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Abstract

A Q-curve is an elliptic curve over a number field K which is geometrically isogenous to
each of its Galois conjugates. Ribet [16] asked whether every Q-curve is modular, and showed
that a positive answer would follow from Serre’s conjecture on mod p Galois representations.
We answer Ribet’s question in the affirmative, subject to certain local conditions at 3.

MSC classification: 11G18 (14G35,14H52)

1 Introduction

Let K be a number field, Galois over Q. A Q-curve over K is an elliptic curve E/K which is
isogenous over K to each of its Galois conjugates. Our interest in Q-curves is motivated by the
following theorem of Ribet.

Theorem ([16, §5]). Suppose E/Q is an elliptic curve that is also a quotient of Ji(N)/Q. Then
E is a Q-curve over some number field.

A Q-curve which is a quotient of J;(N)/Q is called modular; Ribet has conjectured that in fact
every Q-curve is modular. The modularity of various Q-curves has been verified by Roberts and
Washington [17], by Hasegawa, Hashimoto, and Momose [11], and by Hida [12]. In this article we
establish the modularity of a large class of Q-curves, including infinitely many curves not treated
in the aforementioned papers (but not including every curve treated there.)

Suppose E/K is a Q-curve, and E7 is a Galois conjugate of E. Then there exists a non-zero
K-isogeny p : EY — E| and so if p is a prime dividing the square-free part of the degree of 1 then the
Gal(K/K) module El[p] is reducible. The arguments employed in [11] and [12] use this reducibility
to associate to E a p-adic representation of Gal(Q/Q) whose reduction mod p has dihedral image,
and is therefore modular (in the sense that it arises from a modular form). Consequently, the results
in [11] and [12] depend on the existence of a prime p > 5 dividing the square-free part of the degree
of some K-rational isogeny between E and one of its Galois conjugates. Moreover, their results
require E to satisfy certain local conditions at p.

In contrast, the arguments we employ in the present paper make use of the mod 3 and 3-
adic representations attached to a Q-curve. We thus obtain a theorem which does not require the
existence of a rational isogeny of large degree (but which does require local conditions at 3.) This
allows us, for instance, to prove the modularity of the Q-curve

E=FEapc:y* =23 +2(1+i)A2® + (B+iA)x (1.1)



discussed by Darmon in [4] in connection with the generalized Fermat equation
A*+ B*=CP. (1.2)

We will discuss in a later paper the consequences of the present result regarding solutions of (1.2).

In order to state the main theorems of this paper we introduce a few definitions. Let E/K be
a Q-curve, and for each o € Gal(Q/Q) let yi, : EY — E be a non-zero isogeny. Then we define
bp € H*(Gal(Q/Q), £1) by

bp(0,7) = sgn(pou g, )-

Denote by (bg)s the restriction of bg to H:2(Ga1(@3/(@3),:|:1). Furthermore, we associate to E
an {-adic Galois representation pg, of Gal(Q/Q) and a quadratic character ¥z 3 of Gal(Q/Q) (cf.
Proposition 2.3 and Definition 2.16).

Theorem. Suppose E/K is a Q-curve with potentially ordinary or multiplicative reduction at a
prime of K over 3, and such that (bg)s is trivial. Then E is modular.

Theorem. Suppose E/K is a Q-curve such that, for some (whence every) prime £ > 3, the projec-
tive representation Ppg ¢ associated to pg ¢ is unramified at 3. Then E is modular.

We can weaken the condition on pg ¢ in the second theorem above, at the expense of introducing
some technical conditions.

Denote by g3 « the unique class in H?(Gal(Q/Q), £1) ramified exactly at 3 and co. We prove
the following theorem.

Theorem. Suppose E/K is a Q-curve which acquires semistable reduction over a field tame-
ly ramified over Q3. Suppose further that (bg)s is trivial, and that the four classes (Yg.3,—1),
bEQ3.00(VE3, —1), 03.00(VE3,3), and bp(VE3,3) are all nontrivial in H?(Gal(Q/Q),£1). Finally,
suppose that deg i, can be chosen to be prime to 3 for all o € Gal(Q/Q). Then E is modular.

We remark that the Q-curve (1.1) satisfies the hypotheses of both the second and third theorems
above.

There are infinitely many Q-curves which are not proved to be modular by the theorems in this
paper. An instructive example is the curve

E:y? = 2?4 (—994708512v/5257\/73 — 414461880/5257 — 49735425601/73 — 1089620282520
+36601957546560v/5257v/73 + 5349307626327168+/5257 (1.3)

+55021459817878848V/73 + 32065347994985088

which is the specialization to a = 22 - 32 - 73 of the family of Q-curves described by Quer in [13, §6].
One checks that

e The reduction of E over 3 is potentially supersingular;
o Ppg ¢ is ramified at 3 (because E/Q(v/—2) does not have good reduction at 3);

e There is an isogeny of degree 3 between E and one of its Galois conjugates.



Thus, E does not satisfy the hypotheses of any of the theorems above. The 3-adic representation pg 3
is residually irreducible, but the image of the restriction pg 3|Gs does not have trivial centralizer. To
prove that such a representation is modular is beyond the reach of existing technology in deformation
theory, including the recent result of Breuil, Conrad, Diamond, and Taylor.

The modularity of a Q-curve E is equivalent to the modularity of any one of the pg¢’s. (The
modularity of the latter means that it is a representation associated to a modular form.) Most of
the present paper is devoted to proving the modularity of the pg 3’s. This is essentially done by
showing that under the hypotheses stated in the theorem these representations satisfy the main
theorems of either [2], [21], or [22].

The authors wish to thank Brian Conrad, Fred Diamond, Matthew Emerton, Jordi Quer, Ken
Ribet, Richard Taylor, and Andrew Wiles for helpful discussions.

Some Notation

If K is a quadratic extension of Q, we write yx for the quadratic character of Gal(Q/Q) associ-
ated to K. Any two quadratic characters x and x’ of Gal(Q/Q) give classes in H'(Gal(Q/Q), £1).
We write (x, x’) for their cup product. This is an element in H?(Gal(Q/Q), +1). If d is an element
of Q*/(Q*)?, we write (,d) to mean the cup product (x, XQ(\/E))'

We write elements in H2(Gal(Q/Q), +1) multiplicatively. Thus if ¢1,co € ﬁQ(Gal(@/Q),il),
then c¢jcs is the class such that (cico)(o,7) = ¢1(0,7)ea(o, 7) for all o, 7 € Gal(Q/Q).

