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Abstract

The purpose of this paper is to establish a method of obtaining closed form solutions in

isotropic hyperelasticity using the complementary energy, the Legendre transform of the strain

energy function. Using the complementary energy, the stress becomes the independent variable

and the strain the dependent variable. Some of the implications of this formulation of the equa-

tions are explored and illustrative examples of solutions for spherical and cylindrical in
ation

for several forms of the complementary energy are presented.
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Introduction

The search for exact solutions of the equations of elasticity initially concentrated on incompressible
materials. The simpli�ed kinematics allows a wide variety of analytic solutions to be calculated.
Much of the research concerned deformations possible in any material, the universal deformations,
see for example Ogden [1]. Early on, though, Ericksen [2] showed that in compressible materials that
the only universal solutions were homogeneous. The �rst inhomogeneous solutions for compressible
materials were for the harmonic materials due to John [3]. Another large class of solutions, for
strain energies depending on the invariants of the stretch tensor, were discovered by Carroll [4].
These included the harmonic materials as a special case. A third class that allows exact solutions
are the Blatz-Ko materials [5]. A summary of all these solutions can be found in the papers by
Horgan [6], Carroll [7] and Horgan [8]. A more systematic examination of the structure of the
equations for spherical and cylindrical equations and their solution is given by Horgan and Murphy
[10].

Treating the stress as the independent variable, rather than the strain or displacement, is a
common tactic in linear elasticity problems. Examples include the Prandtl stress function in St.
Venant torsion, the Airy function in plane strain or plane stress problems and the Love stress
function in axisymmetric situations. The present paper utilizes this approach in �nite elasticity.
The �rst Piola-Kircho� stress is taken to be the independent variable. It is chosen so that the
equilibrium equation is satis�ed identically. The governing equations are obtained by requiring
that the tensor obtained from di�erentiating the complementary energy corresponds to the gradient
of a deformation �eld. Some constitutive restrictions on the complementary energy are derived
from the requirement that the in�nitesimal shear and bulk moduli be positive. Several classes of
complementary energy are examined and solutions derived for spherical in
ation.

The Legendre Transform

Let B be a homogeneous three-dimensional continuum and let it occupy a �xed homogeneous
con�guration �0 at time t = 0. For any particle X 2 B, let X be the position vector of X in the
con�guration �0. Let x be the position vector of X at time t, then a deformation of the body is
given by

x = �(X; t):

The deformation gradient F is de�ned as

F =
@x

@X
=

@xi

@XA
ei 
EA

where ei and EA are basis vectors in the current and reference con�guration and the summation
convention is assumed.
In the usual method of obtaining analytical solutions in hyperelasticity, one treats F as the inde-
pendent variable, where F is the deformation gradient. The �rst Piola-Kirchho� stress tensor P is
derived using the constitutive relation

P =
@W

@F
; (1)

where the strain-energy function W (F) is a prescribed function of the deformation gradient. The
equilibrium equation

Div P = 0 (2)

then yields the di�erential equations of deformation.
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In the alternative approach, utilized in this paper, one treats the stress P as the independent
variable. The domain of P is the set of tensor �elds satisfying (2). The Legendre transform of the
strain-energy function W (F) with respect to P is denoted 
:


(P) = F �P�W (F) (3)

The deformation gradient F can then be derived using

@


@P
= F+

@F

@P
P� @W

@P
= F+

@F

@P
P� @F

@P

@W

@F
= F: (4)

The di�erential equations of deformation are derived from the integrability conditions for F. In
cartesian coordinates, these are

@FiA

@XB
=

@FiB

@XA
i; A;B = 1; 2; 3: (5)

In general these di�erential equations di�er from those given by the usual method, and this alter-
native method can lead to new solutions.

Isotropy

Let F = RU be the right polar decomposition of F. For isotropic materials, the strain-energy W

can be written as a symmetric function W y of �1; �2; �3, the eigenvalues of U, or equivalently as a
function W ? of the principal invariants i1; i2; i3 of U:

W =W (F) =W y(�1; �2; �3) =W ?(i1; i2; i3); (6)

where
i1 = �1 + �2 + �3; i2 = �1�2 + �2�3 + �3�1; i3 = �1�2�3: (7)

De�ne the Biot stress by

� =
@W

@U
; (8)

then if �i are the eigenvalues of �

�i =
@W y

@�i
(9)

and (1) implies
P = R�: (10)

Performing the Legendre transformation


 = �1�1 + �2�2 + �3�3 �W: (11)

The complementary energy 
 can be written as a symmetric function 
y of �1; �2; �3, or equivalently
as a function 
? of the invariants j1; j2; j3 of �:


 = 
(P) = 
y(�1; �2; �3) = 
?(j1; j2; j3); (12)

where
j1 = �1 + �2 + �3; j2 = �1�2 + �2�3 + �3�1; j3 = �1�2�3: (13)
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The equation for F,

F =
@


@P
=

�
@
?

