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Abstract

A Q-curve is an elliptic curve over a number field K which is geometrically isogenous to
each of its Galois conjugates. Ribet [16] asked whether every Q-curve is modular, and showed
that a positive answer would follow from Serre’s conjecture on mod p Galois representations.
We answer Ribet’s question in the affirmative, subject to certain local conditions at 3.

MSC classification: 11G18 (14G35,14H52)

1 Introduction

Let K be a number field, Galois over Q. A Q-curve over K is an elliptic curve E/K which is
isogenous over K to each of its Galois conjugates. Our interest in Q-curves is motivated by the
following theorem of Ribet.

Theorem ([16, §5]). Suppose E/Q̄ is an elliptic curve that is also a quotient of J1(N)/Q̄. Then
E is a Q-curve over some number field.

A Q-curve which is a quotient of J1(N)/Q̄ is called modular; Ribet has conjectured that in fact
every Q-curve is modular. The modularity of various Q-curves has been verified by Roberts and
Washington [17], by Hasegawa, Hashimoto, and Momose [11], and by Hida [12]. In this article we
establish the modularity of a large class of Q-curves, including infinitely many curves not treated
in the aforementioned papers (but not including every curve treated there.)

Suppose E/K is a Q-curve, and Eσ is a Galois conjugate of E. Then there exists a non-zero
K-isogeny µ : Eσ → E, and so if p is a prime dividing the square-free part of the degree of µ then the
Gal(K̄/K) module E[p] is reducible. The arguments employed in [11] and [12] use this reducibility
to associate to E a p-adic representation of Gal(Q̄/Q) whose reduction mod p has dihedral image,
and is therefore modular (in the sense that it arises from a modular form). Consequently, the results
in [11] and [12] depend on the existence of a prime p ≥ 5 dividing the square-free part of the degree
of some K-rational isogeny between E and one of its Galois conjugates. Moreover, their results
require E to satisfy certain local conditions at p.

In contrast, the arguments we employ in the present paper make use of the mod 3 and 3-
adic representations attached to a Q-curve. We thus obtain a theorem which does not require the
existence of a rational isogeny of large degree (but which does require local conditions at 3.) This
allows us, for instance, to prove the modularity of the Q-curve

E = EA,B,C : y2 = x3 + 2(1 + i)Ax2 + (B + iA2)x (1.1)
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discussed by Darmon in [4] in connection with the generalized Fermat equation

A4 +B2 = Cp. (1.2)

We will discuss in a later paper the consequences of the present result regarding solutions of (1.2).

In order to state the main theorems of this paper we introduce a few definitions. Let E/K be
a Q-curve, and for each σ ∈ Gal(Q̄/Q) let µσ : Eσ → E be a non-zero isogeny. Then we define
bE ∈ H2(Gal(Q̄/Q),±1) by

bE(σ, τ) = sgn(µσµστµ
−1
στ ).

Denote by (bE)3 the restriction of bE to H2(Gal(Q̄3/Q3),±1). Furthermore, we associate to E
an `-adic Galois representation ρE,` of Gal(Q̄/Q) and a quadratic character ψ̄E,3 of Gal(Q̄/Q) (cf.
Proposition 2.3 and Definition 2.16).

Theorem. Suppose E/K is a Q-curve with potentially ordinary or multiplicative reduction at a
prime of K over 3, and such that (bE)3 is trivial. Then E is modular.

Theorem. Suppose E/K is a Q-curve such that, for some (whence every) prime ` > 3, the projec-
tive representation PρE,` associated to ρE,` is unramified at 3. Then E is modular.

We can weaken the condition on ρE,` in the second theorem above, at the expense of introducing
some technical conditions.

Denote by q3,∞ the unique class in H2(Gal(Q̄/Q),±1) ramified exactly at 3 and ∞. We prove
the following theorem.

Theorem. Suppose E/K is a Q-curve which acquires semistable reduction over a field tame-
ly ramified over Q3. Suppose further that (bE)3 is trivial, and that the four classes (ψ̄E,3,−1),
bEq3,∞(ψ̄E,3,−1), q3,∞(ψ̄E,3, 3), and bE(ψ̄E,3, 3) are all nontrivial in H2(Gal(Q̄/Q),±1). Finally,
suppose that degµσ can be chosen to be prime to 3 for all σ ∈ Gal(Q̄/Q). Then E is modular.