We take an embedding v : Q < Qy to be fixed for each £, and denote the resulting decomposition
subgroup (resp. inertia subgroup) of Gal(Q/Q) by G (resp. I;). To be completely precise, we need
to define two such embeddings: one in order to define decomposition subgroups of Gal(Q/Q), and
the other in order to make sense of the scalar action of Q on f-adic vector spaces like Ty A ®z, Q.
Write ¢ : Q — Q, for the second embedding. We may think of v as fixed through the course of the
paper; on the other hand, we will occasionally want to vary .

We also take an embedding Q < C to be fixed. This determines a complex conjugation c.

We denote by G%, If, 111" the tame quotient of the decomposition group, the tame inertia group,
and the wild inertia group respectively.

For ¢ a rational prime, we denote by y, : Gal(Q/Q) — Zj the cyclotomic character, and by
Y : Gal(Q/Q) — F; the mod ¢ cyclotomic character. If p : G — GLg(F) is a representation
of a group G over a field F', we write Pp for the composition of p with the natural projection
GL3(F) — PGLy(F).

2 Q-curves and Galois representations

In this section we describe the ¢-adic and mod ¢ Galois representations attached to a Q-curve. We
also define Galois cohomology classes ¢, bg and 1) £,¢ which are naturally attached to a Q-curve E.
The definitions and results of this section, with the exception of Proposition 2.13, are not original
to this paper. The basic framework is laid down in Ribet’s foundational paper [16]. The interested
reader should also consult Quer’s preprint [13], which alerted us to the relevance of the class bg.

Let K be a number field Galois over Q.

Definition 2.1. A Q-curve E/K is an elliptic curve E/K, such that, for each o € Gal(Q/Q), there
exists a non-zero K-isogeny

e : B — E.



We may, and do, suppose that j, is the identity morphism for all o € Gal(Q/K).

Remark 2.2. Throughout this paper, it will be understood that all Q-curves are elliptic curves
without complex multiplication. This assumption is not restrictive from our point of view, since
Q-curves with complex multiplication are known to be modular [20].

Let ¢ be a rational prime, and define
(bE)g : Gal(l_(/K) i GL2(Z€)

to be the representation of Gal(K/K) on the f-adic Tate module T;F of E. (We have fixed an
isomorphism T, F = Z2.) In the following proposition we describe an extension of ¢ ¢ to a repre-
sentation of the whole group Gal(Q/Q).

Proposition 2.3. There exists a representation

pEe: Gg — Q) GL2(Qy)

such that Ppgslcar/x)y = Pore. This representation is odd, continuous, and ramified at only
finitely many primes.

Proof. For each non-zero isogeny p : E' — E, we write ! to mean
(1/deg u)u” € Hom(E', E) ®z Q,
where uV is the dual isogeny.
Let o and 7 be elements of Gal(Q/Q). Following [16, §6], we define
cp(0,7) = pop iy, € (Hom(E, E) ®z Q)" = Q"

Then cg determines a class in H%Galﬁ(@/@), Q*). Tate showed that H?(Gal(Q/Q),Q*) is trivial,
where Q* is acted on trivially by Gal(Q/Q); [18, Thm. 4]. It follows that there exists a continuous
map o : Gal(Q/Q) — Q* such that

cp(g,h) = a(g)a(h)a(gh)™ (2.4)
We can now define an action of Gal(Q/Q) on Q; ®z, T, E by
pra(9)(1® ) = " (g) ® pg(2?). (2.5)

It is clear from the above definition that Ppg ¢|ga i,/ k) = Pore. In particular, pg ¢lga i, k) and
¢, differ by the continuous character g g /k)- It follows that pg ¢ is continous and unramified
away from finitely many primes. It remains to show that pg ¢ is odd; that is, that det pg ¢(c) = —1,
where c is our fixed complex conjugation.

Define a map ex : Gal(Q/Q) — Q* by

ep(0) = a*(0)/(deg o),

and let eg ¢ be the composition of e with the chosen embedding Q — Q. That this map is a
character follows from the observation that
2 (deg ) (deg fir)

CE(UaT) = T



It also follows immediately from (2.5) that
det pp ¢ = eg}exg. (2.6)

Write p for pi.. We may write the complexification £/C as the quotient of C by a lattice A.
Then p is given by multiplication by a complex number z such that zA C A. The composition ppu°
is then given by 22¢, a positive real number. Since the degree of pu is (deg u)?, we conclude that

pp = deg p.
Therefore,
ep(c) = a?(c)/degp = cp(c,c)/degu = pu/degp = 1,
and

det pp(c) = epe(c)xe(c) = 1.

Since a?(c) = cg(c,¢) = pp® = degu, the proposition follows from the definition of €g, and
(2.6). O

Remark 2.4. It will occasionally be useful to work directly with the homomorphism

pee: Gal(Q/Q) — Q* GL2(Qy)

defined by (2.5). More precisely: suppose M is a number field such that pg, takes values in
M* GL2(Qy). Let A be the prime of M defined by ¢ : Q — Qg, and let A = Ay,... , A\ be the set of
all primes of M dividing ¢. Write pg ), for the composition of pg , with the map

M* GLy(Qq) — M, GLa(Qy).

So pg,» is just another name for pg .

Remark 2.5. While pg, and er depend on our choice of o, the projective representation Ppg ¢
depends only on the isomorphism class of E/K. Moreover, Ppg , is independent of the choice of ¢.

Remark 2.6. We can choose « in such a way that the image of g has 2-power order, by the following
argument. Let n = 2%m be the order of the image of eg, where m is odd. If m # 1, replace a by

)/2

aesfm_l ; this has the effect of replacing eg by €, whose image has 2-power order.

The reason for introducing the representations pg ¢ is found in the following proposition.

