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Hydrodynamic Stability and Turbulence:
Beyond Transients to a Self-Sustaining Process

By Fabian Waleffe

Transition from laminar to turbulent flows has generally been studied by considering the linear and
weakly non-linear evolution of small disturbances to the laminar flow. That approach has been
fruitless for many shear flows and a last hope for its success has been the existence of transient
growth phenomena. The physical origin of those linear transient effects is elucidated, revealing
serious limitations both of previous analyses and of the phenomena themselves that preclude them
from causing direct transition. Nonetheless, some transient effects are symptomatic of one element
of a non-linear process that becomes self-sustaining at small enough dissipation. The process is
identified and its description requires a departure from the traditional focus on the laminar flow.
A theory is outlined in which the mean flow has an intrinsic spanwise variation. Evidence indicates
this is also the central mechanism in the near wall-region of fully turbulent shear flows.

1. Introduction

The breakdown of fluid flows from a laminar to a turbulent state is a matter of everyday experience,
yet our understanding of the processes involved remains far from satisfactory. The problem has
two aspects, which have usually been addressed quite separately. One is the identification of the
instability mechanisms responsible for the transition; the other is the development of a quantitative
description of the turbulent state. The present work is related to both aspects but its connection
to the problem of transition is the clearest. That connection is the main focus of this article.

The first step in a stability study is to add small enough perturbations to the laminar flow that
their evolution is governed by linear equations. Instability of the laminar flow is established if there
are exponentially growing disturbances. That approach is very helpful for many problems but has
been unable to explain the observed instabilities in most basic shear flows such as plane Couette flow
considered below [1]. A possible solution to that paradox was seen in the existence of weaker, and
transient, algebraic growth phenomena, the most powerful of which became the object of systematic
investigations in the late 70’s [2-6]. Of course, the transients do not by themselves establish the
instability of the flow. It is necessary to show that those transient amplifications can trigger non-
linear effects, which somehow prevent the eventual decay of the disturbances. The only work in
that area is due to Benney and Gustavsson in 1981 [7], but their theory was later criticized and ran
into difficulties [8]. Some of those difficulties have appeared in earlier non-linear theories involving
3D disturbances and are precisely due to the linear transients [9]. Sooner or later in the non-linear
analysis a transient growth arises and invalidates the expansion. Benney [10] then suggested it was
necessary to account directly for the large spanwise variation invariably introduced by the transient
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effects. That idea was a major inspiration for the non-linear process proposed herein. The other
main inspiration was the conceptual pictures developed by experimentalists [11].

The linear transient phenomena have recently attracted intense renewed interest [12-15]. Al-
though the mathematical language varies greatly from one paper to the next, they share a common
underlying physical mechanism that is clarified later below. That discussion shows how linear anal-
yses are misleading and seriously limited in range of validity. The most significant result is that the
transient growths do not trigger any non-linear effects. A different point of view is thus needed,
and although the many computations of maximum amplification are largely irrelevant, the transient
amplification of spanwise perturbations to the mean flow indicates which direction to take.

The direction presented here is based on the identification of a non-linear process that becomes
self-sustaining at a critical Reynolds number that seems to match the observations. Bifurcation of
the flow results not from the instability of the laminar flow but rather from the the fact that this non-
linear process acts as an “attractor” for most finite perturbations. Perhaps the scale of the process
remains approximately constant as a function of the Reynolds number when nondimensionalized
with respect to the shear rate and the viscosity. At high Reynolds numbers, the process would be
localized near the wall, in the high shear region, and responsible for the observed streaks with the
characteristic spacing of 100 wall units. These ideas have been tested against a series of numerical
experiments [16]. This article outlines a theoretical description and a conceptual model of the
self-sustaining mechanism, but first the linear transients are reviewed and interpreted.

2. Linear stability and transient growth

The basic flow considered is the simplest example of a shear flow and one of the simplest solutions
of the incompressible Navier-Stokes equations:

%u—ku-Vu:—Vp—}—%V?u, (1)
where u is the solenoidal velocity field V-u = 0. The field u has components (u, v, w) with respect
to a Cartesian frame of reference (z,y, z). The fluid is bounded by two rigid parallel walls chosen
perpendicular to the y-axis and located at y = +h. The flow is driven by the motion of the walls in
their plane at velocity (+U,,0,0), respectively. The velocities are non-dimensionalized by U, and
lengths by h. The Reynolds number R = U,h/v where v is the kinematic viscosity of the fluid.
This is plane Couette flow and it admits the laminar solution: u = (y,0,0).