@j1
+ j1

@
?

@j2

�
R� @
?

@j2
P+

@
?

@j3
adj(P); (14)

where adj(P) is the adjugate (i.e the matrix of cofactors) of P

adj(P) = eijkeABCPjBPkC ei 
EA (15)

For (14), see for example Steigmann [9].
In the usual formulation of elasticity, the fact that det(F) > 0 implies that the rotation matrix

in the polar decomposition for F is uniquely determined. Since det(P) doesn't have a de�nite
sign there are several di�erent rotation matrices and accordingly di�erent Biot stresses that can
correspond to a given P. For a thorough discussion of this issue see Ogden [1] page 358 �.

Materials

We will consider the following forms of the complementary energy

A 
̂A(j1; j2) =
1

2�
(f(j1)� j2) ; (16)

B 
̂B(j1; j2) =
1

2�

�
g(aj1 + j21 � 4j2) + bj1

�
; (17)

C 
̂C(�1; �2; �3)) =
1

2�
(h((�1 + c)(�2 + c)(�3 + c)) + dj1) ; (18)

where a; b; c; d are constants and f; g; h are arbitrary functions of their arguments. In the strain
energy formulation, the in�nitesimal bulk and shear moduli are given by

3� =
@2W y

@�2
1

+ 2
@2W y

@�1@�2
; 2� =

@2W y

@�2
1

� @2W y

@�1@�2
(19)

(or any cyclic permutation of �1; �2; �3) where the derivatives are evaluated at �1 = �2 = �3 = 1.
Due to the properties of the Legendre transform, the equivalent expressions for the moduli in terms
of the complementary energy are

1

3�
=

@2
y

@�2
1

+ 2
@2
y

@�1@�2
;

1

2�
=

@2
y

@�2
1

� @2
y

@�1@�2
(20)

evaluated at zero stress. In addition the stretches at zero stress should be one. These conditions
give the following restrictions on the complementary energy

Material A

f 0(0) = 2�; f 00(0) =
1

3

�
2�

3�
+ 2

�

Material B

a

4
+ b = 2�; g0(0) =

1

4
; g00(0) =

1

3a2

�
2�

3�
+
1

2

�
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Material C

d� c2 = 2�; h0(c3) = �1; h00(c3) =
1

3c4

�
2�

3�
+ 2

�

Spherical In
ation

Assume the deformation can be given in spherical polar coordinates by

r = r̂(R); � = �; � = �: (21)

The equilibrium equation (2) reduces to

d

dR
(PrR) +

2

R
(PrR � P��) = 0: (22)

For this deformation �eld we have
R = I:

This means that the the principal values of the Biot stress are given by

�1 = PrR; �2 = �3 = P��: (23)

The constitutive equations give

FrR =
dr

dR
=

@


@�1
; F�� =

r

R
=

@


@�2
: (24)

The integrability condition in this case is just

d

dR
(RF��) = FrR; (25)

which reduces to

R
d
2

dR
+
2 � 
1 = 0; (26)

where we have written


1 =
@


@�1
; 
2 =

@


@�2
:

Material A

For model A,


1 =
1

2�

�
f 0(j1)� 2�2

�
; 
2 =

1

2�

�
f 0(j1)� (�1 + �2)

�
: (27)

Substituting into (26) immediately gives

R
d

dR

�
f 0(j1)� (�1 + �2)

�
+ (�2 � �1) = 0: (28)

Using the equilibrium equation (22)

R
d

dR

�
f 0(j1)� 1

2
j1

�
= 0: (29)
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This can be integrated to give
j1 = constant = 3k0: (30)

Using the expression for j1 and the equilibrium equation gives an equation for �1

R
d�1

dR
+ 3�1 = 3k0: (31)

Integrating leads to

�1 = k0 +
k1

R3
; �2 = k0 � k1

2R3
(32)

Now (24)2 gives

r =
R

2�

�
f 0(3k0)� 2k0 � k1

2R3

�
: (33)