Proposition 2.7. A Q-curve E/K is modular if there exists a (normalized) eigenform f and a
prime £ such that
PEL = Py

Here, f is a holomorphic Hecke eigenform on the complex upper-half plane and py, is the Galois
representation ps, : Gal(Q/Q) — GL2(Qy) such that if f(z) = > o7 a(n)e(nz) (a(1l) = 1), then
trace ps ¢(Frob,) = a(p) for almost all primes p.



Proof. Suppose pg ¢ = py, for some eigenform f of level N. Then there exists some finite extension
L/K such that

DB

and the weight of f must be two, as can be seen by comparing determinants. Let pn, be the
representation of Gal(Q/Q) on TyJ1(N) ®z, Qr, where TpJ;(N) is the ¢-Tate module of J; (V). We
have

Gal(L/L) = PrelGali/L) (2.7)

PN.L = By, (2.8)

where the sum is over all the eigenforms g of level N and weight 2 (this can be deduced from [19,
Thm. 7.11]). From (2.7) and (2.8) it follows that ¢ ¢ is a Gal(L/L)-quotient of py ¢. It then follows
that Homp, (TyJ1(N), T¢ E) is non-zero. By a theorem of Faltings [7] we can conclude from this that
Homy (J1(N), E) is non-zero. O

We next define some cohomological invariants associated to E. Let bg € H?(Gal(Q/Q), £1) be
the composition of cg with the sign map Q* — +1. Then bg can be computed from eg. Consider
the exact sequence in Galois cohomology

Hom(Gal(Q/Q). Z*) — Hom(Gal(Q/Q). Z°) - H*(Gal(Q/Q). £1) (2.9)
arising from the short exact sequence of Galois modules (with trivial action)
0—+1 -7 7" —0.

Proposition 2.8. by = d(eg).

Proof. Let x : Gal(Q/Q) — Z* be a character, and for each o € Gal(Q/Q) let ¥(c) be a square
root of x(o). Then §(x) is defined by

To compute d(eg), we may choose

€n(0) = a(0)/v/deg o

where the V sign signifies positive square root. We now have

a(o)a(r) Vdeg igr = cplo,7)/\/c(0,7) = bg(o,T)
olor) Vg de, POV RO D =teln )

d(eg)(o,T) =

O

Remark 2.9. Note that the class cg is the inflation of a class in H?(Gal(K/Q),+1). Quer [13, Th.
2.4] has proven the converse: if E/K’ is a Q-curve over some extension of K, and if ¢g is the inflation
of a class in H?(Gal(K/Q), £1), then there exists a Q-curve Ey/K such Ey x i K’ is geometrically
isogenous to E.

We will need the fact that the representation pg ¢ can also be viewed as the ¢-adic representation
attached to a certain abelian variety over Q.



Proposition 2.10. Let E/K be a Q-curve, and let o : Gal(Q/Q) — Q* be a 1-cochain with
coboundary cg, as in (2.4). Define ppy as in (2.5). Let M be the number field generated by
the a(g) for all g € Gal(Q/Q).

There exists an abelian variety A, /Q satisfying the following conditions.
o There exists an injection M — End(A./Q) ®z Q;

o Let A\y,..., N be the primes of M lying over £. Then the rational Tate module V; A, decom-
poses as

and Vy, A, is isomorphic, as My,[Gal(Q/Q)]-module, to pg x,. In particular, VxAa = pgo.

Proof. The desired A,, is the one constructed by Ribet in [16, §6]. We briefly recall this construction.
First, enlarge K if necessary so that « is the inflation of a function on Gal(K/Q). Let R be the
algebra generated by elements A, for each o € Gal(K/Q), with the multiplication table

AorCE(0,T) = Ao Ar.
Then R acts on the abelian variety
Resg ExqK= P E°
o€Cal(K/Q)

by the rule
Ao(P) = i3 (P) (2.10)

for any P € E™°(K). This action descends to an action of R on Resg E.
Our choice of a defines a homomorphism w : R — M. Now define

A, = Reng@)RM

in the category of abelian varieties up to isogeny. To be more precise, let 7 € R be the projector
onto M; then A, is the image of mm, where m is an integer large enough to make mm an actual
endomorphism (not only a rational endomorphism) of Resg E.

Then A, admits the desired injection M — End(A,)®zQ, and the rational \;-adic Tate module
Vi, Aq is a 2-dimensional vector space over M), (see [15, Th. 2.1.1]); one then has from (2.10) that
Gal(Q/Q) acts on Vy, A, via pg.,- O

Remark 2.11. We emphasize that the construction of A, is independent of 4.

Proposition 2.12. Let ¢ > 2. Suppose { does not divide deg i, for any g € Gal(Q/Q), and suppose
a s chosen so that eg has 2-power order (Remark 2.6.) Let A = A1,...,\; be the set of primes of
M dividing £.

Then the full ring of integers of M ®zZy = ®; M), acts on TyA., and the (-divisible group Ty A,
breaks up as a direct sum of {-divisible groups

P 1 Aa (2.11)

where the \; range over the primes of M dividing £. Moreover, Tx, A is a free OMM—module of
rank 2. /



Proof. Let Z[a] be the ring generated by the a(g). Then it follows by the definition of A, that
Z¢ ®z Z[o] acts on Ty A,. Since deg ug is an f-adic unit, and since a(g)/+/deg pq is a 2-power root
of unity, we can obtain Z, ®z Z[a] by successively adjoining square roots of ¢-adic units to Zg; it
follows that Zy ®z Z[a] is étale over Zy, and therefore

Zy 7, Z[Oz] = @OM*I

The decomposition of Ty A, now follows immediately from the decomposition (2.11). O

We now want to define a mod ¢ representation attached to E. We begin with a general result
about Galois representations.

Proposition 2.13. Let L be a totally ramified extension of Q¢ and F' an unramified extension
of L. Let p be a continuous representation of Gal(Q/Q) (or any compact group) with image in
F*GL2(Qy). Then p is conjugate in GLy(F) to a representation with image in O GLa(OL).