The laminar solution is observed experimentally only for Reynolds numbers R less than some
critical value (about 350 for Couette flow) [16,17,18]. In order to study that instability of the
laminar flow, one writes the full velocity field u as the sum of the laminar solution (U(y),0,0)
(with U(y) = y for plane Couette flow) plus a perturbation (u, v, w),

u=(U(y),0,0)+ (v,v,w). (2)

Evolution equations for the perturbations (u, v, w) are deduced by substitution of (2) in the Navier-
Stokes equations (1). The system of equations can be reduced to two coupled equations for the
velocity and vorticity perpendicular to the walls, v and 7 respectively,

J 0 1 _9 <9 d*U dv
13} 13} 1, dU dv
(E‘FU%—EV)U‘F@&—NW(UW% (4)

where = 0u/dz — Ow/dz. Explicit expressions for the non-linear terms N,(v,7n), N,(v,n) can
be found in [7]. The procedure for arriving at these equations is standard and consists of taking
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the y-component of the curl (j-V x (1)) and of the curl of the curl (j- (V x (V x (1)))) of the

Navier-Stokes equations (1). The system (3), (4) must be supplemented by an equation for the

average of the perturbation over z and z, u(y,t), which can not be kinematically determined from
v and 7, ,

0 10 J

(%_EG—yZ)uz_(?_yuv' (5)

In the classical linear stability analysis, one considers only “small” perturbations to the laminar
state and proceeds to ignore the non-linear terms on the right-hand side of (3), (4). The v-
equation stands alone then and the focus of much work on stability theory has been the study
of the eigenmodes of that equation (the famous Orr-Sommerfeld (OS) eigen-problem [1]). The
homogeneous 7-equation (i.e. with v = 0) has only damped modes. This can be proven rigorously [7]
but is also an intuitive result given that the homogeneous n-equation describes a simple advection-
diffusion with n vanishing at the walls. For Couette flow, all eigenmodes of the v-equation are
damped and this result appears inconsistent with the experimental observation of instability. Two
suggestions have been proposed to resolve that conflict in the context of linear theory.

First, there is a possibility for transient algebraic growth in the v-equation due to the Orr
mechanism [19, 20]. The physical mechanism is simple (Fig. 1) but the mathematical description
has been involved (Continuous spectrum, non-orthogonality of eigenfunctions, pseudo-spectrum).
It is only a transient effect even in the inviscid limit. At transitional Reynolds numbers (R ~ 350),
the maximum amplification is quite modest [21]. This type of transient amplification is more
pronounced for plane disturbances (for which 9/0z = 0 and w = 0) as can be gleaned from fig. 1.

Uiy () c2)

Fig. 1. The Orr mechanism: Circulation around contour C' is conserved (Kelvin’s theo-
rem). The velocity perturbation reaches a maximum when the contour is smallest then
decays after that.

The second mechanism for transient algebraic growth is much more powerful and in the follow-
ing “transient growth” will always refer to this second mechanism. It results from the forcing of 5
by vin (4) which induces a transient growth of 5 even if both modes are damped. The mathematical
mechanism can be illustrated by the system

aln) =" 5)0) ©

v(t) = w(0) e
—At _ e—,ut

which has the solution

€

n(t) = - v(0) T (0) et

A—p

The decay rates A, g > 0 are proportional to 1/R. The first term on the right-hand side of 7(¢)
grows algebraically like ¢ at small times and decays exponentially at large times. The maximum
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amplification is obtained at t* = (In A — In u)/(A — p) and is given by Mmar = (v(0)e™#")/A. In
terms of the Reynolds number the maximum amplification is O(¢R) where ¢ is a measure of v(0)
and the maximum is reached at a time t = O(R).

Gustavsson [12] studied the initial value problems for 7 forced by eigenmodes of the v equation.
Butler and Farrell [13] formulated a variational problem to determine the structure of the initial
perturbation v(0) leading to the largest amplification. Trefethen et al. [15] studied the problem
using the concept of pseudospectrum. They computed curves of “pseudo-resonance” and studied
the transient growth through the norm of the operator exp(At) where A is the matrix on the
right-hand side of (6). The solution of (6) can be written (v(t),n(t))T = exp(At)(v(0), n(0))7.

Originally it was thought that the amplification was largest when A = p, hence the term
“direct resonance,” but closer inspection reveals that the amplification is ubiquitous and largest
for small damping rates not necessarily equal. For the hydrodynamic problem, the growth is most
significant when the damping rates are small and the imaginary part of the eigenvalues are close to
each other. The result of Gustavsson [12] is that modes corresponding to streamwise-independent
(0/0z = 0) disturbances lead to the largest transient amplifications. For z-independent modes, the
eigenvalues of the v and n equations are purely real and negative, corresponding to weak viscous
decay (in fact both sets of eigenmodes are orthogonal and analytically accessible, see [1], p. 159).
That streamwise-independent disturbances are the most “efficient” is an earlier, and more general,
result of energy stability and upper bound theories [22].

