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Abstract

Using a combination of constrained numerical simulations, stability analysis
and low-order dynamical systems, a generic self-sustaining process in shear flows
has been isolated. The process consists of streamwise rolls that redistribute the
streamwise momentum to create streaks whose wake-like instability nonlinearly
maintains the rolls. The identification of this process was inspired by observations
of coherent structures in turbulent boundary layers and earlier theoretical work.
The process has been isolated at transitional Reynolds numbers, where it occupies
the full channel in plane Couette flow. The lowest Reynolds number for stable
self-sustenance corresponds to the critical Reynolds number for transition. At
higher Reynolds number, it is speculated that the same process is confined to the
buffer layer and that the critical parameters for its self-sustenance control the
buffer layer thickness and the near-wall streak spacing.

1 Introduction

Turbulence in wall-bounded shear flows is strongly controlled by the near-
wall region, which is where most of the turbulence energy production and
dissipation take place. The ubiquitous structural features in this region
are low- and high-speed “streaks” and streamwise vortices. The streaks,
which consist mostly of a spanwise modulation of the streamwise velocity,
have a characteristic average spacing of about 100 wall units ! (Kline et al.
1967, Smith & Metzler 1983, Kim et al. 1987). They have been linked to a
sequence of events called the “bursting process,” in which streaks lift up, os-
cillate and break down. The bursting process is believed to be the essence of
the turbulence production mechanism (Kim et al. 1971). The streaks have
also been linked to the genesis of “horseshoe” vortices through a Kelvin-
Helmholtz type roll-up (e.g. Acarlar & Smith, 1987). The streaks could in

'That is, 100 v/u,, where v is the kinematic velocity and u, = (v|dU/dy|,)"/? is
the wall-shear velocity. In this paper, u,v,w denote the velocity components in the
streamwise (z), wall-normal (y) and spanwise (z) directions, respectively.



turn simply be the wakes left behind the horseshoe vortices as the latter are
advected downstream at a speed close to the local mean flow. This is an ap-
pealing picture, which not only provides a mutually-sustaining mechanism
for the streaks and the horseshoes, but also incorporates interaction with
the outer flow. Horseshoes, which are symmetric, are actually less typical
than asymmetric, staggered vortices, but from a dynamical viewpoint there
is no fundamental difference, except perhaps that the interaction with the
outer flow is less clear for asymmetric vortices.

In spite of the attention they have attracted during the past three
decades (e.g. see Robinson 1991 for a stereoscopic review), very little is
known or agreed upon about the dynamics of streaks and streamwise vor-
tices. There is no consensus, for example, about how such structures are
generated and self-sustained nor about what determines their well-known
scales. We have learned a great deal about their kinematics but have yet to
learn about their dynamics. Understanding of their dynamics is important
to the success of modeling and control of turbulent boundary layers.

In light of these earlier studies, we have sought to discover a self-sustaining
process in the Navier-Stokes dynamics that is based on the streaks, along
the lines of the work by Benney (1984). A simple mechanism for the forma-
tion of streaks is the redistribution of the mean shear by streamwise rolls.
This advection process creates streaks that are perfectly correlated with
the rolls, 2 and the Reynolds stress resulting from the streamwise rolls and
streaks then easily maintains a turbulent-like mean profile, at least at low
Reynolds numbers (Hamilton, Kim & Waleffe 1995, Waleffe 1995a). In fact,
the solenoidal vector field that maximizes the momentum transport (i.e. the
total Reynolds stress) has the form of a nested hierarchy of streamwise rolls
and streaks (Busse 1970).

It is well-known that the streamwise rolls decay viscously in a purely
z-independent flow (e.g. Joseph and Tao 1963). The key point, then, is
to determine the mechanism by which the streamwise rolls are maintained.
Several proposals for such a mechanism — the Goertler type mechanism
(e.g. Sreenivasan 1988) and the nonlinear mechanism based on direct res-
onances (Jang, Benney and Gran 1986), for example — have been made,
but none of these provides actual demonstration of a complete regeneration
cycle. We have been able to show that the rolls are regenerated by the non-
linear development of an instability of the spanwise modulated shear flow,
which is an instability of the streaks and mean shear, U(y, z). Furthermore,

?For small times t following the introduction of streamwise rolls on a parallel shear
flow profile U(y), one has uv ~ —tv2dU/dy.



we have demonstrated this mechanism as a part of a complete, realized, self-
sustaining process, in which streamwise rolls redistribute the mean shear to
create streaks whose wake-like instability nonlinearly maintains the rolls.