Proof. Let S, T be a basis for F®2 with respect to which the image of p lies in F'* GL2(Qy), and let

Ly be the lattice OpS + OpT' generated by S,T. There are only finitely many images of £y under
the action of the compact group Gal(Q/Q). Each such image £; is of the form

2(Op(aS + bT) + Op(cS + dT))

with z € F* and a,b,c,d € Q. Let L be the lattice generated by all the £;; then L is preserved
by the action of p(Gal(Q/Q)). Because F'/L is unramified, we may write = yu, with y € L* and
u € OF. So each L£; can be rewritten as

yY(Op(aS +bT) + Op(cS +dT)).
Let £} be the lattice in L? defined by
L, =y(Or(aS +bT) + Or(cS + dT)),
and let
L= 0p(aS + BT) + Op(yS + 6T),

with a, 8,7,0 € L, be the lattice generated by all the £;. Then £ = L' ®o, Op. Let 8" = aS+ T
and T = vS + 6T, and write

p: Gal(Q/Q) — GLy(F)

with respect to the basis elements S’ and T".

Since p(Gal(Q/Q)) preserves the lattice O S’ +OrT’, we have p(Gal(Q/Q)) € GL2(OF). Since
S'.T" lie in LS + LT, we have p(Gal(Q/Q)) € F*GLo(L). Combining these two facts yields the
desired result. O

The representation pg ¢ produced in Proposition 2.3 takes values in M3 GL2(Qy), where M) is
the extension of Q, generated by the values of ((a(c)) for all o € Gal(Q/Q). Recall from the proof
of Proposition 2.3 that €g ¢(0) = a?(0)/deg 1, is a Dirichlet character. So M), is contained in an
extension generated by square roots and roots of unity; it is thus an abelian extension of Q. It
follows from local class field theory that there exists an abelian extension F' of Q; containing M
and such that F' also contains a subextension L totally ramified over QQ; over which F' is unramified.
Then F and L satisfy the conditions of Proposition 2.13, so there exists a basis of F®2 with respect
to which pp ¢ takes images in O} GL2(Op).



Definition 2.14. We denote by

pE. : Gal(Q/Q) — Fy GLa(Fy).

the representation obtained by choosing a basis of F®? as above and reducing the resulting repre-
sentation

pEyg . Gal(@/@) — O} GLQ(OL)

modulo the maximal ideal mgr of Or. The }educed representation pg ¢ is then well defined up to
semisimplification and conjugation by GLy(Fy).

We observe that
det pg.e = €peXe

where the overlines indicate the reductions of the f-adic characters to mod-£ characters. Let § be
the reduction mod ¢ of the coboundary map § in (2.9).

From this point on, we assume that £ > 2.
Proposition 2.15. bp = 0(ég0).
Proof. Immediate from Proposition 2.8. O

When R is a domain we abuse notation and denote by ‘det’ the determinant character from
PGL2(R) to R*/(R*)2.

Definition 2.16. Let £ be an odd prime. Then we define a quadratic Dirichlet character

G = det Ppg., : Gal(Q/Q) — F}/(F})? = £1.

The character 1 £,¢, like the cohomology class bg, depends only on the isomorphism class of E/K.

Remark 2.17. The invariants bg and 1/_1E7g are easy to compute in practice. For instance, suppose K
is a quadratic extension of Q and E/K is a Q-curve. Let 7 be the non-trivial element of Gal(K/Q),
and let n be the integer such that pu™ is multiplication by n. Then

0 if n positive
bg = . .
xx if n negative.

Suppose, for simplicity, that ¢ does not divide n. Let n : Gal(Q/Q) — 1 be the quadratic character
ramified only at £. Then

- n e (Q;)?
Wv“{m n ¢ (QF)%



3 The potentially supersingular, residually irreducible case

Theorem 3.1. Suppose K is tamely ramified over 3. Let E/K be a Q-curve such that
o E has good supersingular reduction over K, for one (whence every) prime v of K above 3;
e bp € H*(Gal(Q/Q),£1) has trivial projection to H*(G3, +1);

e Either Ppg (|G is unramified for some (whence every) £ # 3, or deg p, is not a multiple of 3
for any o € Gal(Q/Q);

e The restriction of pr 3 to Gal(Q/Q[v/=3]) is absolutely irreducible.
Then E is modular.

Proof. The basic tool will be the theorem of Wiles and Taylor-Wiles [24, 23], as refined by Dia-
mond [6] and by Conrad, Diamond, and Taylor [2]. In particular, our argument follows closely the
proof of Theorem 7.2.1 of [2].

We have from Proposition 2.3 that pg 3 is an odd, continuous representation unramified away
from finitely many primes.

Write G, I,, for the absolute Galois group and the inertia group of K,,. Write I3’ for the subgroup
of wild inertia in I5.

Lemma 3.2. pg 3 is modular.

Proof. We follow closely the usual argument that the 3-division points of an elliptic curve over Q
form a modular representation-see [8, I.1] for more details.

The image of pg 3 lies in F5 GLy(F3). We suppose without loss of generality that the chosen
extension of the 3-adic valuation of Q to Q[v/—2] is given by the prime (1 + v/—2).

We can define a homomorphism

L ]F; GLQ(F?,) — Moo GLQ(Z[\/__2D7

where [, denotes the group of roots of unity, as follows: set
-1 1] | -11
‘1=t o7 [-1 0]

L= =]

and, for each scalar a € F3, define ¢(a) to be the preimage, under the chosen embedding Q — Qs,
of the Teichmiiller lift of a.

Let F' be a number field such that the image of ¢ o pg g lies in GLo(F'), and let w be the chosen
extension of the 3-adic valuation to F'. Then the composition of ¢ o pg 3 with reduction mod w is
PE.3-

The composition topp 3 is a continuous complex representation of Gal(Q/Q), odd and irreducible
because pg 3 is odd and absolutely irreducible. It follows from the theorem of Langlands and Tunnell
that there exists a weight 1 eigenform, of some level and Dirichlet character,

o0
g = Z bnqn
n=1

10



such that
b, = Tr(v0 pg 3(Froby,))

for almost all p. Let I’ be a number field containing all the b,,. If E is a weight 1 Eisenstein series
whose Fourier expansion is congruent to 1 mod 3, then gFE is a weight 2 cusp form, of some level and
Dirichlet character, such that T, (gFE) is congruent mod w to b,gFE, for some prime w’ of F’ above
w. It then follows from an argument of Deligne and Serre [5, §6.10] that there exists an eigenform

o0
f = Z anqn
n=1

of weight 2 with a,, € F’ and a,, = b, mod w for all n. In particular, a, = Tr(pg 3(Frob,)) for
almost all p. So pg 3 is the mod w’ representation associated to f. O

We will show that pg 3 satisfies the conditions of Theorem 7.1.1 of [2].
Recall that, for any ¢,

(ﬁE}g : Gal(l_(/K) — GLQ(Z[)

is the Galois representation attached to E/K as elliptic curve, and that P¢g and Ppg s are iso-
morphic projective representations of Gal(K /K), by Proposition 2.3.