3. Interpretation and limitations

The physical mechanism for transient growth and its limitations are best understood in its most
favorable form, which is when the disturbances are streamwise-independent. In that case the
Navier-Stokes equations with 9d/0z = 0 show that the spanwise motions v, w are independent of
the streamwise velocity u

gv—l—vgv—l—wiv——i —I—iVQU

o’ T oy 9:' " oy’ TR

0 d g 0 5

aw—}—va—yw—l—waw_— (9zp+ RV w (7)
ﬁv—}—ﬁw—O
oy 0z

and as a result the equation for the streamwise velocity u is linear:

%u—l—v%u—}—w%u: %V2u (8)
with dp/dz = 0 for couette flow. The boundary conditions are that v and w vanish at the walls,
while u(+1) = £+1. The pressure could be eliminated using a streamfunction for the spanwise
motions, but, without going into detail, the spanwise motions are not sustained and decay slowly
due to viscosity (e.g. Malkus [23], [1] p. 424). The equation (8) for u is a simple linear advection-
diffusion equation and the streamwise momentum u behaves as a passive scalar. Solutions to the
full equation (8) have been presented by Stuart [24], Pearson and Abernathy [25], and Moore [26].
The downstream rolls (v, w) redistribute the streamwise momentum w» by advection in the y — z
planes. This is the “lift-up effect” emphasized by Landahl [3]. The important point here is that no
matter how distorted u becomes, there is no feedback on the downstream rolls v, w.

Although one often reads the words “algebraic instability” to describe that passive advection,
the word “instability” is something of a misnomer (Fig. 2). The confusion arises from the “over-
linearization” around the laminar state (U(y),0,0) described in the previous section. Equation (8)
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is already linear but the usual linear analyses (including the most recent work based on optimum
perturbations and pseudo-spectra) further “linearize” the equation by writing v = U(y)+u'(y, 2, 1),
v="0'(y,z), w = w'(y, z). Substituting in (8), dropping squares of primed quantities and neglecting
viscosity yields

0 dUu

%u' = —v'd—y (9)
while the v, w motion is steady in the absence of viscosity. This equation shows that u’ grows linearly
with time u' = —v' (dU/dy) t. Equation (9) suggests that we are witnessing an algebraic instability
on a time scale given by the mean shear dU/dy with the initial amplitude of the disturbance given
by v. Those are the expected scalings for an instability of the mean shear. (The time scale for
the Orr mechanism, Fig. 1, is clearly given by dU/dy also.) In fact, it is the opposite in this case.
The time scale of the process is given by the advection time scale v/h = O(€), while the mazimum
amplitude of the perturbation is given by A dU/dy. The time scale for streak formation is the time
scale of the downstream roll, not dU/dy.

Clearly, the linear analyses are misleading, and the numerous computations of maximum am-
plifications are largely irrelevant. The maximum amplitude attainable through shear-tilting is not
O(eR) as suggested by the transient growth analyses (6), but O(Uyaz — Unin) = O(1) for u, or
O(y(dU/dy) mqz) for n with 4 the spanwise wavenumber of the disturbance, and the time scale to
reach this maximum is O(h/v) = O(1/¢) and not O(R), where ¢ is a measure of the amplitude of v
in the present non-dimensionalization based on U, and h. This maximum is realizable; it suffices
to choose the amplitude of the downstream roll (v) large enough. “Large enough” is determined
from the requirement that the dissipation time scale of the rolls be longer than the advection time
scale, h?/(m*v) > h/v or eR > =%, where the factor of 7% is introduced to estimate the effect
of the boundary conditions v = dv/dy = 0 at the walls. The structure of the maximum is also
not well-determined from the “over-linear” analyses that neglect the wdu/dz term (O(e*R)) and
the advection of the modified mean shear vdu/dy (O(e*R?)) in Eq.(8). Those terms are far from
negligible near the real maximum (Fig. 3). The classical transient growth analysis is only valid
when those terms can be neglected with respect to v dU/dy = O(¢) which is the case if ¢R < 1.
This makes it irrelevant because a larger perturbation would be able to create a more significant
redistribution of streamwise momentum.