Our approach has been threefold, consisting of controlled numerical
simulations, stability analyses and low-order dynamical systems modeling.
First, we tested the validity of our proposed process by tracking equilibrated
turbulent solutions to a smaller computation box, i.e., to smaller Reynolds
numbers for the three Reynolds numbers based on the largest length scales
in each direction (Waleffe, Kim & Hamilton 1993). This led to an organiza-
tion of the turbulent flow that settled onto the proposed coherent process,
with all “inactive motions” removed by viscosity at small scales and forbid-
den by the small box at large scales. The self-sustaining process emerged
spontaneously from this turbulent-solution tracking procedure (Waleffe et
al. 1993, Hamilton et al. 1995). We sometimes refer to the resulting flow
as “maximally constrained turbulence,” but this flow is so organized that,
in fact, it corresponds to the discovery of a periodic — in space and nearly
in time — solution of the Navier-Stokes equations with plane Couette flow
boundary conditions.

We separated the process into three phases, and studied each phase
through a series of suitably altered computations (Hamilton et al. 1995),
as well as through a stability analysis of spanwise-varying shear flows (Wal-
effe 1995a). The constrained simulations fully isolated the self-sustaining
process (SSP), thereby demonstrating its continued existence independent
of any other external influence such as the interaction with the outer flow.
At the lowest Reynolds number at which it is self-sustaining, the process
occupies the full width of the channel in plane Couette flow. The lowest
Reynolds number for self-sustenance is about 350 in plane Couette flow
(based on the 1/2 shear layer width and the 1/2 velocity difference across
the shear layer), and thus matches well with the observed critical Reynolds
number R, for transition in this flow. In Poiseuille flow, we expect two sets
of streamwise rolls, one in each half of the channel. Hence, we expect an
R, ~ 1400 = 4 x 350 in that flow (based on the shear layer width and the
velocity difference across it) — slightly less than 1400 accounting for the
absence of no-slip at the centerline — and that value is also close to the
observed R, in plane Poiseuille flow.

Our position is that before tackling a high Reynolds number turbulent
boundary layer, we should first understand the process responsible for the
finite amplitude bifurcation of shear flows at low Reynolds number. This,
of course, is the realm of transition studies that typically consists of follow-
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Figure 1: The three phases of the SSP.

ing the evolution of various special disturbances added to the laminar flow.
Our approach was instead to come from the turbulence side of the prob-
lem by tracking turbulent solutions down to the critical Reynolds number
in order to determine what state the flow transitions to, and how it self-
maintains away from the laminar state. In this limit of small, but larger
than critical, Reynolds number, one can rigorously separate the “active mo-
tions,” or coherent structures, from the “inactive motions” (cf. preface to
this monograph). We hypothesized that the coherent structures observed
in turbulent boundary layers would be the principal surviving dynamical
elements at transitional Reynolds numbers. This was indeed the case.

In the following, we first review the main ingredients of our SSP and
the results of the low-order model. We then discuss the applicability of our
results and offer some speculations about their relevance to higher Reynolds
number turbulent boundary layers.

2 The Self-Sustaining Process (SSP)

In this section, we briefly review the three phases of our SSP, which have
already been described in some details in Hamilton et al. (1995), Waleffe
(1995a), and Waleffe (1997). We can view the process as composed of
three main phases consisting of (i) the redistribution of the mean shear
by streamwise rolls to create streaks, (ii) the wake-like instability of the
streaks, and (iii) the regeneration of streamwise rolls from the nonlinear
development of the streak instability (fig. 1; see also fig. 2 of Hamilton et
al. 1995).



2.1 Formation of streaks

This is the simplest phase of the process that consists of redistribution
of streamwise momentum by streamwise rolls. For z-independent flows,
the wall-normal and spanwise velocities, V (y, z), W (y, z), respectively, that
form the streamwise rolls, decouple from the streamwise velocity Ul(y, 2)
(Waleffe 1995a). Thus they have no energy source and decay slowly due to
viscosity. However they lead to a strong redistribution in y — z planes of
the streamwise momentum U provided by the forcing, as governed by the
advection-diffusion equation

oU oU ou 1_,

8t+vay+Waz_RVU+F(y) (1)
where F(y) is a steady deterministic forcing that drives the shear flow if
the boundary conditions are homogeneous. For plane Couette flow F' = 0
and the flow is driven by the motion of the boundaries U(y = £1) = %1,
while F' is a constant for Poiseuille flow. Variables are non-dimensionalized
by the half-channel height and the wall-velocity in Couette flow.

It is clear from eqn. (1) that streamwise rolls of O(1/R) and of the
scale of the shear layer are sufficient to induce an O(1) z-modulation of the
streamwise velocity, as particles with near extreme momentum are advected
to the regions of average momentum. Beyond this, there is little scale
selection with respect to the spanwise wavenumber . There is perhaps
a slight preference for v ~ 1.2 that corresponds to the slowest decaying
rolls. 3 The spanwise variations, U(y, z) — U(y), where the overbar denotes
an average over z, are called streaks in reference to the streaky structures
observed in turbulent boundary layers (Kline et al. 1967).

