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1 Introduction

Experiments at low to moderate Reynolds number have consistently shown that the near
wall region of shear flows exhibits strong spanwise variation in the downstream velocity

(streaks). The spanwise spacing of these streaks always turns out to be very close to
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about 100 in wall units (> where u. = (vdu/dy)2,; ) At higher Reynolds number there
is some controversy as to whether or not these streaks still exist, or are at all significant
if they do. Various explanations have been advanced, most often based on linear theory.
Although linear theory shows how large streaks can be created, it is unable to predict
why the spacing 100+ should be picked out. There is simply no selection mechanism
provided by linear behavior. Thus the argument that some fast non-linear mechanism
provides broad-band disturbances which are then sheared according to linear theory does
not work to explain the well-defined streak spacing.

Here a different explanation is advanced. It is proposed that the streak spacing of
100+ should be considered as a critical Reynolds number for transition from a laminar
1D flow to a 3D finite amplitude state in shear flows. The 100+ spacing would then
correspond to the smallest Reynolds number at which a flow can be maintained different
from the laminar flow. This idea is supported by the minimum channel simulations of
Jimenez and Moin, as shown in the next section. A complete mechanistic picture of the
bifurcated flow is proposed in the later sections and has been proposed before.

It is believed that this number is also relevant to fully turbulent flows. As one ap-
proaches the wall the effective Reynolds number is reduced and the flow eventually un-
degoes a “transition” from turbulent to laminar. The point at which this occurs would
again be determined by the critical Reynolds number, 100+. It would represent the
smallest active scale of a turbulent flow.

In fact, the proposal is that a key element in our understanding of turbulence in
shear flows is to capture the self-sustaining 3D non-linear mechanism responsible for the
bifurcation of laminar shear flows. Couette flow is the example of choice, because no
other instability mechanism (2D, linear) seem to obscure the issue.



2 100+ or 1000? Same concept

The minimum channel computations clearly indicate that whether a “turbulent” flow
can be computed or not, critically depends on the spanwise width of the computational
periodic box being larger than about 100+. Below that number the flow returns to a
laminar state. Jimenez and Moin show that this is the case for 3 different Reynolds
numbers: 2000, 3000 and 5000. These are Reynolds number measured on the half height
of the box, h. But when the spanwise width correspond to 100+, the box is much
narrower than it is high. It seems that it would be more appropriate to measure the
Reynolds number using the width of the box rather than the height. The transformation
formula is :

A
Re, = Re—~
= T
where Re, is the Reynolds number based on the centerline velocity and the half spanwise
width, while Re = U.h/v is based on the center-line velocity and the half-height. Using
the information given in their fig. 4, one checks that when the flow ceases to be laminar,

if
e Re = 5000 then Re, ~ 1200
e Re = 3000 then Re, ~ 1200
e Re = 2000 then Re, ~ 1000

In other words, Re, has the much quoted value of about 1000 for transition to “tur-
bulence” in Poiseuille flow !

In the following sections, a complete self-sustaining mechanism is proposed. One
essential element in that process is the formation of large streaks by downstream rolls
such that a%“ = O((%u), followed by the subsequent 3D instability of that 2D flow.
This process would be able to sustain itself provided the Reynolds numbers based on the
friction velocity and the vorticity thicknesses (in the y and z direction) be larger than
about 40 or 50, i.e.:

R ~ 40

Thus the laminar flow would bifurcate to a 3D non-linear state when:
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where § and ( are the “vorticity thicknesses” in the y and z directions, respectively. For
a parallel shear flow § and ( are given by the size of the biggest downstream roll fitting in
a vorticity layer. Examples are given below. In other words, the “magic” number 100+
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is simply another version of the critical Reynolds number for transition to “turbulence”.
Re¢ ~ 45 could be a more universal measure for transition in shear flows, whether one
studies a Couette flow, Poiseuille flow, B.L, M.L, etc...

e In the case of Couette flow:

_u ¥
u—Uwh

the friction velocity and the vorticity thickness are given by:

vU,
L=1—=, §=2h
R

wd _ \/Uzh _ \/ (2Uw3(2h)

v
and thus RS ~ 40 is equivalent to R° ~ 1600 or R° ~ 400, depending on how the
Reynolds number is defined. The periodic box should be at least as wide as 4h to
observe a “bifurcated” flow at those Reynolds numbers.