YA/ Ya

Fig. 2. The shear-tilting mechanism and the exact solution (10)

These points and the mechanism can be illustrated further through the following simple solu-
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tion of the Navier-Stokes equations. Consider the flow

U 0 —c(t) b() T
v]=[0 0 —a(t) y (10)
w 0 alt) 0 z

(One should be cautioned that this flow does not satisfy realistic viscous boundary conditions.
However, it satisfies inviscid boundary conditions for flow down a pipe whose axis is in the z
direction.) The flow (10) has uniform time-dependent vorticity w = V xu = (2 a(t), b(t), c(t)). The
v and w motions are that of a uniform solid body rotation around the z-axis, while the  component
is the superposition of two uniform shear flows. Substituting this flow in the full vorticity equation
Diw =w - Vu+ vViw yields

a=10
b=—-ac (11)
c= ab

If the initial conditions correspond to a Couette flow in the y-direction 5(0) = 0, ¢(0) = ¢, with

dU/dy = —cgp, on which a small downstream roll a(0) = ¢ is introduced, the solution is
a(t) = €
b(t) = — cosin(et) (12)

c(t) = cocos(et)

The time scale for the process is indeed given by the initial amplitude of the perturbation ay = e,
while its amplitude is given by the initial mean shear ¢g, quite in contrast with the scalings for an
instability. For small times the vertical y-vorticity b ~ —cpet shows algebraic growth. The growth
saturates on a time scale of O(1/¢). The mechanism for the transient growth is the “lift-up” or
shear-tilting effect (fig. 2).

The discussion in this section has other dramatic consequences. The interest in transient
growth lies in the hope that non-linear effects can be triggered before the viscous decay of the
disturbances, but it is clear that there are no significant non-linear effects. The component that is
algebraically amplified (the streaks u) does not feedback on the original disturbances (the down-
stream rolls v, w) and the growth saturates on a time scale of order min(¢~1, R). This is also the
case for disturbances not purely streamwise. Benney and Gustavsson [7] recognized that fact and
emphasized the importance of a multiple mode theory. They did not mention, however, that the
algebraic growth is quickly shut off through the modification of the mean flow (Eq. (5)), on a time
scale O(e! while the non-linear effects they analyzed occur on a time scale O(e?)), even in the
presence of multiple modes. Jang, Benney and Gran [27] showed that the non-linear interactions
of oblique modes generated downstream rolls which then created large streaks by the shear-tilting
mechanism. However, Waleffe et al. [8] showed that, at transitional Reynolds numbers, these non-
linear effects came from the oblique rolls v and not from the transiently amplified streaks 7, even
though the latter are amplified by a factor about 10 (as in [15] Fig. 9).

Trefethen et al. [15] considered the 2 X 2 non-linear model problem,

ilv)=(0 ) @)oo () 6) o

to show how some non-linear effects coupled to the transient linear amplification could lead to
bifurcation of the system. This is an interesting example, although the non-linearity proportional
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to ||u|| is unphysical. A somewhat more realistic model that incorporates some of the elements

discussed above is
d(U)_(—,\ M)(U)
vay _
dt \ ' 0 I |4 (14)

iMZ—UM—}—(U—U‘/)

dt

where M represents the amplitude of the mean shear (du/dy), V the amplitude of streamwise
vortices and U the amplitude of the streamwise streaks. The UV term is the Reynolds stress term.
The rolls V' decay viscously and there is no non-linear feedback from the streaks U onto V. The
only significant “non-linear” effect is to reduce the mean shear M through the UV term thereby
saturating the growth in U. The variables A, p and o are positive and represent viscous decay
rates. If A = y = o = 0, the model falls back on system (10) and a periodic solution. In the
absence of U, V fluctuations, the mean shear relaxes to M = 1 from viscous effects, this parallels
the establishment of the mean shear du/dy = 1 by viscous diffusion from the walls in plane Couette
flow. The model (14) illustrates that in the hydrodynamic context, transient growth does not
directly lead to bifurcation.

4. Self-sustaining mechanism

The shear-tilting mechanism is capable of creating large modifications of the streamwise veloc-
ity, but that does not directly trigger transition. The appearance of strong streamwise streaks
also occurs in weakly non-linear expansions involving oblique disturbances. Somewhere down the
perturbation expansion, the interaction of oblique waves generates downstream rolls which then in-
duce a significant redistribution of streamwise momentum. This invalidates the weakly non-linear
theories because of the appearance of “secular” terms. Those secular terms are not artifacts of
the non-linear expansion but rather represent some actual dramatic alteration of the streamwise
velocity. That effect was probably first discovered by Benney and Lin [9].

