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ABSTRACT

We report on a pilot study of the topological structure of data
sets using Plex, a software package for computational homol-
ogy [1]. Plex assigns to a set of points in Rn a “barcode,”
which is intended to reveal topological structure in data. In
particular, if the data are drawn from a low-dimensional man-
ifold M , the barcode is meant to capture the homology of
M . We compared barcodes coming from three sources: byte-
count data from the UW-Madison core computer network,
Gaussian noise centered at a point, and Gaussian noise con-
volved with a circle. One of our goals is to understand how
“persistent” the result of Plex needs to be in order to distin-
guish a data set with topological structure from one consisting
solely of noise.

Index Terms— Persistent homology, dimension reduc-
tion, manifold learning

1. INTRODUCTION

Data in high dimensions are essentially impossible to visual-
ize directly, so with the explosion of high-dimensional data
collection, many tools for dimensionality reduction and data
visualization are being studied. A great number of these tools
try in ways to find a mapping of the high-dimensional data to
lower dimensions, and they try to make that mapping as true
to the structure of the data as possible.

All such methods assume an inherent low-dimensional
structure to the data. This is convenient in practice; it helps
us visualize relationships in the data and it helps us find par-
simonious explanations of a complex system’s behavior. But
this parsimony may oftentimes be fundamental as well: even
very complex systems usually have a small number of factors
that are influencing behavior, or a small number of goals or
outcomes, etc. By making this assumption, we are saying that
nature is simple in some sense; and if it were not we would
have little hope of understanding it.
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(a) A noisy circle; a 1-d manifold
embedded in 3 dimensions. The
Betti numbers of this circle are
β0 = 1, β1 = 1; that is it has one
connected component and one hole.
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(b) A noisy circle whose ends do
not connect. It’s topology has β0 =
1, but no larger Betti numbers.

We are led to the problem of dimension reduction; given a
set of data points in a high-dimensional space RN , find some
“natural” smaller manifold M which is close to most of the
data points. Traditional methods try to find such an M which
is a linear subspace of RN . More recently, attention has been
focused on situations in which M is allowed to be nonlinear.
Following the lead of Carlsson et al [3] one might ask about
the topology of M . Speaking loosely, the topological features
of a manifold are those which are preserved by deformations
without tearing; so a line and a parabola are topologically
identical, while a line and a circle are not.

The method of persistent homology described in [3] is
meant to reveal topological information about the hidden
manifold M . For example, imagine that the data arise from
a circle as in Figure 1(a). If we could identify this circle, we
could parameterize the space in which the data exist down
to a manageable size, in this case one dimension. Identify-
ing this circle from a finite collection of noisy data points is
called manifold learning. The difficulty, of course, is that a
discrete set of points does not literally have any interesting
topology. The customary means of overcoming this problem
is to replace each point with a small ball of radius ε, which
has the effect of “smoothing” between the data points. The
result depends strongly on the choice of the parameter ε. For
instance, imagine that instead of the circle you have a mani-
fold that is nearly a circle but has a break, as in Figure 1(b).
If we choose ε large enough to bridge the gap in Figure 1(b),



we will have a connected circle as our manifold; if we choose
ε smaller, we will see simply a curved line.

The notion persistent homology [3] neatly avoids the ne-
cessity of fine-tuning ε by keeping track of what happens for
all values of ε. Topological features that “persist” for a wide
range of ε are then deemed to be actual features of the data set.
The topological features in question are “homology groups,”
which to a very first approximation can be described as a mea-
sure of the “number of holes” in the manifold. Technical de-
tails can be found in [3] and Plex documentation [1], which
can be used to identify persistent features. For example, the
homology group H0 refers to the number of connected com-
ponents in the dataset; the homology group H1 refers to the
2-dimensional holes (circular discs) in the manifold, H2 to
the 3-dimensional holes (interiors of spheres), and so on. To
give a fuller exposition of homology groups of manifolds is
beyond out scope; for the remainder, it suffices to know that

• h0 and h1 are two nonnegative integers called Betti
numbers that can be attached to any manifold;

• h0(M) is the number of connected components of M ;

• A point has h0 = 1 and h1 = 0;

• A circle has h0 = h1 = 1.

Plex will return a computation of persistent homology of any
data set, whether it has hidden topological structure or not.
How do we know when the results of Plex indicate significant
topological structure in the data? This question is impossible
to answer unless we understand the results Plex returns from
unstructured data. The goal of the present report is to report
on some experimental results obtained from applying Plex to

• a real-world data set acquired from network traffic at
the University of Wisconsin;

• a data set engineered to have the topological structure
of a circle;

• a data set engineered to have the topological structure
of a point (i.e. no interesting structure at all.)