2.2 Instability of sheared streaks

The spanwise-varying shear flow U(y, z) consists of bands of fast and slow
fluid side by side, and there are many inflections arising from the shear
in the z-direction. In analogy with the instability of wakes (e.g. Drazin &
Reid 1981), one then expects two dominant types of inflectional instability
of the streaks, a fundamental sinusoidal mode (fig. 2) and a subharmonic
“sinucose” mode. There is also a fundamental varicose mode, but it is ex-
pected to be least unstable. The symmetries of those various modes have

3The viscous decay rate of streamwise rolls V(y,z) = V(y)cosvyz, with V(y)
cos(py)/ cosp — cosh(yy)/ coshy, is C,/R = (p* + 7?)/R with p the smallest positive
root of ptanp + ytanhy = 0. The minimum C, = 9.27 at v = 1.2.
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Figure 2: Fundamental sinusoidal mode of instability of streaks at R = 400.
Contours of v at 0.1292 increments at the centerline y = 0. Positive contours
solid, negative contours dashed.

been discussed in Waleffe (1995a) and Waleffe (1997) and are illustrated
in figs. 2 and 3 from direct numerical simulations (DNS). The fundamental
mode was computed starting from the U(y, z) profile at R = 400 in Waleffe
(1995a) (described below) plus small random noise. The subharmonic was
computed from a similar U(y, z) profile at R = 3000 plus a small subhar-
monic perturbation (Waleffe 1995a). The subharmonic is a lot less unstable
than the fundamental mode, and it was necessary to start with an initial
field containing only the subharmonic mode and to use a higher Reynolds
number to illustrate it in fig. 3.

For the near-wall region of turbulent flows the fundamental sinusoidal
mode will lead to the typical staggered row of vortices as educed from turbu-
lent data by Stretch (1990) and Jeong et al. (1996), while the subharmonic
sinucose mode, and the fundamental varicose, would lead to symmetric
horseshoe-like structures (e.g. Acarlar and Smith 1987). The data analysis
by Stretch (1990), Jeong et al. (1996), and others showed that asymmetric
structures are more typical than the symmetric horseshoes. This predom-
inance is easily understood in terms of the wake instability analogy that
favors the sinusoidal mode.

The streak instability is studied in Hamilton et al. (1995) using a full
simulation code for the streaky flow obtained in the maximally constrained
turbulent flow as well as related profiles. The linear stability problem for a
spanwise varying shear flow U (y, z) was formulated in Waleffe (1995a). The
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Figure 3: Subharmonic “sinucose” mode of instability of streaks at R =
3000. Contours of v at 0.1417 increments at the centerline y = 0. Positive
contours solid, negative contours dashed, 3/2 periods in z.

stability equations for the perturbations v, 17 about the base flow U read
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with the kinematic relation (0?/0z* + 0%/02*)w = —dn/0z — 0%v/dydz,
where n = 0u/0z — Ow/0x is the vertical vorticity and ou/0x + Ov/dy +
Ow/0z = 0 for incompressibility.

Eigensolutions of these linear stability equations are given in Waleffe
(1995a) and Waleffe (1997) for the U(y, z) profile obtained from the redis-
tribution of the laminar plane Couette flow by streamwise rolls V (y, z) =
V(y) cosvyz, at R = 400, after one quarter of the rolls turnover time ¢ =
Th/(2Vimax)- This is approximately the time when momentum that was near
the wall initially has been advected to the center of the channel, leading to
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the largest streaks. The amplitude of the rolls V., was chosen from the
criterion that the rate of advection be of the order of the roll decay rate
Vinax/h = C,v/h?, thus selecting the weakest rolls that live long enough to
create the strongest (and thus most unstable) streaks. In non-dimensional
terms, the amplitude of the rolls is V ~ C, /R.

The stability of that U(y, z) profile has been investigated with spectral
methods using both no-slip (v = v = w = 0) and free-slip (0u/dy = v =
Ow/dy = 0) at the walls (y = £1) for the eigenmodes, with little change in
either the growth rate or the structure of the most unstable eigenmode. The
growth rates are shown in fig. 4 for both types of boundary conditions. The
no-slip results were compared with a full Navier-Stokes simulation code by
starting from the U(y, z) profile plus low amplitude random noise (fig. 2).
The structure of the most unstable eigenmode in y—z planes is plotted in fig.
5. The eigenmode consists primarily of spanwise velocity, as expected for the
wake-like instability of the streaks. The superposition of the eigenmode with
finite amplitude ~ 0.15 onto the base flow U(y, z) is practically identical to
the DNS figure 2.

0.15

0.1r

0.051

growth rate

-0.05

_0.1 Il Il Il Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 1.4

a

Figure 4: Growth rate of the unstable mode (fundamental sinusoidal) of
a spanwise-modulated shear flow U(y, z) with no-slip (solid) and free-slip
(dash) boundary conditions, vs. streamwise wavenumber «, for v = 5/3,
R = 400. Open circles are DNS results with no-slip.