What is needed is a theory which incorporates the strong spanwise distortion of the streamwise
velocity ab initio. In essence, the study of a one-dimensional mean flow U(y) is somewhat artificial
because very weak disturbances in the form of streamwise rolls create large spanwise fluctuations
in the streamwise velocity that persist for a long time. The proper basic state has an intrinsic
spanwise variation, U(y, z). One such theory has been proposed by Benney [10] in the form of a
Mean Flow-First Harmonic theory, but subsequent work by Benney and Chow [28] seemed to lose
the original focus. Nonlinear effects are critical in this theory because of the multitude of possible
basic states U(y, z). The basic state under consideration is such that the nonlinear interaction
of the instability developing on it sustains the spanwise variation. The theory is thus inherently
nonlinear, and the search is for a self-sustaining mechanism.

Direct numerical simulations (DNS) have been used as a guide in the development and valida-
tion of these ideas and it has been possible to identify a generic mechanism in turbulent shear flows
[16]. The skeleton of a theory for that mechanism is presented below. The spanwise fluctuations
of the streamwise velocity are often referred to as “streaks,” as a result of the streaky features
they produce in visualization experiments. The complete process consists of the following three
elements:

(1) Spanwise modulation of the streamwise velocity by downstream rolls,

(2) breakdown of the spanwise modulated flow from an inflectional wakelike insta-
bility,

(3) regeneration of the rolls from the non-linear self-interaction of the growing in-
stability.



8 Fabian Waleffe
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Fig. 3. Time development of the norms of streamwise velocity perturbations for down-
stream rolls with max(v) =0.03.

4.1. Streak generation

To illustrate the first step of the process, consider the introduction of downstream rolls

v(y,z) = V(y)cosyz and then W(y,z)= —% d‘;;y) sin vz, (15)
with max[v(y)] = 0.03 onto the laminar Couette flow profile U = y at R = 400, where v(y)
is the slowest decaying downstream OS mode. The (even) downstream OS modes are given by
V(y) = coshyy/ coshy — cospy/ cos p, with ytanh~ + ptanp = 0, see Eq. (26.3) in [1] p.159. The
amplitude of 0.03 is about that observed in the DNS and also corresponds to the estimate eRR ~ 10
deduced in sect. 3 from the balance between dissipation and advection time scales. The streamwise
velocity develops a spanwise variation that takes the form, from Eq. (8),

Uly,z) = uo(y) + u1(y) cos(yz) + uz(y) cos(2yz) + us(y) cos(3y2) + - - - (16)

The development of the norms ([ u?dy)'/?, etc...) of the streamwise perturbations is shown in
Figure 3. Note that u; reaches its maximum of O(1) after a time about ~ mh/(2vmax) Which is
approximately the time span needed to advect momentum from the walls to the middle of the
channel. At that time, the modification of the mean uy is far from negligible and there is a
significant departure from the laminar solution U(y) = y. That modification of the mean flow was
neglected in previous linear analyses. The downstream rolls are here artificially maintained against
viscous decay, their amplitude fixed at its initial value, because the search is for a self-sustaining
mechanism where the rolls are maintained on average. Thus the streamwise velocity reaches a
steady state determined by a balance between viscous diffusion and advection by the rolls in a time
scale of the order of one eddy-turnover time, 2wh/vmax. The profiles u;(y) and contours of u(y, z)
at ¢t = 50 are shown in Figures 4 and 5.
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Fig. 4. Velocity profiles at t=>50 for max(v)=0.03.

4.2. Streak breakdown
The next phase of the process consists of the breakdown of the spanwise modulated flow. To study
that instability, linearize the Navier-Stokes equations about the spanwise modulated flow U(y, z),
the resulting equations are

o 0 1_,_, U &U 0w U v _ 9 , U
GitVa BV IVt Gz ~ 50 0: 207 9002~ 20w0y W) (D)
d 15} T ou 0 oU 0 0 o oU
(5;tUs, ~ RV )U—(@a—y—a—yg)v—(va—y‘l'w&)g, (170)
with the kinematic relation
0? 0* on 0%
Gzt 32 =52 ~ ayas (17¢)

These equations admit a general solution of the form exp(iaz + At)v(y, z), and there is no need for
equ. (5) as long as a # 0. With U(y, z) in (16) satisfying U(y, —2z) = U(y, 2) and U(—y, 2+ 7/v) =
—U(y, z), the equations have several symmetries and the following form of solution is selected

oC

v =eloTTM Z v, (y) sinnyz,

n=1

n =e'oTTAL Z N (y) cosnyz, (18)
n=0

o0
w =TT E wy(y) cosnyz.
n=0
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Fig. 5. Contours of streamwise velocity U(y, z) at t=50 and at 0.1 intervals from -1 at
the lower wall to +1 at the upper wall, as induced by downstream rolls with max(v)=0.03.