We remark that the Q-curve (1.1) satisfies the hypotheses of both the second and third theorems
above.

There are infinitely many Q-curves which are not proved to be modular by the theorems in this
paper. An instructive example is the curve

E : y2 = x3 + (−994708512
√

5257
√

73− 414461880
√

5257− 4973542560
√

73− 1089620282520)x

+36601957546560
√

5257
√

73 + 5349307626327168
√

5257 (1.3)

+55021459817878848
√

73 + 32065347994985088

which is the specialization to a = 22 · 32 · 73 of the family of Q-curves described by Quer in [13, §6].
One checks that

• The reduction of E over 3 is potentially supersingular;

• PρE,` is ramified at 3 (because E/Q(
√
−2) does not have good reduction at 3);

• There is an isogeny of degree 3 between E and one of its Galois conjugates.
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Thus, E does not satisfy the hypotheses of any of the theorems above. The 3-adic representation ρE,3
is residually irreducible, but the image of the restriction ρE,3|G3 does not have trivial centralizer. To
prove that such a representation is modular is beyond the reach of existing technology in deformation
theory, including the recent result of Breuil, Conrad, Diamond, and Taylor.

The modularity of a Q-curve E is equivalent to the modularity of any one of the ρE,`’s. (The
modularity of the latter means that it is a representation associated to a modular form.) Most of
the present paper is devoted to proving the modularity of the ρE,3’s. This is essentially done by
showing that under the hypotheses stated in the theorem these representations satisfy the main
theorems of either [2], [21], or [22].

The authors wish to thank Brian Conrad, Fred Diamond, Matthew Emerton, Jordi Quer, Ken
Ribet, Richard Taylor, and Andrew Wiles for helpful discussions.

Some Notation

If K is a quadratic extension of Q, we write χK for the quadratic character of Gal(Q̄/Q) associ-
ated to K. Any two quadratic characters χ and χ′ of Gal(Q̄/Q) give classes in H1(Gal(Q̄/Q),±1).
We write (χ, χ′) for their cup product. This is an element in H2(Gal(Q̄/Q),±1). If d is an element
of Q∗/(Q∗)2, we write (χ, d) to mean the cup product (χ, χ

Q(
√
d)).

We write elements in H2(Gal(Q̄/Q),±1) multiplicatively. Thus if c1, c2 ∈ H2(Gal(Q̄/Q),±1),
then c1c2 is the class such that (c1c2)(σ, τ) = c1(σ, τ)c2(σ, τ) for all σ, τ ∈ Gal(Q̄/Q).

We take an embedding ν : Q̄ ↪→ Q̄` to be fixed for each `, and denote the resulting decomposition
subgroup (resp. inertia subgroup) of Gal(Q̄/Q) by G` (resp. I`). To be completely precise, we need
to define two such embeddings: one in order to define decomposition subgroups of Gal(Q̄/Q), and
the other in order to make sense of the scalar action of Q̄ on `-adic vector spaces like T`A⊗Z` Q̄`.
Write ι : Q̄ ↪→ Q̄` for the second embedding. We may think of ν as fixed through the course of the
paper; on the other hand, we will occasionally want to vary ι.

We also take an embedding Q̄ ↪→ C to be fixed. This determines a complex conjugation c.
We denote by Gt`, I

t
` , Iell

w the tame quotient of the decomposition group, the tame inertia group,
and the wild inertia group respectively.

For ` a rational prime, we denote by χ` : Gal(Q̄/Q) → Z
∗
` the cyclotomic character, and by

χ̄` : Gal(Q̄/Q) → F
∗
` the mod ` cyclotomic character. If ρ : G → GL2(F ) is a representation

of a group G over a field F , we write Pρ for the composition of ρ with the natural projection
GL2(F )→ PGL2(F ).