Material B

For model B, let
jB = aj1 + j21 � 4j2; (34)

then


1 =
1

2�

�
(a+ 2�1 � 4�2)g

0(jB) + b
�
; (35)


2 =
1

2�

�
(a+ 2�1)g

0(jB) + b
�
: (36)

Substituting these into the compatibility equation (26) and using the equilibrium equation (26)
leads to

(a+ 2�1)R
d

dR

�
g0(jB)

�
= 0: (37)

Thus, either

�1 = �a

2
or jB = constant = 3k0: (38)

The condition jB = 3k0 leads to the di�erential equation

(a� 2�1)
d�1

dR
+ 3a�1 � 3�21 = 3k0: (39)

This has solution

�1 =
a

2
�
r
a2

4
� k0 + k1R�3: (40)

Using (36),

r =
R

2�

  
2a+�

r
a2

4
� k0 + k1R�3

!
g0(3k0) + b

!
: (41)

The other stress can be found using equilibrium and the condition (38) in the form

�2 =
a

2
�
0
@ra2

4
� k0 + k1R�3 � 3R3

2
q

a2

4
� k0 + k1R�3

1
A : (42)
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Material C

Using the form of stress energy given in (18) we obtain


1 =
1

2�

�
(�2 + c)(�3 + c)h0(jC) + d

�
; (43)


2 =
1

2�

�
(�1 + c)(�3 + c)h0(jC) + d

�
; (44)

where
jC = (�1 + c)(�2 + c)(�3 + c):

The compatibility equation (26) becomes

R
d

dR

�
(�1 + c)(�2 + c)h0(jC)

�
+ (�1 � �2)h

0(jC) = 0; (45)

since

�2 + c =

r
jC

�1 + c
: (46)

Equation (45) becomes
p
�1 + cR

d

dR

�p
jC h0(jC)

�
= 0; (47)

which gives either �1 = �c or

jC = constant jC = k20 or jC = �k20: (48)

Thus

�2 + c =
k0p
�1 + c

or �2 + c =
k0p

�(�1 + c)
: (49)

Using the equilibrium equation (22) gives

R

2

d�1

dR
+ �1 + c =

k0p
�1 + c

or
R

2

d�1

dR
+ �1 + c =

k0p
�(�1 + c)

(50)

with solutions

�1 + c = (k0 + k1R
�3)2=3 or �1 + c = �(�k0 + k1R

�3)2=3; (51)

where k1 is an integration constant. From (45) the other stress component is

�2 + c = k0(k0 + k1R
�3)�1=3 or �2 + c = k0(�k0 + k1R

�3)�1=3:

The displacement is obtained from (24)2 as

r =
R

2�

�
k0(k0 + k1R

�3)1=3h0(k20) + d
�

or r =
R

2�

�
�k0(�k0 + k1R

�3)1=3h0(�k20) + d
�
: (52)
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Cylindrical In
ation

Assume the deformation can be given in cylindrical polar coordinates by

r = r̂(R); � = �; z = �Z: (53)

where � is a constant. The equilibrium equations (2) reduce to

d

dR
(PrR) +

1

R
(PrR � P��) = 0;

dPzZ

dZ
= 0: (54)

For this deformation �eld we again have
R = I:

This means the the principal values of the Biot stress are given by

�1 = PrR; �2 = P��; �3 = PzZ : (55)

The constitutive equations give

FrR =
dr

dR
=

@


@�1
; F�� =

r

R
=

@


@�2
; FzZ = � =

@


@�3
: (56)

The compatibility conditions in this case are

d

dR
(RF��) = FrR;

d

dR
(FzZ) = 0; (57)

which reduce to

R
d
2

dR
+
2 � 
1 = 0;

d
3

dR
= 0: (58)

Material A

For model A,


1 =
1

2�

�
f 0(j1)� (�2 + �3)

�
; 
2 =

1

2�

�
f 0(j1)� (�1 + �3)

�
; 
3 =

1

2�

�
f 0(j1)� (�1 + �2)

�
:

(59)
Substituting into (58) immediately gives

R
d

dR

�
f 0(j1)� (�1 + �3)

�
+ (�2 � �1) = 0: (60)

Using the equilibrium equation (54)1

R
d

dR

�
f 0(j1)� �3

�
= 0: (61)