The plot of growth rate versus streamwise wavenumber (fig. 4) has the
shape characteristic of inflectional instabilities of smoothly varying profiles
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Figure 5: Eigenstructure of the fundamental sinusoidal mode (no-slip) for
the instability of U(y, z), consisting of a single exp(iaz) Fourier mode, at
ax =0 and ax = 7/2.



(Drazin & Reid 1981), for which there is a high wavenumber cutoff of the
order of the typical wavenumber of the base flow. This has been illustrated
(Waleffe 1995a, Waleffe 1997) by a low-order truncation for the stability of
a purely spanwise shear flow Ug cos~yz, in which the inviscid growth rate A

has the expression

)= Lol (2 a2>1/2

V2 \P+a?)

where « is the streamwise wavenumber of the unstable mode. The band
of unstable wavenumbers is 0 < a < 7. Viscous effects are easily included
(see Waleffe 1997) and slightly shrink the unstable o range. The streak
instability thus provides an upper bound on the streamwise wavenumber
«, but does not prominently favor any particular scale in the z-direction
(wavenumber ). Larger v implies more y-vorticity (0U/0z) in the streaks,
and a larger instability growth rate, but it also implies more viscous damping
and the streamwise rolls must then have a larger amplitude — and thus
require more roll regeneration — to sustain the streaks.

Further study of the streak instability for various U(y, z) profiles shows
that the effect of the mean shear, U(y), is stabilizing: that is, the mean
shear reduces the growth rates and the width of the unstable band of z-
wavenumbers, mostly by lowering the upper cut-off wavenumber. The in-
stability is thus clearly an instability of the streaks, U(y, z) — U(y), and is
not enhanced but reduced by the presence of the mean shear. However, the
mean shear U(y) is essential for feedback on the rolls, as discussed in the
next subsection, in addition to being the source of energy for all fluctuations
and for the streaks in particular. We note also that for some U (y, z) profiles
there is a second branch of unstable modes corresponding to traveling waves
(the eigenvalues have a non-zero imaginary part) that extends to larger a.
Such branches are observed for the steady state U(y, z) profiles obtained for
the rolls used in Waleffe (1995a), for instance.

We emphasize here that it is an instability of the streaks, not of the
rolls, that drives the process. This is illustrated by the analysis of the
truncated model in Waleffe (1997) and Sect. 3 below. An instability of the
rolls would provide another energy drain in addition to viscosity. The crucial
element in shear flows is actually to identify the mechanism that sustains
the rolls against the viscous decay. In the next subsection, we discuss how
the streamwise rolls are regenerated by the x-dependent fluctuations that
arise from the instability of the streamwise streaks.
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2.3 Nonlinear feedback on streamwise rolls

Averaging the Navier-Stokes equations over the streamwise z-coordinate
and then eliminating pressure and W~ through the incompressibility con-
straint yields the governing equation for the streamwise rolls V" (y, z)

0? 02 ) 0

(0" =10 + (577 - 577 3200
®)

where the overbar-z, GI, denotes an average over x only. This is essen-
tially an equation for the z-averaged streamwise vorticity @,® as V2V =
—0w;"[0z.

This exact equation at once eliminates a candidate mechanism for the
regeneration of streamwise rolls. It has been suggested that the streamwise
rolls arise through the shearing by the mean flow U(y) of the vertical vortices
arising from the roll-up of the vertical vorticity w, associated with streaks.
This is not the case since such a mechanism would imply a forcing term
resulting from the interaction between U(y) and wy,, but there is no such
forcing term in the V* equation. Imagine a rotating stack of coins in a shear
flow to represent w, vortices. The shear will displace the coins parallel to
their plane thus generating streamwise vorticity w,, but the latter does not
correspond to streamwise vortices; no vertical velocity has been generated
and w, results from the vertical shear of the spanwise velocity, dw/dy. The
resulting w, has zero x-average.

Feedback on the streamwise rolls is more direct, but subtle, as its es-
sential ingredients are intimately coupled with the instability of the sheared
streaks. The mean shear plays an essential role for feedback by breaking
the y-symmetry. This is illustrated by an intermediate fifth-order model
deduced from a Galerkin projection (Waleffe 1997). That model shows
that there are two independent modes — one odd and one even in y —
of instability of pure streaks (i.e. U(y, z) = cosm/2y cos~yz in Couette and
Ul(y,z) = cosvyz for the free-slip flow in Waleffe 1997), and that feedback
on the rolls results from the nonlinear interaction between those two modes.
The mean shear couples those odd and even modes of instability and corre-
lates them such that feedback on the rolls is realized. Hence, although the
basic instability results from the spanwise inflections, the latter alone are
not sufficient to generate streamwise vortices. The mean shear intervenes
at the level of the streak instability by shaping the unstable eigenstructure
such that while its uo” and ww® Reynolds stress components extract energy
from the spanwise modulated streamwise velocity U(y, z) ((Hamilton et al.

