profiles for upper branch steady solution in no-slip plane
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fixed points (or period 1 orbit) as well as an infinite number of periodic solutions. But all
those new solutions are unstable from onset and remain so for all R > Rc. The lower branch is
x` = 1−µ. It is clear that all initial conditions in 1−µ < x0 < µ will be trapped in that interval
forever, yet there are no stable fixed point or periodic solutions in that interval. The dynamics
of that simple map is illustrated in fig. 5 for µ = 0.8 and x0 = 4.057062130620955e−01 (picked
randomly from a uniform distribution). The solution consists of a chaotic oscillation about
the upper branch with excursions toward the lower branch and slow escape from that point,
leading to intermittent behavior. Clearly, the upper branch solution xu = (

√
µ2 + 4µ − µ)/2

provides a good first approximation to the average xn in the chaotic regime. More precisely,
it provides an upper bound on the average. The lower branch and its stable manifold are the
separatrix, or the ‘basin boundary’ [7] that separates the basin of attraction of the stable trivial

fixed point from the chaotic basin. The period two solution x1 =
[
√

(µ+ 1)2 + 4− (µ+ 1)
]

/2,

x2 = f(x1), would provide a next order approximation, etc.
This model is at present not connected with the Navier-Stokes equations. However it might

be obtained from them in a manner similar to that of Lorenz [10] by plotting successive maxima
of one variable against each other. The maxima of a variable such as W in sect. 3 above, that
suitably measures the amplitude of the streak instability eigenmode, is a good candidate for
that. In any case, the simple map (18) contains several of the key dynamical characteristics of
shear flows: the existence of a simple fixed point stable for all Reynolds numbers, the onset of
non-trivial but unstable fixed points and periodic orbits at a finite Reynolds number Rc and
the apparently sudden transition to turbulence. Slight modifications of the model can also
account for strange repellors [18] and for a sudden transition to chaos occurring after the onset
of unstable states.

In this simple view, the turbulent flow is seen as an ‘oscillation’ about an upper branch
or period-1 solution and the stable manifold of the lower branch is essentially the phase space
boundary between the basin of attraction of the stable laminar state and the turbulent domain.
This is roughly similar to the view of Toh and Itano [7] with the added information that the
turbulence is an ‘oscillation’ about the upper branch solutions. Toh and Itano do not discuss
the role of upper branch solutions, which are probably inaccessible to their shooting method.
Toh and Itano view ‘bursting’ as the phase space motion along the unstable manifold of the
lower branch solution. That is an example of how the inherent instabilities of the coherent
structures could lead to explanations of further characteristics of turbulence.
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