The representation pg ¢ produced by Proposition 2.3 depends on a choice of « : Gal(@/@) — Q*,
a cochain whose coboundary is cg. We begin by observing that a can be chosen so as to impart to
pE,¢ some useful arithmetic properties.

Lemma 3.3. There exists a choice of a: Gg — Q* such that
o for all ¢ # 3, the representation pg ¢|Gs is tamely ramified;
o forall £, det ppo|G3 = x¢|G3;

e cp has 2-power order.

Proof. Since K is tamely ramified, cg|G3 is the inflation of an element of
H?(G5, Q).
The cohomology group
H?(G3,Q%)
is trival, as can be seen by placing G} in the exact sequence
0— It — Gy — G3/I3

and computing the initial terms of the Hochschild-Serre spectral sequence [18, §6.1]. Therefore,
there is a cochain a3 : G3 — Q* such that

(g, h) = as(g)as(h)as(gh) ™

11



for all g, h € G3, and such that a3 vanishes on the wild inertia group I3". Now let o’ : Gal(Q/Q) —
Q* be any cochain whose coboundary is cg. Then (0/|G3)04§1 is a character 03 of G3. Let 6 be a
character of Gal(Q/Q) whose restriction to Gs is f3. Then define

a=a67t.

So the coboundary of « is ¢g, and a|G3 = as; in particular, a vanishes on wild inertia. Since E
obtains good reduction after a tame extension of K, we know ¢g ¢ is tamely ramified at 3 for all
¢ # 3. It follows from the definition (2.5) that pg ¢|G3 is tamely ramified for all £ # 3.

By Proposition 2.8 and (2.6), the assumption that bg|Gj is trivial means that

€G3 = x*

for some character x : G3 — Q. The character eg, is tamely ramified for any ¢ # 3, because
pE.0|Gs is tamely ramified; it follows that eg, whence also x, is tamely ramified. Replacing a by
ax now yields the first two desired conditions. In particular, eg|Gs is trivial. So we can modify «
by any power of e without affecting the first two conditions. Now we can force € to have 2-power
order by the argument of Remark 2.4. U

For the rest of the proof, it is understood that « is chosen so that pg ¢|G3 satisfies the conditions
in Lemma 3.3. We now take as fixed some ¢ > 3. From Proposition 2.10, we have an abelian variety
A, /Q such that

PE¢ = VAAa

where A|€ is the prime of M (the number field generated by the a(g)) determined by ¢.

Denote by L the ramified quadratic extension of Q3, by G C G3 the absolute Galois group of
L, and by I, the inertia subgroup of Gr. Let 9 be the ramified quadratic character of G, and
write A% /L for the twist of A, xg L by 1.

From this point on, we take as fixed some ¢ > 3.

Lemma 3.4. Fither
e pp|Gr and Ppg¢|Gs are unramified, and A /L has good reduction; or

e pp|GL ® is unramified, and AY /L has good reduction.

Proof. By Lemma 3.3, wild inertia is killed by pg¢. Let 7 be a topological generator of I, and
define m = pg ¢(7). Since m has finite order, it is diagonalizable.

Note that 7 and 72 are conjugate in G3. So m and m? are conjugate in Q}‘ GL2(Qy). Since
det(m) = x¢(7) = 1, we conclude that the eigenvalues of m must be either (1,1), (=1, —1) or (¢, —7).
In the former two cases, we see that pg |G is unramified. In the latter case, (pp¢|GL) ® ¥ is
unramified.

Suppose the eigenvalues of m are (1,1) or (—1, —1); equivalently, Ppg (|G is unramified. Recall
from Remark 2.5 that Ppg ¢ does not depend on the choice of ¢. So pg ,(7) is scalar for any ¢, whence
I, acts trivially on V), A, for any prime \; of M dividing ¢. It then follows from Proposition 2.10
that Iy, acts trivially on V;A,, and so A, /L has good reduction.

Likewise, if the eigenvalues of m are (i, —i), then pg ,(7?) = —1 for all i, so pg \,
unramified for all 4, and A% /L has good reduction.

G ®v is

O

12



Suppose Ppg ¢|Gs is unramified. Then pg |Gy is unramified. Since det pg¢|l3 is trivial, the
image pg ¢(I3) is either trivial or £1. So, in fact, either A,/Qs or its ramified quadratic twist has
good reduction over Q. Therefore, either pg 3|Gs or its ramified quadratic twist is associated to a
3-divisible group, and F is modular by [6, Theorem 5.3].

We therefore assume from now on that (pg|Gr) ® 9 is unramified, so that A% /L has good
reduction. In this case, by the hypotheses of our theorem, 3 does not divide degp, for any g €

Gal(Q/Q).

In this case, AY/L has good reduction. Therefore, if ' is a ramified quadratic character of
Gal(Q/Q[v=3]), the twist A¥" /Q[v/=3] has good reduction at the prime over 3.

Let 0 be the prime of M determined by the chosen embedding M < Q3. Then, by Proposi-
tion 2.12, we can define a finite flat group scheme A, [6] as the 3-torsion (equivalently, the #-torsion)
of the 3-divisible group TyAY' /Q[v/—3]. Because pE,3 is absolutely irreducible when restricted to

Gal(Q/Q[v/—3]), and because
prs @Y 2 VyAY
we have an isomorphism of (Oyy,/0)[Gal(Q/Q[v/—3])]-modules
prs @y = A0,
Restricting this isomorphism to G, yields an isomorphism of (Oyy,/0)[G]-modules
peslGrL @ = AL[H).