2. OUR DATA

We wanted to explore the capabilities of Plex in identifying
persistent homology in real data. First of all we must be clear
that we did not clean the data in any way. Plex and Persistent
Homology theory are very sensitive to outliers; if the outliers
in your data are truly uninteresting points, it makes sense to
clean them out, but in our case we had no a priori reason to
believe any of our data points were unreliable.

Our data were byte counts collected over the course of
ten days in December from 134 network ports in the inter-
nal UW-Madison core computer network. Each measurement
represents a byte count over a window of approximately five
minutes, yielding a total of 2675 time points. These data rep-
resent sixty-seven links in the network; each link between
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Fig. 1. Example data, logarithmic and normalized. The tick
marks are at the midnight point for each day.

routers is represented by two measurement streams, each cor-
responding to one direction of network traffic. Each link’s
data is only collected by one of the two connected routers.

In an attempt to normalize the data across ports while
maintaining detailed information about low traffic load, we
used the logarithm of the traffic measurements, then sub-
tracted the mean and normalized by the variance. Figure 1
shows data on two ports in the network.

3. BARCODE ANALYSIS

The output of Plex is a barcode, a collection of intervals for
different homology groups. The intervals give the start and
end ε of a topological feature; longer bars are more “persis-
tent,” while shorter bars are transitory and should be ignored.
The question of “how long is long enough to be called persis-
tent” is not at all well-understood, and will be a focus of our
discussion below.

Consider the following example in order to understand
what will happen in a barcode as we vary ε. Our data are a set
of n equally spaced points around a circle. For small ε, the
points will not be close enough to each other to be connected,
and thus our H0 barcode will show n bars in this range, de-
noting n connected components. Our H1 barcode will show
no bars, denoting no holes in the manifold. As soon as ε is
the distance between the points, the circle will be completely
connected and our H0 barcode will show a single bar, for a
single connected component, for the entire rest of the range
of ε. The H1 barcode will now show a single bar represent-
ing the hole in the middle of the circle. The next transition
comes when ε reaches the diameter of the circle, at which
point all the points will be connected; therefore this ε sug-
gests a manifold on which all the data are directly connected
with no holes, and so the H1 bar will disappear.

A central idea of persistent homology is that there should
be a large range of ε for which the true topology of the data
is visible in the barcode. In the example above, this leads to
the intuitively natural conclusion that the hypothesis “the data
are arrayed along a circle” is more strongly supported when
the distance between successive points on the circle is small
compared to the diameter of the circle.



4. WHAT COUNTS AS PERSISTENT?

Our goal now was simply to understand better how to differ-
entiate the barcode of a real topological structure from that of
random noise.

In order to focus our attention on a more tractable prob-
lem, we restricted our attention to routers 4 and 55. Thus we
are examining 2675 points in R2. The resulting scatterplot
can be seen in the upper left quadrant of Figure 3. Note that
the scatterplot appears to the eye to have a “hole” – this sug-
gests that Plex might find some persistentH1. We use a Gaus-
sian cloud as our “null hypothesis,” a data set which does not
have any hidden topological structure. We quantified “per-
sistence” by recording the lengths of the two longest bars in
H1. The plots hereafter display the length of the longest H1

bar on the x-axis and the second-longest on the y-axis. If the
data set is sampled from a circle, one should expect one very
long (“persistent”) H1 bar, with all other H1 bars small. In
particular, the ratio between x and y coordinate will be very
large.

We first attempted to run Plex using the Vietoris-Rips
complex on the entire dataset of 2675 points in R134. Since
the Vietoris-Rips tries to build simplicial complexes using
all the data points, matlab ran out of memory for this large
dataset. We next attempted to run Plex using the Witness
complex. This uses landmark points, a small sample of the
2675 data points which, one hopes, will still carry the topo-
logical information pertaining to the whole data set. We
found, that the barcode output by Plex depended strongly on
the choice of landmark set, as seen in Figure 2(a).

4.1. Landmark Selection

Plex gives two options for how to select landmark points
out of the dataset: Random and Max-Min. Random simply
selects the landmarks uniformly at random without replace-
ment. Max-Min selects the first landmark randomly, then
selects each subsequent landmark to maximize the minimum
distance from the new landmark to any already-chosen land-
mark.

Figure 2(a) has length of the longest bar on the x-axis and
length of the second longest bar on the y-axis; therefore the
points will by definition be on or below the 45 degree line,
which is shown for clarity. The further to the right the points
are, the longer is the longest bar; the further away from the 45
degree line, the higher the ratio of the longest to the second
longest bar. The different points show 50 different landmark
selections on the same two data sets.

For the Gaussian cloud, the presence of a few outliers cre-
ates long bars when the max-min landmarks are used. Since
we want to use a protocol in which the structureless data do
not have persistent homology features, we used random land-
marks for the remainder of our trials.