83
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1995), fig. 7), its 70", vw” and ww”® Reynolds stresses inject energy into
streamwise rolls, eqn. (3) and fig. 6 (also, (Hamilton et al. 1995), figs. 4,
12 and 13). The nonlinear feedback is slightly dominated by ww®. The
“nonlinear forcing” in fig. 6 was calculated by substituting the unstable
eigenfunction (fig. 5) obtained from the eigensolver (Waleffe 1995a) into the
right-hand side of eqn. (3).

Note that V”(y, z) is generated even if absent initially at it results from
the nonlinear interactions of e'®® streak instability modes. Streamwise rolls
can and have been generated by starting from the streaky flow U(y, z) plus
some small z-dependent fluctuations to trigger the streak instability with
no rolls initially present.

The average streamwise vorticity w,® is simply related to V" through
VV* = —0w;*/0z, and thus fig. 6 is identical to fig. 13 in (Hamilton et
al. 1995) modulo a quarter period shift in the z direction. The nonlinear
forcing is well-correlated with the original streamwise rolls and feedback is
realized. The shape of the nonlinear forcing has an interesting double hump
structure which suggests that it tends to create two sets of rolls, one near
each wall. At low Reynolds numbers in Couette flow, however, the walls
are close to each other so that the regenerated rolls merge into a single
large roll occupying the whole channel. But the double hump structure of
the nonlinear forcing suggests that two distinct vortices will be formed, one
near each wall, at higher Reynolds number.

Physically, the conceptual picture of an inclined roll-up of the two-
dimensional shear layer associated with the streamwise streaks, as in the
generation of horseshoe vortices (Acarlar & Smith 1987), is probably a use-
ful and valid visualization of both the streak instability and the feedback
on the rolls. In our description of the SSP and its dynamics, we are led to
distinguish between the x-dependent modes of instability of the streaks and
their z-averaged nonlinear feedback on the rolls. In the full flow these two
stages take the form of the staggered row of vortices for the fundamental
sinusoidal mode of instability and of horseshoes vortices for the subhar-
monic sinucose mode. In the limit of low, transitional, Reynolds numbers,
our “modal” view of the flow seems quite appropriate. At higher Reynolds
numbers when interaction with the outer flow is present, the “structural”
view of the flow may be more appropriate, but it is more difficult to describe
mathematically.

With regards to the issue of scale selection, note that the second term
on the right-hand side of (3), which contains the operator 8?/0y* — 8?0922,
changes its sign as the scales in the y and z direction cross over one an-
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rolls chosen to create U(y, z) (Sect. 2.2); bottom is RHS of eqn. (3) resulting
from nonlinear self-interaction of the streak eigenmode, fig. 5. Positive
contours solid, negative contours dashed.
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other. The form of the first term — a difference between ww”® and v0* —
perhaps also suggests such a flip in sign, after a scaling argument such as
ww® ~ v?/B#?vv°. A change of sign of the right-hand side of (3) implies
a switch from production to destruction of the rolls. Indeed a low-order
model (Waleffe 1997) shows that feedback is possible only if v > 3, where 3
is a characteristic y-wavenumber. Otherwise the rolls are actually destroyed
by the nonlinear interaction of the exp(+iax) modes. This provides a lower
bound for 7, while an upper bound is provided by viscosity as the viscous
decay scales like 2. This is perhaps the more direct evidence of a spanwise
scale selection. If v is too small, there is little or no feedback and little or no
streak instability. If v is too large viscous decay dominates, as it stabilizes
the streaks and the mean shear while requiring larger amplitude rolls to
sustain the streaks and a larger amplitude streak instability to sustain the
rolls. The competition between those various effects leads to a critical ~.

The three phases of the SSP, formation of streaks by streamwise rolls,
streak instability and feedback on the rolls, are described by the three equa-
tions (1), (2) and (3), respectively. However, those equations are not com-
plete to describe the interactions between the three phases. Equation (1)
lacks the Reynolds stress terms 0uv®/0y + 0vw”/0z that extract energy
from U(y, z) to sustain the growth of the streak instability. Equations (2)
lack the interaction between the rolls V'(y, z) and the streak disturbance
(u,v,w) that extract energy from the latter to sustain the rolls. A complete
low-order model of the SSP is discussed in the next section.