2 Q-curves and Galois representations

In this section we describe the `-adic and mod ` Galois representations attached to a Q-curve. We
also define Galois cohomology classes cE , bE and ψ̄E,` which are naturally attached to a Q-curve E.
The definitions and results of this section, with the exception of Proposition 2.13, are not original
to this paper. The basic framework is laid down in Ribet’s foundational paper [16]. The interested
reader should also consult Quer’s preprint [13], which alerted us to the relevance of the class bE .

Let K be a number field Galois over Q.

Definition 2.1. A Q-curve E/K is an elliptic curve E/K, such that, for each σ ∈ Gal(Q̄/Q), there
exists a non-zero K-isogeny

µσ : Eσ → E.
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We may, and do, suppose that µσ is the identity morphism for all σ ∈ Gal(Q̄/K).

Remark 2.2. Throughout this paper, it will be understood that all Q-curves are elliptic curves
without complex multiplication. This assumption is not restrictive from our point of view, since
Q-curves with complex multiplication are known to be modular [20].

Let ` be a rational prime, and define

φE,` : Gal(K̄/K)→ GL2(Z`)

to be the representation of Gal(K̄/K) on the `-adic Tate module T`E of E. (We have fixed an
isomorphism T`E ∼= Z

2
` .) In the following proposition we describe an extension of φE,` to a repre-

sentation of the whole group Gal(Q̄/Q).

Proposition 2.3. There exists a representation

ρE,` : GQ → Q̄
∗
` GL2(Q`)

such that PρE,`|Gal(K̄/K)
∼= PφE,`. This representation is odd, continuous, and ramified at only

finitely many primes.

Proof. For each non-zero isogeny µ : E′ → E, we write µ−1 to mean

(1/ degµ)µ∨ ∈ Hom(E′, E)⊗Z Q,

where µ∨ is the dual isogeny.

Let σ and τ be elements of Gal(Q̄/Q). Following [16, §6], we define

cE(σ, τ) = µσµ
σ
τµ
−1
στ ∈ (Hom(E,E)⊗Z Q)∗ = Q

∗.

Then cE determines a class in H2(Gal(Q̄/Q),Q∗). Tate showed that H2(Gal(Q̄/Q), Q̄∗) is trivial,
where Q̄∗ is acted on trivially by Gal(Q̄/Q); [18, Thm. 4]. It follows that there exists a continuous
map α : Gal(Q̄/Q)→ Q̄

∗ such that

cE(g, h) = α(g)α(h)α(gh)−1 (2.4)

We can now define an action of Gal(Q̄/Q) on Q̄` ⊗Z` T`E by

ρE,`(g)(1⊗ x) = α−1(g)⊗ µg(xg). (2.5)

It is clear from the above definition that PρE,`|Gal(K̄/K)
∼= PφE,`. In particular, ρE,`|Gal(K̄/K) and

φE,` differ by the continuous character α|Gal(K̄/K). It follows that ρE,` is continous and unramified
away from finitely many primes. It remains to show that ρE,` is odd; that is, that det ρE,`(c) = −1,
where c is our fixed complex conjugation.

Define a map εE : Gal(Q̄/Q)→ Q̄
∗ by

εE(σ) = α2(σ)/(degµσ),

and let εE,` be the composition of εE with the chosen embedding Q̄ ↪→ Q̄`. That this map is a
character follows from the observation that

cE(σ, τ)2 =
(degµσ)(degµτ )

degµστ
.
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It also follows immediately from (2.5) that

det ρE,` = ε−1
E,`χ`. (2.6)

Write µ for µc. We may write the complexification E/C as the quotient of C by a lattice Λ.
Then µ is given by multiplication by a complex number z such that zΛ̄ ⊂ Λ. The composition µµc

is then given by zzc, a positive real number. Since the degree of µµc is (degµ)2, we conclude that

µµc = degµ.

Therefore,

εE(c) = α2(c)/degµ = cE(c, c)/degµ = µµc/ degµ = 1,

and

det ρE,`(c) = εE,`(c)χ`(c) = −1.

Since α2(c) = cE(c, c) = µµc = degµ, the proposition follows from the definition of εE,` and
(2.6).