This particular form is chosen in anticipation of the fact that the instability is wake-like, resulting
from the spanwise inflections in the velocity profile. The form (18) then corresponds to a funda-
mental (same period as the base flow) “sinusoidal” mode of instability, akin to the instability of
flapping flags. The “varicose” mode has a sine expansion for w and 7 and cosine expansion for v.
The subharmonic modes are a combination of varicose and sinusoidal modes and the expansion for
w in that case has the form

2n+1
2

o
w = e'TAM Z wy(y) cos yz.

n=0
By symmetry, there is also a sine series with the same growth rate.

The growth rate of the first three fastest growing modes on the profile U(y, z) of Figure 5
are shown in Figure 6. There is only one unstable mode for this base flow, and the corresponding
eigenvalue is purely real. The next two slowest decaying modes form a complex conjugate pair for
most values of « in the unstable range. The cutoff wavenumber above which there is no unstable
modes is approximately a ~ 1.155. The maximum growth rate occurs approximately at o ~ 0.74
and is equal to 0.1347, this is thus a powerful inertial instability given that 0.5 is an upper bound
on the growth rate for the laminar profile (U = y). These results are obtained numerically using
a Chebyshev expansion in y with 35 points and a Fourier series in z truncated after N terms, not
counting zero. The results, the position of the cutoff wavenumber in particular, are fairly sensitive
to the truncation.

For comparison, consider the inviscid inflectional instability of the purely spanwise profile
u(z) = Uy cosvyz with U; = max[uy(y)]. The Rayleigh equation [1] for the inviscid stability of a
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u(z) profile to normal modes of the form w(z) exp(iaz) exp(At), is
(A iau)(D? — o) w —ia (D*u) w =0 (19)

where D = d/dz and w is the spanwise velocity component(see [1] p. 130). For the profile u(z) =
Uy cos(yz), the general form for w(z) is w(z) = exp(iffz) Y, wn exp(inyz), but after some thought
the sinusoidal wake-like instability ( [1] p. 234) corresponds to a solution of the form w(z) =
wo + wq cos(yz) + - - -. Substituting this expansion truncated to the first 2 modes in the Rayleigh
equation (19) yields

A o? wy = —ialy a® wy /2
AMa? + %) wy = ial; (v* — a*) wy
which gives the growth rate
laUy| [(v? — a? 12
A= 5 5 . (20)
V2 \7V +a

This is shown in Figure 7. For this problem the exact growth rate can be expressed in terms of
a continued fraction [29]. A two-mode truncation often gives a reasonable picture for parametric
instabilities, as can be verified for Eq.(19) (Figure 7). However, for the present problem, up to twelve
Fourier modes are necessary to obtain converged results. Although the results are qualitatively
similar to those in Figure 6 the numerical values differ significantly (Iigure 8). In particular, the
position of the wavenumber cutoff is quite sensitive to the truncation.

015 T T T T T T

0.05

-0.05

-0.15
0 0.2 0.4 0.6 0.8 1 1.2 1.4

a

Fig. 6. Growth rate (real part of A) of the first three least stable modes on the profile
Ul(y, z) for v = 1.67, R = 400.
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4.3. Regeneration of downstream rolls

The third and final step of the self-sustaining process is the feedback on the original downstream
rolls from the non-linear development of the streak instability. The equation governing the evolution
of the downstream rolls v(y, z,t) = V(y,t) cosyz is obtained from (3) and has the form

0 1

- 70| @ == 21)

where the forcing term f is given by the projection of the non-linear interaction of the fastest
growing eigenmodes of U(y, z) onto the cosyz mode,

1 9 0* 9% 0
f= 3 <cos vz, 878@/(”“) —vv) + (8—3/2 — @)a(vw» (22)

The brackets () denote an average over horizontal planes z, z, and v, w in this formula stand for
the y and z velocity components of the most unstable mode only.