3 Low-order model

A low-order model of the SSP was first proposed (Waleffe 1995a, Waleffe
1995b), and later derived from the Navier-Stokes equations (Waleffe 1997).
Taking advantage of the similarity between free-slip and no-slip boundary
conditions for the basic streak instability, the model is derived for a sin By
shear flow, |By| < 7/2, with free-slip at the walls. That flow is best suited
to low-order modeling. The model consists of four differential equations
for the amplitudes of the mean shear M, of the streaks U, of the rolls
V' and of the streak instability W. The corresponding modes are, up to
some normalization constants, (sin By, 0,0) for the mean, (cosvyz,0,0) for
the streaks, and (0,7 cos By cosz, Bsin By sinyz) for the streamwise rolls.
The streak instability mode, whose amplitude is W, is a three-dimensional
velocity field represented by a combination of five Stokes modes (see Waleffe
1997).
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The model reads

where all the o coefficients are positive. Analytic expressions for the coef-
ficients are given in Waleffe (1997) for two slightly different choices for the
streak instability mode. One choice requires 72 — 32 — o? > 0, while the
other choice requires v2 — o2 > 0 and 72 — 32 > 0; otherwise, instability of
the streaks and/or feedback on the rolls are not possible. Model (4) pre-
serves the global properties of the Navier-Stokes equations. The nonlinear
quadratic interaction terms conserve the total energy, which evolves owing
to the forcing and viscous dissipation only: Rd/dt(M?+ U? +V?2+W?2) =
k2 M(1— M) — (k2U? + £2V? + k2 W?). Unbounded growth cannot occur
and a statistically steady state is possible only for 0 < M < 1.

The physical effects and the three phases of the SSP discussed in Sect. 2
can be recognized in the model. The mean M is maintained by the external
forcing k2, / R; the streaks U originate from the MV term, which corresponds
to the redistribution of the mean shear by the streamwise rolls with feedback
on the mean through the Reynolds stress, —UV’; the streak instability W
grows exponentially through the UW term and feeds the rolls V' through
its nonlinear self-interaction W?2. Energy must then be extracted from U
and W respectively, and this takes place through the W?2 term in the U
equation and the VW term in the W equation. As discussed in subsections
(2.2) and (2.3), the mean shear influences the form of the streak instability
and typically reduces its growth rate. This results in the MW term in the
W equation and the corresponding W2 in the M equation.

The mean, M > 0, is linearly stable. Rolls with V' < 0 are unstable
to W but cannot be sustained. Positive rolls V' > 0 are stable and can be
sustained through W?2. The only term that can extract energy from the
mean M is the UV term provided UV > 0. Hence the only possible non-
laminar self-sustained solution corresponds to U > 0, V > 0. In that case
energy can be transferred from the mean M to the streaks U through the
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MYV term. The streak instability then gives rise to W through the UW
term and the nonlinear self-interaction of the streak perturbation (o,W?)
sustains the rolls V. Note that U and V' are amplitudes of particular streak
and roll modes, respectively. That the SSP corresponds to U > 0, V' > 0,
simply results from a particular choice of phase in the definitions of the
modes. Physically, the SSP corresponds to negative Reynolds stress 7o < 0
resulting from the streamwise streaks and rolls, and for every “ejection”
(velocity fluctuations u < 0, v > 0), there is a “sweep” (u > 0, v < 0) half
a period away in the z-direction. The term ¢,,/W? > 0 in the M-equation
always puts energy back into the mean, hence the exp(icz) disturbances
that originate from the streak instability lead to positive Reynolds stress.
Those disturbances extract energy from the streaks U(y, z) — U(y) through
their z-averaged-only Reynolds stresses, but actually put energy back into
the mean U(y) through their z and z averaged Reynolds stress (see also fig.
7 in (Hamilton et al. 1995)).

Analysis of model (4) (Waleffe 1997) shows that there is a critical Reynolds
number Ry,, at which a saddle-node bifurcation takes place. For R > R,
there are two steady solutions to (4) in addition to the laminar state M =1,
U=V =W =0, one of which is an unstable saddle-point. The other solu-
tion, however, is not the usual stable node; instead, it is an unstable node.
As the Reynolds number R is increased, that unstable node soon turns into
an unstable spiral that tightens: that is, it becomes less unstable as R is
increased further. For some values of the parameters (Waleffe 1997), this
may lead to a homoclinic bifurcation at some R = Ry. > R,,, which gives
rise to a stable limit cycle.

That interesting dynamical behavior is illustrated in fig. 7. The saddle-
node bifurcation at R = Ry, introduces two new fixed points, a saddle and
an unstable node (open circles), but most initial conditions still end up at
the laminar fixed point (solid black dot), which is a stable fixed point and
the only attractor for R < Ry, (fig. 7(a), (b)). For R slightly above Rs,, the
unstable node turns into an unstable spiral (fig. 7(c)). As R is increased,
the spiral tightens and a homoclinic bifurcation takes place. This gives rise
to a stable limit cycle, which is a new attractor (fig. 7(d)). Many initial
conditions will now settle onto the periodic orbit instead of the laminar
fixed point.