Remark 2.4. It will occasionally be useful to work directly with the homomorphism

ρ̂E,` : Gal(Q̄/Q)→ Q̄
∗GL2(Q`)

defined by (2.5). More precisely: suppose M is a number field such that ρ̂E,` takes values in
M∗GL2(Q`). Let λ be the prime of M defined by ι : Q̄→ Q̄`, and let λ = λ1, . . . , λr be the set of
all primes of M dividing `. Write ρE,λi for the composition of ρ̂E,` with the map

M∗GL2(Q`)→M∗λi GL2(Q`).

So ρE,λ is just another name for ρE,`.

Remark 2.5. While ρE,` and εE depend on our choice of α, the projective representation PρE,`
depends only on the isomorphism class of E/K. Moreover, PρE,` is independent of the choice of ι.

Remark 2.6. We can choose α in such a way that the image of εE has 2-power order, by the following
argument. Let n = 2am be the order of the image of εE , where m is odd. If m 6= 1, replace α by
αε

(m−1)/2
E ; this has the effect of replacing εE by εmE , whose image has 2-power order.

The reason for introducing the representations ρE,` is found in the following proposition.

Proposition 2.7. A Q-curve E/K is modular if there exists a (normalized) eigenform f and a
prime ` such that

ρE,` ∼= ρf,`.

Here, f is a holomorphic Hecke eigenform on the complex upper-half plane and ρf,` is the Galois
representation ρf,` : Gal(Q̄/Q) → GL2(Q̄`) such that if f(z) =

∑∞
n=1 a(n)e(nz) (a(1) = 1), then

trace ρf,`(Frobp) = a(p) for almost all primes p.
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Proof. Suppose ρE,` ∼= ρf,` for some eigenform f of level N . Then there exists some finite extension
L/K such that

φE,`|Gal(L̄/L)
∼= ρf,`|Gal(L̄/L) (2.7)

and the weight of f must be two, as can be seen by comparing determinants. Let ρN,` be the
representation of Gal(Q̄/Q) on T`J1(N)⊗Z` Q̄`, where T`J1(N) is the `-Tate module of J1(N). We
have

ρN,` ' ⊕ρg,` (2.8)

where the sum is over all the eigenforms g of level N and weight 2 (this can be deduced from [19,
Thm. 7.11]). From (2.7) and (2.8) it follows that φE,` is a Gal(L̄/L)-quotient of ρN,`. It then follows
that HomL(T`J1(N), T`E) is non-zero. By a theorem of Faltings [7] we can conclude from this that
HomL(J1(N), E) is non-zero.

We next define some cohomological invariants associated to E. Let bE ∈ H2(Gal(Q̄/Q),±1) be
the composition of cE with the sign map Q∗ → ±1. Then bE can be computed from εE . Consider
the exact sequence in Galois cohomology

Hom(Gal(Q̄/Q), Z̄∗)→ Hom(Gal(Q̄/Q), Z̄∗) δ→ H2(Gal(Q̄/Q),±1) (2.9)

arising from the short exact sequence of Galois modules (with trivial action)

0→ ±1→ Z̄
∗ → Z̄

∗ → 0.

Proposition 2.8. bE = δ(εE).

Proof. Let χ : Gal(Q̄/Q) → Z̄
∗ be a character, and for each σ ∈ Gal(Q̄/Q) let χ̃(σ) be a square

root of χ(σ). Then δ(χ) is defined by

δ(χ)(σ, τ) =
χ̃(σ)χ̃(τ)
χ̃(στ)

.

To compute δ(εE), we may choose

ε̃E(σ) = α(σ)/
√

degµσ

where the √ sign signifies positive square root. We now have

δ(εE)(σ, τ) =
α(σ)α(τ)
α(στ)

√
degµστ√

degµσ
√

degµτ
= cE(σ, τ)/

√
c2E(σ, τ) = bE(σ, τ).

Remark 2.9. Note that the class cE is the inflation of a class in H2(Gal(K/Q),±1). Quer [13, Th.
2.4] has proven the converse: if E/K ′ is a Q-curve over some extension of K, and if cE is the inflation
of a class in H2(Gal(K/Q),±1), then there exists a Q-curve E0/K such E0 ×K K ′ is geometrically
isogenous to E.