In particular, (pg,3|GL) ® 9 is flat. Recall that a representation of G, with finite image is said
to be flat if the attached finite flat group scheme over L is the generic fiber of a finite flat group
scheme over Oy, In the case, the finite flat group scheme in question is (A%)[6].

Lemma 3.5. The centralizer of pr,3(Gs) consists entirely of scalars.

Proof. The result follows from a theorem of Conrad [1, Theorem 4.2.1]. As above, the relevant finite
flat group scheme over Of, is G = (A%)[#]. To apply Conrad’s theorem, we need only to verify that
G is connected and has connected Cartier dual, and that G satisfies a certain exactness condition
on Dieudonné modules. The connectedness of G and its dual follow from the fact that G is a closed
subgroup scheme of the 3-torsion subscheme of the supersingular abelian variety A¥. The exactness
condition is automatically satisfied because G is the 3-torsion in the 3-divisible group TpAY. O

Let F' be a finite extension of ;. Recall that an /-adic representation p of the Galois group of
F' is said to be Barsotti-Tate if it arises from the generic fiber of an /-divisible group, and to be
potentially Barsotti- Tate if some restriction of p to a finite-index subgroup of Gal(F/F) is Barsotti-
Tate. (See [2, §1.1].) The representation pg 3|Gs is potentially Barsotti-Tate, because it is realized
on the #-adic Tate module of A, which has potentially good reduction. From now on, we will abuse
notation and refer to the local representation pg 3|Gs simply as pg 3.

Let V be a d-dimensional vector space over a finite extension F’ of Q,. One can associate to
any potentially Barsotti-Tate representation p : Gal(F'/F) — GL(V) a continuous representation

WD(p) : Wg — GL(D)

of the Weil group of F on a Qg-vector space D of dimension d, as in Conrad, Diamond, and Taylor [2,
Appendix BJ. In the lemma that follows, we will freely use definitions and facts from that paper,
especially §1.2, §2.3, and Appendix B.
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Lemma 3.6. The type of WD(pg,3) is strongly acceptable for pg 3.

Proof. We take F' = M.

Let 7 be the restriction of WD(pg 3) to Is. It follows from Proposition 2.10 and [2, Prop. B.4.2]
that pg 3 is Barsotti-Tate over L’ for any finite extension L’/Q, such that 7 is trivial. Our choice
of o in Lemma 3.3 guarantees that det pg s = x3 and detpg 3z = x3. It follows that pg3 is a
deformation of pg 3 of type 7, according to the definition in [2, §1.2].

We know that (pg3|Gr) ® v is Barsotti-Tate, because it is associated to the 3-divisible group
T@Az. So

WD((prs|Gr) @ ¢) = WD(pp,3|Gr) @ WD(¥)

is unramified, so 7|I, = WD()|Iz. We know that WD(3)) = ¢|Wr @ar, Q¢ ([2, §B.2]); that is,
W D()|Ig, is a non-trivial quadratic character of Ir,. We also know that the determinant of 7 is
trivial on I3, because the WD functor commutes with exterior products, and the determinant of
pE.3 is the cyclotomic character xs; the character WD(x3) is shown to be unramified in [2, §B.2].
We conclude that

1%

T O B 03,

where @, : I — Q% is the Teichmiiller lift of wo, the fundamental tame character of level 2.
It now follows from Corollary 2.3.2 of [2] that 7 is acceptable for pg 3.
We have by [1, Theorem 4.2.1] that either

o (pp3|l3) ®r, F3 = wl* @ wi™, where m = 1 or 5;

o m

o ppslls = [ XS’ ;g }, where (m,n) = (0,1) or (1,0) and * is peu ramifié.

In either case, it follows from the criterion of [2, §1.2] that 7 is strongly acceptable for pg 3. O

Now, combining Lemmas 3.5 and 3.6, we can apply [2, Theorem 7.1.1] and conclude that pg 3,
whence F, is modular. O

4 More on residual representations

In [24], Wiles deals with the case where the 3-adic representation associated to an elliptic curve C' is
residually reducible by executing a “3-5 switch”. That is, he replaces C' with another elliptic curve
C’, such that the mod 3 representation attached to C’ is absolutely irreducible when restricted to
Gal(Q/Q[v/—3]), and such that C' and C’ have isomorphic mod 5 Galois representations. Aside from
a finite set of exceptions, the common mod 5 Galois representation is absolutely irreducible when
restricted to Gal(Q/Q[v/5]). This coincidence of mod 5 Galois representations is enough to show
that modularity of C’ is equivalent to modularity of C, and the modularity of C’ follows from the
condition on the mod 3 Galois representation of C’. This argument relies on the fact that, given an
elliptic curve C, there are plenty of elliptic curves C’ whose mod 5 representations are isomorphic
to that of C'. This fact, in turn, depends on the fact that the modular curve X (5)/Q is isomorphic
to P1/Q. In general, the modular curve parametrizing Q-curves with full level 5 structure will not
have genus 0, rendering a 3-5 switch impossible.

We are left with two methods of treating the residually reducible cases. One method is to
generalize the lifting theorems of Wiles, Taylor Wiles, et. al. to the residually reducible situation.
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Several theorems in this direction have been proven by Andrew Wiles and the second author [21],[22]
in the case where the reduction of E is ordinary or multiplicative. We will apply those theorems to
the present situation in Theorem 5.1 below.

Another method is to exploit the fact that, in contrast with the case of elliptic curves over Q,
there are often cohomological obstructions to the reducibility of pg . These obstructions can be
computed explicitly in terms of the invariants described in section 2. We begin with a general fact
about reducible projective mod ¢ Galois representations.

Proposition 4.1. Let ¢ be an odd prime, and let
Pp : Gal(Q/Q) — PGLy(FFy)

be a projective mod ¢ Galois representation. Let x : Gal(@/@l — +1 be a quadratic Dirichlet
character (possibly trivial). Let G be the subgroup of matrices in Fy; GLy(F,) having determinant 1,
and let v € H?*(PGLy(Fy), +1) be the class of the extension

1—+1— G — PGLy(F) — 1.
Let v = det Pp. Finally, suppose that either

(a) the image of Pp lies in the normalizer N of a Cartan subgroup C of PGLy(Fy), and the
quadratic character Gal(Q/Q) — N/C is equal to x, or

(b) the image of Pp lies in a Borel subgroup of PGLa(Fy), and x is trivial.
Then either (1, x¥) or Pp*~y(b, x1)(x, X) is the trivial class in H*(Gal(Q/Q), £1).