The shape of the first downstream OS mode and the steady solution to (21) are shown in
Fig. 9. The downstream rolls are clearly regenerated. The structure of the sustained rolls is only
slightly different from that of the first downstream OS mode. This new shape could be used as the
form of new streamwise rolls and the whole sequence reiterated until convergence. However it is
sufficient for the present purpose that the projection of the forced response onto the original shape
is large. This is sufficient to demonstrate that the streamwise rolls are reenergized by the nonlinear
development of the streak instability.
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Fig. 9. Roll regeneration; the first downstream OS mode (solid) and the steady response
to the non-linear forcing (dashed)
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4.4. Spanwise varying mean field theory

The three phases can be incorporated into a mean field theory where the mean consists of a U(y, z)
profile maintained by downstream rolls V' (y, z), W(y, z). For a given Reynolds number, the am-
plitude of these rolls is adjusted so as to give a zero growth rate for the instability of the U(y, z)
profile. The amplitude of that neutral mode would be determined from (21) in order to maintain
the rolls at their proper amplitude. The amplitude of the instability is linked to the amplitude
of the rolls through (21). One is left with the computationally intensive task of mapping out a
solution hypersurface in the four dimensional space formed by the Reynolds number R, the span-
wise wavenumber -, the streamwise wavenumber a and the amplitude of the perturbation. Hence,
choosing R = 400, = 1.67 and the amplitude of the rolls at max[V (y)] = 0.03, the streamwise
wavenumber must be o ~ 1.155 for marginality (F'ig. 6). This gives one point on the solution
hypersurface.

A mean field theory of a similar nature has been used with great success by Meksyn and
Stuart [30]. Their work was limited to two dimensions and the interaction between the mean
and the fluctuation was direct, while in the present proposal it takes place indirectly through the
streamwise rolls. This proposed mean field theory has strong connections also with the work of
Nagata [31] who discovered finite amplitude three-dimensional steady solutions in plane Couette
flow. His technique is to track nonlinear solutions in rotating plane Couette flow as the rotation
rate is reduced to zero. The mean field problem is essentially a special severe truncation of the
steady Navier-Stokes equations. Although it might appear that Nagata’s approach is more rigorous
to find steady solutions, in practice a severe truncation must be employed there also. This probably
explains some disturbing features of Nagata’s solutions such as the very low Reynolds numbers at
which they were discovered (150, while experiments and numerical simulations indicate a critical
R near 350) and the fact that when perturbed those solutions decay back to the laminar state
[32]. In the mean field theory, the truncation is inspired more by the physics and less by machine
constraints. If successful, the present mean field theory would provide deep physical insight by
isolating the fundamental interactions. One interesting feature of the proposed approach is that it
can be readily extended to deal with oscillatory disturbances by allowing for a purely imaginary
eigenvalue A = iw. When w # 0, the mean field theory should be seen as a statistical theory for a
mean and a fluctuating field. Non-zero w might be crucial to extend this theory to higher Reynolds
number where the structures are closer to the walls and propagating.

5. Model of the mechanism

The scenario sketched in the previous section, in which rolls create streaks that break down to
maintain the rolls, can be illustrated by the following simple model,

d U -A M 0 U 0 0 —c U
7 V]= 0 —u O VI+W [0 0 d 1% (23)
W 0 0 -v %4 c —d 0 %4
d

EM:—UM—}-(U—U‘/),

where U, V and M represent respectively the amplitude of the streamwise streaks, streamwise
rolls and the mean shear as before, and W is the amplitude of the streak instability. The wake-like
streak instability consists mostly of velocity in the spanwise direction. All constants A, i, v, o, ¢, d are
positive, with the Greek symbols representing decay rates inversely proportional to the Reynolds
number. The other two constants ¢ and d are nonlinear interaction coefficients. They depend
indirectly on the Reynolds number, through distortion of the mode structures. The instability W
grows from the streaks U (cUW term) and feeds the rolls V' by nonlinear self-interaction (dW¥?
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term). The other nonlinear terms follow from conservation of energy and the meaning of the other
terms is as previously.

In addition to the laminar state U =V = W = 0, M = 1, there may be other fixed points
Uo, Vo, Wy, My determined by the roots of the cubic

C(X)=d" X+ vd* X* — g(dc— pc* — X\d*) X + Avo =0, (24)

where X = WZ/u. The intercept at X = 0 is positive and equal to Avo, the slope there is the
coefficient of the X-term and must be negative to have positive roots. Thus a necessary but not
sufficient condition to have a root is that dc > uc? + Ad?, which gives a lower bound on the
critical Reynolds number. The exact equation for the critical Reynolds number can be derived
from the criterion that C(X.) < 0 at X. such that dC/dX = 0. Fixing somewhat arbitrarily
A=p=0=v/2 and ¢ = 0.8, d = 1, the bifurcation occurs near v = 0.25. Above that critical
Reynolds number, there are two roots that emerge from a saddle-node bifurcation. It can be shown
that the smallest one is always unstable. The stability analysis leads to finding the roots of a
fourth order polynomial for the eigenvalues. All coefficients of that polynomial are positive except
for the linear term that is indefinite and the constant term that has the sign of the slope of C at
the root. Hence, one can conclude that the lower amplitude root is always unstable as there will
be one positive eigenvalue in that case.