Thus

e For a Poiseuille flow: )
Yy

U, is given by:
vU,
x — 2
U = V2 -

while § = h, the half-channel height. So,
«0 U.h
U0 _ 2y < = v2vRe

v
and

R; ~ 40 & Re‘ ~ 800
The periodic computational box should be at least as wide as about 2h to observe

a bifurcated flow.

e For a boundary layer, using the profile employed by Tollmien as a rough indication
(cf. Drazin & Reid pg. 224), one gets:

and using the full-boundary layer thickness as the length scale,

UL 1 ul
= —(—)°

v 17w
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Measuring the Reynolds number on the displacement thickness, as Tollmien did,
we need to multiply this by d,/L = 0.3416. Thus RS ~ 40 < Re® ~ 320, while
Tollmien found Re® ~ 420 for the 2D linear instability. Thus the 2 mechanisms
could be expected to occur at about the same Reynolds number.

e For a mixing layer, u = U tanh(y/h)

Taking 6 = 2h:
Ro="0 =3[Pt - vavR

Thus RS ~ 40 & R¢ ~ 800, while the 2D, linear inflectional instability has a critical
Reynolds number essentially equal to zero.

3 Streak formation

Consider the usual flow between 2 parallel plates. If z,y, z are, respectively, the down-
stream, normal to the plates and spanwise directions, the Navier-Stokes equations for a
motion independent of the downstream x coordinate read:

0 0 0 0 9
0 0 0 0 9
= — —y = —— 2
atv+vayv+wazv ayp+1/Vv (2)
0 0 0 0 5
aw%—va—ywﬁtw&w = —&pntuv w (3)

where 2p is a constant (= 0 for Couette flow), u = u(y, z), v = v(y, 2), w = w(y, 2).
The continuity equation is simply:

0 0
= 4
ayv+ azw 0 (4)

The equation for the u velocity component decouples and is linear. Once the v, w
motion is determined, u can be computed independently. With the boundary conditions:

u(il) = :i:Uwalla U(:I:l) = U)(:I:l) =0

the v, w motion corresponds essentially to viscously decaying downstream rolls. The z
momentum is simply advected by the downstream rolls. Thus if one starts with a profile
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u = U(y) the momentum will be redistributed by advection and a spanwise variation
with Zu = O(a%u) will be induced.
“Over”-linearization around U(y), such that v = U(y) + v'(y, 2), v = v'(y,2), w =

w'(y, z) leads to, neglecting viscosity:

while the v, w motion is steady. This equation shows that u' grows linearly with time,
but there is no spanwise selection. The spanwise structure is just that of v. Of course,
the linear growth in time does not go on forever. It is simply the manifestation of z-
momentum being advected away from a vertical plane into a horizontal plane. This

advection would keep on going and the momentum would be carried back to a vertical
0
Bz
of the downstream roll, not a%U . It is the opinion of this writer that this mechanism is

plane through the term w'-£u’. The time scale of the streak formation is the time scale
the only “algebraic” growth of interest.

It was checked numerically that an amplitude of the roll of the order Re™!

induces
streaks with an amplitude of order 1. This leads to a quasi-steady state with momentum
being convected from the upper wall to the lower wall and being transfered there by
viscosity. For amplitude of the roll larger then about Re™!, the momentum is being
carried back up to the upper wall without having time to diffuse. Such a situation
wouldn’t correspond to the marginal self-sustained state that is sought here.

4 Why should we care about streaks?

It the previous section it was shown that inserting downstream rolls, even quite weak,
in a shear flow, induces large streaks. However in the absence of any z-variation the
downstream rolls will decay viscously, and the x momentum which is just being advected
around will eventually go back to the original laminar flow. No “non-linear effects” will
modify this picture.