The low-order model thus offers some suggestions about the bifurca-
tion of shear flows and a framework to understand how the various results
and observations fit together. The two unstable steady solutions that arise
through a saddle-node bifurcation at R = R, correspond to the steady
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Figure 7: Phase plane illustration of some possible dynamics for model (4).
The solid black dot is the stable laminar solution. The two open circles are
the two new steady solutions. (a) R < Ry,: Laminar flow is global attractor
and unique fixed point; (b) R just above R,: two new fixed points have
appeared, a saddle and an unstable node; (¢) Ry, > R > R, + €: unstable

node has turned into an unstable spiral; (d) R > Rp.: a stable limit cycle
has appeared through a homoclinic bifurcation.

solutions computed by Nagata (1990), and shown unstable by Clever and
Busse (1992), while the periodic solution that arises after the homoclinic
bifurcation at R = Rp. > R, corresponds to our solutions (Waleffe et al.
1993, Hamilton et al. 1995). From a practical point of view, the critical
Reynolds number for transition is that corresponding to the homoclinic bi-
furcation, but from a geometric point of view, the saddle-node bifurcation is
a necessary precursor to the homoclinic bifurcation (fig. 7). Note also that
the unstable spiral fixed point could serve as an estimate of the average
flow.
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4 Discussion

Previous observations of near-wall turbulence structures have guided us to-
wards the identification and isolation of a simple self-sustaining process
described above. Although this is a definite step forward in our under-
standing of the underlying physics of turbulent boundary layers, there are
many issues and questions that remain unresolved.

Our SSP leads to a well-organized motion with highly increased momen-
tum transfer, but what happened to the disorder? By strongly constraining
the flow at the large scales, we have been able to suppress almost completely
the “inactive motions”. Under those constraints, the SSP is very organized.
In fact we have not observed any chaos in the low-order model of Sect. 3
for the parameter values we have considered so far. Our constrained DNS
does look chaotic (Waleffe et al. 1993 fig. 5, Hamilton et al. 1995 fig. 3),
and also shows some small-scale disorder. But with a bit more patience and
fine-tuning of the box size it is plausible that we could have made these
features to disappear. Of course no one has ever observed such spatially
periodic states in an extended domain, even at low Reynolds number, sug-
gesting that our process is somewhat unstable. By “somewhat,” we mean
here that these instabilities do not destroy the process completely but sim-
ply reduce its efficiency. The flow remains “close” to the organized SSP
that may provide a good upper bound for the turbulent momentum trans-
fer. Indeed, there are two aspects of turbulence. One is the disorder; the
other is the increased momentum transfer. The SSP may be responsible
for the increased momentum transfer, while secondary (and tertiary and
quaternary, etc...) instabilities would be the roots of the disorder and what
is commonly known as the “inactive motions”.

Given the close connection between our SSP and the structures observed
in the near-wall region, we contend that it is probably the main engine that
drives shear flow turbulence. It is also probably the process that takes
place inside turbulent spots, although the shape and dynamics of the spot
boundary — the boundary between the laminar solution and our new self-
sustained solutions — may be controlled by other processes. Indeed the
shape of turbulent spots varies from one shear flow to another while the
internal structure of various turbulent spots looks very similar, consistent
with the above notion that the same SSP is the driving force inside turbulent
spots.

The maximally constrained plane Couette flow considered here is the
simplest configuration as far as the SSP is concerned. To extend the ap-
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plicability of our SSP to the near-wall region in all wall-bounded turbulent
flows, we need to investigate how it is affected when there is only one wall,
as in boundary layers, or when the other wall does not provide an additional
constraint, as in channel flow at sufficiently large Reynolds numbers so that
the channel half-height is larger than the self-sustaining structure. A first
step is to look at Poiseuille flow at a low Reynolds number, where we expect
essentially two copies of this SSP, one in each half of the channel. Jimenez
& Moin (1991) investigated a constrained channel flow (the so-called “min-
imal channel”), but the Reynolds numbers based on the channel half-height
were large to allow larger-scale structures in the wall-normal direction, and
consequently the SSP was less clearly discernible. A minimal channel flow
at a Reynolds number barely large enough to support two copies of the SSP
may lead to a simplified state similar to that considered here.

The other related issue is to study how the SSP depends on Reynolds
number. As the Reynolds number increases, does a radically different pro-
cess supersede the periodic and steady solutions based on the present SSP?
This would strongly limit the relevance of the latter, but we do not think
that is the case. Instabilities will arise and introduce disorder, but will
not destroy the SSP. Perhaps these organized solutions develop an inter-
esting nested structure, as in the upper bound solutions (Busse 1970), at
higher Reynolds number, and they may even have a log-layer. We suspect,
however, that the structure of the organized solutions at higher Reynolds
number would be destroyed by instabilities, and that the SSP survives in
an organized form only in the near-wall region. This is certainly what is
suggested by the existing observations. The main question then is what
happens away from the wall and how do the two regions interact? This is
a perennial question, and much more work is needed to answer it. Charac-
terizations of such organized solutions, however, seems to be a good, and
new, starting point.