Proof. First, suppose the image of Pp lies in the normalizer N of a Cartan subgroup C of PGLy ().
Write N for the group N/C?. Let m be the natural projection of N onto N. Then N 22 (Z/27)%?; a
choice of isomorphism can be fixed by requiring that the first copy of Z/2Z be 7(C) and the second
be the kernel of det : N — F}/(F;)?. We then have

ToPp=1 @ x: Gal(Q/Q) — (Z/2Z)%2. (4.12)
We consider two cases.
Case 1: |C?] is even. Then 7 factors as
N —-N—N,
where N is a dihedral group of order 8 whose cyclic subgroup of order 4 is the preimage of

7(C). So m o Pp lifts to a homomorphism from Gal(Q/Q) to N, which means that d(r o Pp)
vanishes in the cohomology sequence

H'(Gal(Q/Q), N) — H'(Gal(Q/Q), N) % H*(Gal(Q/Q), £1).
The isomorphism N = (Z/27)%? then tells us that d’(¢) @ x) vanishes in

HY(Gal(Q/Q), Da) — H'(Gal(Q/Q), (Z/22)%%) % H*(Gal(Q/Q), £1),

where Dy is a dihedral group of order 8 whose cyclic subgroup of order 4 is the preimage
of the first copy of (Z/2Z). It is well known that, for any two characters X1, x2, we have
d'(x1 @ x2) = (x1,x1x2) [10, Prop. 3.10]. So (¢, x3)) = 0, as desired.
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Case 2: |C?| is odd.
In this case, the inflation map
7 H*(N,+1) — H*(N,+1) (4.13)

is an isomorphism. The subgroup of N generated by an involution in C and any element
of N\C is isomorphic to (Z/2Z)%®?; in fact, any such subgroup is the image of an injection
s: N — N such that 7 o s is the identity. Write ¢ for the inclusion of N in PGL; (Fy). Let M
be the subgroup of G lying over s(IN). Then s*1*y is the class ¢ € H?(N, 1) corresponding
to the extension

1-4+1—>M—> N — 1.

It follows from the fact that a non-scalar element of G whose square is a scalar has exact order
4 that M is the quaternion group of order 8. Now, from (4.12) and [10, Th. 3.11], one gets

I[Dp*ﬂ'*c = (77[; &) X)*C = (1/;’ Xq/;)(Xa X)7

The isomorphism (4.13) implies that 7*s* acts as the identity on H?(N, £1). In particular, we
have 7*c = 1*y. Pulling back both of these by Pp (or, more precisely, by the homomorphism
f: Gal(Q/Q) — N such that ¢ o f =Pp) one obtains the equality

Pp*~y = Pp*r*c.

which yields the desired result.

The only case remaining is that where the image of Pp lies in a Borel subgroup but not necessarily
in the normalizer of a Cartan. In this case, the semisimplification of Pp has image lying in a split
Cartan subgroup, and we are in the case already discussed. O

We now apply Proposition 4.1 to the case of mod /¢ representations attached to Q-curves.

Proposition 4.2. Let E/K be a Q-curve and { an odd prime. Let x : Gal(Q/Q) — £1 be a
quadratic Dirichlet character (possibly trivial). Let qooo € H?*(Gal(Q/Q),=+1) be the Brauer class
of the quaternion algebra ramified only at £ and co. Suppose that either

(i) the image of Ppp, lies in the normalizer N of a Cartan subgroup C of PGL2(F,), and the
quadratic character Gal(Q/Q) — N/C is equal to x, or

(ii) the image of Ppg ¢ lies in a Borel subgroup of PGLa(Fy), and x is trivial.
Then either (Vi .o, XWVE.L) 07 bEqe.co(VE.e XVE.) (X, X) is the trivial class in H?(Gal(Q/Q), +1).
Proof. The proposition is an immediate corollary of Proposition 4.1. The only thing to check is that
Ppk .y = bEQe 0o

Let G be as in the statement of Proposition 4.1. For each o € Gal(Q/Q) let d, € F} be a square root
of det(pg ¢(c)). Then g, = d,1pg . is a set-theoretic lift of Ppr ¢ to G. To this lift one associates
a 2-cocycle ¢ given by the rule

(0,7) = 9ogrg,r = d, ' d  dor.
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But this is just a 2-cocycle representing the class §(det pg ¢), where 0 is defined as in Proposition 2.15.
From that proposition and from the fact that d(Y;) = qr,c0, one has

d(det ppe) = bEd(Xe) = bEGE,00-

The desired result follows. O

Proposition 4.2 guarantees in many cases that the 3-adic representation attached to a Q-curve
is residually absolutely irreducible, even when restricted to a quadratic field.

5 The main theorems

We are now ready to state and prove the main results of the paper. Recall that (bg)s denotes the
restriction of bp to H?(G3, £1).

Theorem 5.1. Suppose E/K is a Q-curve with potentially ordinary or multiplicative reduction at
some (whence every) prime of K over 3, and such that (bg)s is trivial. Then E is modular.

Proof. First, suppose that pg 3 is absolutely reducible when restricted to Gal(Q/Q[v/—3]). For this
case we appeal to the main theorems of [21] and [22]. In order for these theorems to apply we need
only verify the following properties of the representation pg 3:

(i) pE,3 is continuous, irreducible, and odd;
(ii) det pp 3(Frob,) = 9 (£)¢*~1 for some finite character ¢, some integer k > 2, and almost all
primes /;

(i) pp.3la, = [ 2 ;‘2 } with ¢z, finite;

(iv) the reductions ¢, and ¢, are distinct;
(v) pE,s is modular (in the sense of Lemma 3.2) if it is absolutely irreducible.

Properties (i) and (ii) follow from Proposition 2.3 and (2.6). (Here we have again used that E does
not have complex multiplication, this time to ensure that ¢ 3, and hence pg 3, is irreducible.) We
next prove that property (iii) holds.