This together with
2�
3 = 2�� = f 0(j1)� (�1 + �2); (62)

implies that

j1 = k0; �1 + �2 = f 0(k0)� 2��; �3 = k0 + 2��� f 0(k0): (63)

Integrating (63)2 using the equilibrium equation (54)1 gives

�1 =
1

2

�
f 0(k0)� 2��

�
+

k1

R2
; �2 =

1

2

�
f 0(k0)� 2��

�
+

k1

R2
: (64)

Now (56)2 gives

r =
R

2�

�
3

2
f 0(k0)� k0 � ��� k3

R2

�
: (65)
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Material B

For model B, let
jB = aj1 + j21 � 4j2; (66)

then


1 =
1

2�

�
(a+ 2�1 � 2�2 � 2�3)g

0(jB) + b
�
; (67)


2 =
1

2�

�
(a+ 2�2 � 2�1 � 2�3)g

0(jB) + b
�
; (68)


3 =
1

2�

�
(a+ 2�3 � 2�1 � 2�2)g

0(jB) + b
�
: (69)


3 = 2�� ) 2(�2 � �3)g
0(jB) = (a� 2�1)g

0(jB) = b� 2��: (70)

Substituting this into the compatibility equation (58)1 reduces to

R
d

dR

�
(2a� 4�1)g

0(jB) + b� 2��
�
+ 4(�2 � �1)g

0(jB) = 0: (71)

Thus, either

�1 =
a

2
or jB = constant = k0: (72)

The condition 
3 = 2�� leads to

�3 = �1 + �2 +K; K =
1

2

�
2��� b

g0(jB)
� a

�
(73)

Using this, the condition jB = k0, and the equilibrium equation gives the di�erential equation

(2a� 4�1)R
d�1

dR
+K2 = 4a�1 � 4�21 + aK = k0; (74)

with solution

�1 =
a

2
�
r
1

4
(K2 + aK + a2 � k0) + k1R�2: (75)

The stress �2 can be found from the condition jB = k0,

�2 =
a

2
� K2 + aK + a2 � k0

4
q

1

4
(K2 + aK + a2 � k0) + k1R�2

; (76)

and �3 from (73)

�3 = a+K �
0
@r1

4
(K2 + aK + a2 � k0) + k1R�2 +

K2 + aK + a2 � k0

4
q

1

4
(K2 + aK + a2 � k0) + k1R�2

1
A : (77)

The displacement is

r =
R

2�

 
b� 2���

r
1

4
(K2 + aK + a2 � k0) + k1R�2

!
: (78)
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Material C

Using the form of stress energy given in (18) we obtain


1 =
1

2�

�
(�2 + c)(�3 + c)h0(jC) + d

�
; (79)


2 =
1

2�

�
(�1 + c)(�3 + c)h0(jC) + d

�
; (80)


2 =
1

2�

�
(�1 + c)(�3 + c)h0(jC) + d

�
: (81)

where
jC = (�1 + c)(�2 + c)(�3 + c):

The compatibility equation (58)1 becomes

R
d

dR

�
(�1 + c)(�3 + c)h0(jC)

�
+ (�1 � �2)(�3 + c)h0(jC) = 0: (82)

This gives
(�3 + c)h0(jC) = constant: (83)

The other compatibility equation 
3 = 2�� gives

(�1 + c)(�2 + c)h0(jC) = 2��: (84)

Together (83) and (84) imply

jC = k0; (�1 + c)(�2 + c) =
2��

h0(k0)
: (85)

The second equation together with the equilibrium equation gives the di�erential equation

R
d�1

dR
+ �1 + c =

2��

(�1 + c)h0(k0)
: (86)

This has the solution

�1 = �c�
s

2��

h0(k0)
+ k1R�2: (87)

The other stresses are

�2 = �c� 2��

h0(k0)

�
2��

h0(k0)
+ k1R

�2

��1=2

; (88)

�3 = �c+ k0h
0(k0)

2��
: (89)

The displacement is obtained from (562) as

r =
R

2�

 
�k0(h

0(k0))
2

2��

s
2��

h0(k0)
+ k1R�2 + d

!
: (90)
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Conclusion

A new method for obtaining closed form solutions for spherical and cylindrical in
ation of isotropic
compressible materials is proposed in this paper. Exploiting the duality relation between the com-
plementary energy and strain energy, taking the stress to be the independent variable, gives rise to
a di�erent set of equations than the usual approach using the strains. In some cases they are more
tractable and allow new solutions to be found.
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