4.2. Comparing to Noisy circles and Random data

For our second experiment, we compared four data sets, each
consisting of 2675 points in R2 and normalized to have the
same mean and variance. The four data sets are shown in
Figure 3: We have our router data, the Gaussian cloud, a circle
convolved with a low-amplitude Gaussian noise, and a circle
convolved with high-amplitude Gaussian noise.
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Fig. 3. Scatterplots of four data sets we used for comparison.

We once again looked at the longest bar versus the sec-
ond longest bar in H1. As expected, the circle with the small
amount of noise gives us the best bars– they are plotted in
green in Figure 2(b). The points representing the circle are far
to the right, meaning the longest bar is very long, but they are
also far from the 45-degree line, meaning the second-longest
bar is very short relative to the longest bar. This is the clear
topological signature of a circle.

The results for the other three datasets are clustered in the
bottom left corner of the plot. Figure 2(c) shows a zoomed-
in version of the other plot so that we can see more clearly
the relationship of the results to one another. The very noisy
circle seems to do better in terms of the ratio between the
longest bar and the second longest bar, however our network
data does better for the longest bar in H1.

The main thing to draw from Figure 2(c), however, is
that it is not so easy for Plex to distinguish between real-
world data, a highly noisy circle, and Gaussian noise. There
were many trials where the 4 vs. 55 data set and the highly
noisy circle yielded barcodes that would be perfectly consis-
tent with the null hypothesis. This is the case even though the
eye can easily see the “hole” in the highly noise circle. By the
same token, the Gaussian noise sometimes produced barcodes
which look to the eye as if they possess persistent H1. We
must conclude that any appropriate protocol for drawing con-
clusions about real-world data sets from Plex barcodes based
on landmarks is likely to be statistical in nature. In order to
develop such a protocol, one will need a much more refined
theoretical understanding about the persistent homology of
random subsets of RN than we have at present. For instance:
• Let X be the ratio between the longest and second-

longest H1 bar in a set of N points in R2 drawn from a
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(a) Comparison of landmark selection
methods. The plot has length of the longest
bar on the x-axis and length of the second
longest bar on the y-axis; the points will
be on or below the 45 degree line, which is
shown for clarity.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

 

 

4v55 Rand landmarks
Rand gauss, Rand landmarks
Circle .1 var noise
Circle .3 var noise

(b) Longest bar vs. second longest bar
length for the four datasets. To build the
Witness complex, we used 100 random
landmarks per run, and did 40 runs, the re-
sult of each of which is shown in the plot.
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(c) A zoomed version of Figure 2(b), without
the results for the low-noise circle.

Fig. 2. Simulation results on data in R2 using Plex.

Gaussian distribution. What can we say about the prob-
ability distribution on X? In a numerical simulation of
1000 runs of Plex on data from an N (0, 1) distribu-
tion, we found that 95% percent of the time, the ratio
of longest to shortest bar is at most 3.

• How sensitive is this probability distribution to the
choice of model for noise? For instance, what if the
N points are drawn from the uniform distribution on
a square? Are there universal bounds on the tails of
this distribution using only coarse parameters of the
distribution from which the points were drawn?

These questions are only beginning to be understood theoret-
ically; see for instance the work of Matthew Kahle [5] and
Bubenik-Carlsson-Kim-Luo [2]. It would be interesting and
useful to run some larger trials to see, in practice, what kind
of barcodes can be expected from random data sets.

Recent work of Carlsson and da Silva also suggests that
some of the variation arising from different choices of land-
marks can be ameliorated by means of a bootstrapping pro-
tocol called “zig-zag,” in which the homology features ob-
tained from different choices are considered all at once; this
yields a stronger, and potentially more robust notion of per-
sistence [4].

4.3. The meaning (if any) of persistent H1 in the UW net-
work data

We don’t have a convincing explanation for the apparent
“circularity” of the scatterplot for router 4 against router 55.
Router 4 is attached to a firewall, and it does seem to have
traffic increase greatly only during the work week, and it also
has less extreme evening dips than most of the data streams
do. In order to investigate this we will look at the various

flow streams that make up this single data stream and try to
identify some subset of flows that are causing this behavior.

5. CONCLUSION

There are three important conclusions to take away from this
experiment. The use of Max-Min landmarks should be lim-
ited to a situation where you know that outlier data will not
affect your results. The results of Plex using landmark points
must be viewed in a probabilistic manner; a random Gaus-
sian cloud is capable of producing a barcode that “looks like
it indicates topological structure. In order to make a plausible
claim of structure, one should require some kind of a “long
on average” family of bars in a series of trials. Finally, look-
ing forward, in order to draw principled conclusions from the
output of Plex, we need more theoretical results about the bar-
codes arising from random data sets.
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