From the possibilities for the reduction type of E it follows that the restriction of ¢ 3 to a
decomposition group G, at a prime v|3 of K satisfies

0
¢E,3|G,U%[ ! 9*2}

with 0 having finite order on inertia. We claim that the same is true of pg 3|g,. Suppose otherwise.
From the fact that p E,3|Gal( &/K) 1s isomorphic to a twist of ¢p 3 it follows that there is a quadratic
extension, say L, of Qg such that the restriction of pg 3 to Gal(L/L) is the direct sum of two
characters that are interchanged by the action of Gal(L/Q3). Since the product of these two
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characters, being the restriction of det pg 3, is infinitely ramified, so must be one, and hence both,
of these characters. But this contradicts the above description of ¢ 3|q,. Write

*
pE,3|G3 = [ ¢1 :| .

?2

We next prove that the reductions gz_Sl and gz_Sg are distinct on G3; in other words, that pg 3
has property (iv). To see this we note that if ¢; and ¢, were not distinct on Gy then det pg 3|c,
would be a square. Suppose this were so. Then from detpg s = €xs (see (2.6)) we conclude
that €3)c, = ¢?X3|a, for some character ¢ of Gz. It then follows from Proposition 2.15 that the
restriction of by to G equals the restriction of d(x3) to Gs. But the latter is non-trivial, hence so
is the former, contradicting hypothesis (ii) of the theorem.

It remains to prove that property (v) holds. If pg 3 is absolutely irreducible, then it must be
dihedral and in fact induced from a character of Gal(Q/Q(v/—3)) since we are assuming that pg 3
is absolutely reducible on Gal(Q/Q(v/—3)). It is a classical result that such representations are
modular.

We have shown that pg 3 has properties (i)-(v) listed above. As mentioned before, the theorem
follows. _
Now, suppose that pg 3 is absolutely irreducible when restricted to Gal(Q/Q[v/—3]). By the

argument above,
~ p1 *
PE,3|G3 = |: ¢2 3

where ¢y has finite image on inertia and ¢1|r, = 7x3|r;, with 7 a finite-order character. After
twisting pp 3 by a finite-order character of Gg, we may assume ¢o is unramified. We have already
shown above that ¢; # ¢2. Finally, pg s is modular by Lemma 3.2 (which does not use the
assumption of supersingular reduction in Theorem 3.1.) It now follows from Theorem 5.3 of [6] that
PE,3, whence E, is modular. O

Theorem 5.2. Suppose E/K is a Q-curve such that, for some (whence every) prime £ > 3, the
projective representation Ppg o associated to pg e is unramified at 3. Then E is modular.

Proof. If E has potentially ordinary or multiplicative reduction, the modularity follows from The-
orem 5.1. We therefore assume that the reduction of F is potentially supersingular.

We have that pg ¢|I3 is a character 6. So
6% = detpE,g|13 = 6E|13.

Choose «a such that eg has 2-power order; then eg, whence also pg ¢, is tamely ramified. We may
choose K to be a compositum of quadratic fields [13, Cor. 2.5], in which case it follows that E
obtains good reduction over a tamely ramified extension of Qs.

Let 7 be a topological generator of tame inertia, and let m = pg ¢(7); then m is a scalar which
is conjugate to its cube, so m = £1. In either case,

detm =eg(r) =1,

so €g is unramified at 3, and (bg)s = d(eg|G3) is trivial.
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From Proposition 2.10, the action of 7 on Ty A, is either 1 or —1. Thus, after modifying a by a
quadratic character, we may assume that A, has good supersingular reduction at 3.

Therefore, A,[3] extends to a finite flat group scheme over R = W (F3), to which we can apply
Raynaud’s classification [14]. Let F be the fraction field of R. Let H be a Jordan-Hélder quotient

of A,[3]r. Then we have from [14, Cor. 3.4.4] that the action of 7 on H(F') has eigenvalues

U (1) (1 =0,...,m—1)

where v, is a fundamental tame character of I3, and n is an integer whose base-3 expansion contains
only 0’s and 1’s. In particular, 7# acts trivially on H(F) if and only if 72 acts trivially.

Suppose 72 acts trivially on H(F). Then H(F) is a 1-dimensional F3-vector space, and H is
isomorphic to either (Z/3Z)k or (us) k. It then follows from [14, Cor. 3.3.6] that A,[3]/R has either
7,/3Z or usz as a subquotient, which contradicts the supersingularity of A,.

We may therefore suppose that 74 acts non-trivially on the F-points of every subquotient of
Ao[3]. In particular, pg 3(7*) does not have 1 as an eigenvalue.

Suppose the restriction of pg 3 to Gal(Q/Q[v/=3]) is absolutely reducible. As in § 3, let L be
the ramified quadratic extension of Q3. Then

(PE3L)™ = 01 © @2

for some characters ¢1,¢s : It — 3. Since (PE,3|IL) extends to a representation of G, we have
that {¢1, 92} = {93, ¢3}. The fact that pg3|Q[v/—3] is absolutely reducible means that in fact
#? = ¢; for i = 1,2; in other words, ¢ and ¢, are quadratic characters. In particular, pg 3(7%) is
unipotent, which is a contradiction.

To sum up: we have shown that under the hypotheses of the theorem, we know that

e F obtains good supersingular reduction over a tame extension of Qs;

e (bg)s=1; and

e pr3|Gal(Q/Q[v/=3]) is absolutely irreducible.

It now follows from Theorem 3.1 that F is modular. O

Theorem 5.3. Suppose E/K is a Q-curve which acquires semistable reduction over a field tame-
ly ramified over Qs. Suppose further that (bg)s is trivial, and that the four classes (&E,&—l),
bEG3.00(VE3, —1), 03.00(VE3,3), and bp(VE 3,3) are all nontrivial in H?(Gal(Q/Q),£1). Finally,
suppose that deg i, can be chosen to be prime to 3 for all o € Gal(Q/Q). Then E is modular.

Proof. We may assume that the reduction of E over 3 is potentially supersingular; otherwise, F is
modular by Theorem 5.1.

It follows from Proposition 4.2 that the restriction of pg 3 to Gal(Q/Q[v/—3]) is absolutely
irreducible. It then follows from Theorem 3.1 that E is modular. O
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