However, it is quite likely that, at some time in its evolution, the flow will be quite
sensitive to some disturbances and some instabilities might develop. In particular, the
streaks introduce significant spanwise (z) inflections. One expect these shear layers to
roll up creating vortices. This stage would be similar to a mixing layer or wake type
instability. But one expects that due to the presence of the perpendicular shear (a%u),
the instability and subsequent roll-up will occur for oblique waves. In fact, the growth
rate might be significantly bigger than the conventional inflectional instability. Summing
up this stage of the evolution, one expects the inflections in z of the u(y, z) profile to be
unstable to oblique disturbances (u'(y, z)exp(iaz)), i.e. for which the vorticity is tilted



in the z,y plane, possibly at about 45 deg. to benefit from the maximum stretching
associated with the a%“ shear.

The instability would then go through a roll-up, creating vortices which would feed
back on the original downstream rolls. Thus completing the loop for a self-sustaining 3D
non-linear mechanism. The steps of this mechanism are as follows (fig.1):

e downstream rolls (v, w) induce large spanwise variations in the u-velocity (streaks).

e an inflectional-type instability develops due to these spanwise modulations and
leads to the formation of vortices, likely to be tilted downstream.

e these vortices feedback on the original downstream vortices to maintain them and
the process is reinitiated.

5 3D Instability of a Spanwise Varying Mean Flow

As shown above, it is no mystery how to induce large (O(1)) spanwise variation in the
u-component of velocity from small (O(Re™!)) vertical motions. The critical phase in
the process is to see whether or not anything interesting happens beyond that. This
corresponds to studying the instability of a flow with spanwise variation. For Couette
flow an appropriate quasi-steady basic state could be:

2

Ul(y, 2, [t]) =y + acos gy CoS gz e 2r!

(if the appropriate weak downstream roll was included the decay rate of the streaks would
be even smaller). « is an amplitude, an adequate value for it is ¢ = 0.5. Linearizing
around such a basic state, and after a few manipulations, one obtains the following
equations for the vertical and spanwise velocity perturbations:

0 0 TP 0% 0 0% 0 o 0
_- - _ S § S — U= 2 —
Gt Ve B VIV = 50V T 525" T 25:V geas
o __ 0 0? 0
9 il
GzUafvayw * 28y8zU8xw (5)
0 0 e e 0% 0 0% 0 Q.. 0
(6t+U8x RV )Vw 8z2U6xw+8y2U8xw+26yU8x6yw_
9 0? 0? 0
28_yU8m8zU * ayazUa_a;U (6)
with boundary conditions:
vzagyvzw:Oaty::lzl
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These equations can be recognized as 2 coupled Orr-Sommerfeld equations. In the
usual stability problem the equation for v decouples. Here, due to the spanwise variation

vaty = +1

of the basic state, there is a feedback from w (i.e. wy) to v. If the basic state is written
as U(y, z) = uo(y) + u1(y) cos 25z, one expects 2 types of solution (fig.2):

e a subharmonic, e.g
v = eloT Z ﬁ"ez(2n+1)ﬁz
n

e a fundamental, e.g.
v = elo Z ﬁneﬁn,@z
n

with similar expressions for w.

6 Preliminary Results

Full simulations of Couette flow have been performed initiating “turbulence” with a large
perturbation at a moderate Reynolds number (1600). The Reynolds number was then
decreased to try to determine the critical Re. A non-laminar flow has been maintained
for a time T ~ 2000 at Re=400 (i.e. R, = 40). Re=225, 256, 289 and 324 all decayed.
The mechanism at play seems to correspond quite well to the fundamental instability
conjectured above. A large streak is observed at the channel centerline, then a strong
kink develops and some time later the channel is occupied by a single vortex inclined
downstream. The evolution is however not yet clean enough to be fully conclusive. The
numerical resolution was 16 X 33 X 16. John Kim has investigated Poiseuille flow by
inserting a pair of oblique waves directly at a “marginal” Reynolds number. This type
of initial condition favors the subharmonic instability described above. A non-trivial and
surprisingly clean evolution is observed for some time at Re=850 and 900. It corresponds
to an exchange between a (0,23) mode and a pair of oblique modes («, +/), much has
the “subharmonic” route should proceed. Unfortunately, the flow eventually returns to
laminar after a time of about 500h/ < U >. Imposing some symmetries on the solutions
should help clarify the picture and distinguish between the various possible evolutions.
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