For the parameter values A = p = 0 = v/2, v = 0.1, ¢ = 0.8, d = 1, the larger root corre-
sponds to the fixed point Uy = 0.3017, Vy = 0.1414, Wy = 0.0841, My = 0.1467, but it is observed
numerically to be unstable at those parameter values. For the initial condition (U,V,W, M) =
(0,0.03,0.01, 1), the system settles quickly onto a periodic orbit shown in Fig. 10. The period is
about 7" = 140 and the system was integrated up to ¢ = 5000. For larger values of ¢ the flow
converges to the fixed point after spending some time around the periodic orbit, while for smaller
values of ¢ the flow goes back to the laminar state.

The time evolution over one period is displayed in Fig. 11. It shows an interesting “burst-like”
behavior with short-lived explosive growths of U,V and W which wipe out the mean shear M,
followed by a slower viscous recovery in which W is very small. The growth of W is initiated by
the instability of U from which it draws energy, but then the downstream rolls V' are enhanced
and augment the streaks U by extracting energy from the mean M, leading to an explosive non-
linear growth of U,V and W. Whether or not the model exhibits chaotic behavior is secondary to
our purpose, which is to illustrate the nature of the self-sustained mechanism coexisting with the
laminar state above some critical Reynolds number.

6. Conclusion

A self-sustaining mechanism believed central to the instability of shear flows has been described.
It consists of three elements: formation of streaks by downstream rolls, breakdown of the streaks
and regeneration of the rolls from the streak breakdown. Each of the three elements of the self-
sustaining process has been described and supported by numerical evidence. A simple four-equation
model illustrates the mechanism and shows that it can coexist with the laminar state. This scenario
appears not only responsible for the non-linear instability of shear flows but also occurs in the near-
wall region of high Reynolds number turbulent shear flows. In a series of numerical experiments,
Hamilton et al. [16] captured and analyzed the process as it takes place in the full Navier-Stokes
equations at low Reynolds number. In those direct numerical simulations, a turbulent flow was
obtained from initial random perturbations. The dimensions of the domain were then slowly reduced
(thus reducing the Reynolds number) to suppress some of the disorder [33]. The flow settled on a
near-periodic cycle consisting of the self-sustaining mechanism, lending support to the robustness
and relevance of that process.
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Fig. 10. Projection of the periodic orbit onto the U, M,V space (solid), and the U, M, W
space (dashed).

There remains much work to be done. First it is necessary to solve the mean-field theory
proposed herein in order to determine the favored spanwise scale and critical Reynolds number for
the process. This work has focused on Couette flow but the process is believed to be generic and
other shear flows must be considered to validate that point. One of the most exciting issues is the
conjecture that the process maintains the same effective Reynolds number at any flow Reynolds
number. This has been advanced as an explanation for the persistence of the observed streak
spacing of 100 wall units [8,16].

The streak formation phase has been extensively studied before as a linear transient effect.
A secondary aim of this article was to clarify the physical nature of those transient processes and
point out some serious limitations of the classical linear analyses based on a unidimensional base
flow. Most notably these analyses are valid only for ¢eR < 1 and the transient growth does not
directly trigger transition.

No mention has yet been made of the theory of “secondary instability” [34,35,36], which has
been very successful in explaining the development of three-dimensionality and the breakdown of
spanwise rollers. This is very important especially for boundary [34,37] and mixing layers [38],
where a primary instability introduces the spanwise rollers. In plane Couette and Poiseuille flows,
the secondary instability theory loses its foundation because the primary instability is either nonex-
istent or inactive at the observed critical Reynolds number. It would be necessary to show that
the spanwise rollers are sustained by the secondary instability but efforts in that direction have
been unsuccessful. However, even when the primary instability is active, the secondary instability
theory also describes only a transient effect, albeit more significant in that case because there is a
definite departure from the laminar state. It identifies the major processes in the breakdown of the
laminar flow but does not determine where the flow is going. That two stage development leads
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Fig. 11. Time evolution of the variables over one period, U: dash-dot, V: lower solid,
W: dashed, M: upper solid.

to “turbulence,” which remains a mystery outside the scope of the secondary instability theory. In
contrast, the mechanism explored in this article is complete and self-reproducing. The observations
of the near-wall region of turbulent flows and the direct simulations, suggest that this could be the
central part of the momentum exchange process with the disorder playing a lesser role.
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