One of the most salient features of the wall-layer turbulence structure is
the existence of a definite scale selection of about 100 wall units for the spac-
ing of the wall-layer streaks. Jang et al. (1986) suggested that it corresponds
to a scale at which there is a direct resonance between the Orr-Sommerfeld
mode and Squire mode, in which case the latter undergoes a transient am-
plification. However, it was demonstrated in Waleffe et al. 1993 that the
same linear mechanism, which is nothing but the velocity redistribution of
Sec. 2.1, can lead to larger amplification of non-resonating modes and that
there is no significant scale selection for this linear mechanism. Butler &
Farrell (1993) introduced a cutoff time before which nonlinearity does not
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affect the linear growth and after which it completely scrambles the flow
and wipes out the linear growth. This is at best a strong simplification,
but in any case, that nonlinear time scale remains as an adjustable external
parameter. The linear mechanism thus does not explain the scale selection;
instead, the scale-selection problem is simply transformed into a problem of
time-scale selection.

Our analyses of the SSP show that there are scale constraints for its
various phases. The typical wavenumbers must satisfy constraints of the
kind a < v for the streak instability to occur, and # < 7 for the nonlinear
feedback on the rolls to occur. On the other end, if v is too large, viscous
dissipation will prevent self-sustenance. However, it may not be feasible to
come up with a simple argument for scale selection as the latter depends
on all phases of the process as we discussed earlier (Waleffe et al. 1993,
Hamilton et al. 1995). To illustrate this difficulty, let us put aside the
scale-selection issue and ask about the relation between the amplitudes and
the Reynolds number R for self-sustenance in the low-order model eqn. (4).
By balancing the viscous dissipation of each mode with its primary forcing
term, i.e. M ~ 1, U/R ~ MV, V/R ~ W? and W/R ~ UW, we obtain
the scalings M ~ 1, U ~ R, V ~ R™2 and W ~ R™3/2 for the smallest
amplitudes that may lead to self-sustenance. These are indeed the scalings
of the lower branch saddle-point when o, = 0 (Waleffe 1995b). However,
when o, > 0, the scalings of the lower branch are quite different: M ~
const. < 1, U ~ const. > 0, V ~ R™' and W ~ R™! (Waleffe 1997). Thus,
it is difficult to deduce the appropriate scalings without actually calculating
the bifurcated solutions. The scale selection is actually more related to
the prediction of the critical Reynolds number R, for self-sustenance —
rather than to asymptotic scaling — which is even more difficult to estimate
without actual computation.

Our earlier suggestion Waleffe et al. (1993), which we reiterate here,
is that the spanwise spacing of ¢ = f,u,/v ~ 100 is indeed a critical
Reynolds number for self-sustenance, as demonstrated by the computations
of Hamilton et al. (1995) and Jimenez & Moin (1991). In terms of the
roll diameter d, which corresponds to one half of the streak spacing in the
maximally constrained turbulence, the critical Reynolds number for self-
sustenance is d* = du,/v = 50. This roughly corresponds to the size of the
buffer layer in turbulent boundary layers. The size of the buffer layer and
the streak spacing would then correspond to the smallest scale that can have
the SSP in turbulent boundary layers. At those small scales, there is little
excess energy available for secondary instabilities or “inactive motions,”
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but at the larger scales those instabilities can feed on and submerge the
organized structures. This is perhaps the reason why the smallest scale
that can have the SSP also corresponds to the most ubiquitous scale.

There is yet another possibility why ¢} = 100 is so conspicuous in turbu-
lent boundary layers. As mentioned above the SSP defines the critical scale
below which no self-sustenance is possible. All scales larger than the critical
scale have the SSP. However, the resulting structure of the rolls, streaks and
mean-shear in turbulent boundary layers is such that the energy transfer
from the mean (the ultimate source of energy for all disturbances) is most
efficient at £} ~ 100. In this sense, £ = 100 is not only the critical scale
below which no SSP is supported, but also the dominant scale at which
the energy transfer from the mean is most efficient. In an attempt to sub-
stantiate this argument, we examined the energy transfer from the mean to
various z-independent spanwise scales using the channel DNS database of
Kim et al. (1987). The energy transfer to @(0,~y), where ~ and v denote a
Fourier-transformed quantity and the spanwise wavenumber, respectively,
from the mean shear is @(0, 7)0(0, v)dU/dy, and hence, the efficiency of this
transfer depends on the shapes of the rolls and the mean velocity profile
resulting from the SSP. In fig. 8, this modal energy transfer, in terms of
power density per nondimensionalized wavelengths, is shown as a function
of distance from the wall. One sees that the streamwise rolls and streaks
corresponding to ¢} =~ 100 are indeed the most significant contributors to
energy extraction from that particular mean. Examination of a database
obtained at a higher Reynolds number channel flow (approximately 7900
based on channel half-height and the centerline velocity instead of 3200)
shows the same trend. It thus appears that the spanwise length scale cor-
responding to the observed mean streak spacing may be the spanwise scale
at which the energy transfer due to the roll, streaks and mean shear of the
SSP is most efficient.
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