We will need the fact that the representation ρE,` can also be viewed as the `-adic representation
attached to a certain abelian variety over Q.
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Proposition 2.10. Let E/K be a Q-curve, and let α : Gal(Q̄/Q) → Q̄
∗ be a 1-cochain with

coboundary cE, as in (2.4). Define ρE,` as in (2.5). Let M be the number field generated by
the α(g) for all g ∈ Gal(Q̄/Q).

There exists an abelian variety Aα/Q satisfying the following conditions.

• There exists an injection M ↪→ End(Aα/Q)⊗Z Q;

• Let λ1, . . . , λr be the primes of M lying over `. Then the rational Tate module V`Aα decom-
poses as

V`Aα =
⊕
i

VλiAα

and VλiAα is isomorphic, as Mλi [Gal(Q̄/Q)]-module, to ρE,λi . In particular, VλAα ∼= ρE,`.

Proof. The desired Aα is the one constructed by Ribet in [16, §6]. We briefly recall this construction.
First, enlarge K if necessary so that α is the inflation of a function on Gal(K/Q). Let R be the
algebra generated by elements λσ for each σ ∈ Gal(K/Q), with the multiplication table

λστ cE(σ, τ) = λσλτ .

Then R acts on the abelian variety

ResK
Q
E ×Q K ∼=

⊕
σ∈Gal(K/Q)

Eσ

by the rule

λσ(P ) = µτσ(P ) (2.10)

for any P ∈ Eτσ(K̄). This action descends to an action of R on ResK
Q
E.

Our choice of α defines a homomorphism ω : R→M . Now define

Aα = ResK
Q
E ⊗RM

in the category of abelian varieties up to isogeny. To be more precise, let π ∈ R be the projector
onto M ; then Aα is the image of mπ, where m is an integer large enough to make mπ an actual
endomorphism (not only a rational endomorphism) of ResK

Q
E.

Then Aα admits the desired injection M ↪→ End(Aα)⊗ZQ, and the rational λi-adic Tate module
VλiAα is a 2-dimensional vector space over Mλi (see [15, Th. 2.1.1]); one then has from (2.10) that
Gal(Q̄/Q) acts on VλiAα via ρE,λi .

Remark 2.11. We emphasize that the construction of Aα is independent of `.

Proposition 2.12. Let ` > 2. Suppose ` does not divide degµg for any g ∈ Gal(Q̄/Q), and suppose
α is chosen so that εE has 2-power order (Remark 2.6.) Let λ = λ1, . . . , λi be the set of primes of
M dividing `.

Then the full ring of integers of M ⊗ZZ` ∼= ⊕iMλi acts on T`Aα, and the `-divisible group T`Aα
breaks up as a direct sum of `-divisible groups⊕

i

TλiAα (2.11)

where the λi range over the primes of M dividing `. Moreover, TλiAα is a free OMλi
-module of

rank 2.

7



Proof. Let Z[α] be the ring generated by the α(g). Then it follows by the definition of Aα that
Z` ⊗Z Z[α] acts on T`Aα. Since degµg is an `-adic unit, and since α(g)/

√
degµg is a 2-power root

of unity, we can obtain Z` ⊗Z Z[α] by successively adjoining square roots of `-adic units to Z`; it
follows that Z` ⊗Z Z[α] is étale over Z`, and therefore

Z` ⊗Z Z[α] ∼=
⊕
i

OMλi
.

The decomposition of T`Aα now follows immediately from the decomposition (2.11).

We now want to define a mod ` representation attached to E. We begin with a general result
about Galois representations.

Proposition 2.13. Let L be a totally ramified extension of Q` and F an unramified extension
of L. Let ρ be a continuous representation of Gal(Q̄/Q) (or any compact group) with image in
F ∗GL2(Q`). Then ρ is conjugate in GL2(F ) to a representation with image in O∗F GL2(OL).

Proof. Let S, T be a basis for F⊕2 with respect to which the image of ρ lies in F ∗GL2(Q`), and let
L0 be the lattice OFS +OFT generated by S, T . There are only finitely many images of L0 under
the action of the compact group Gal(Q̄/Q). Each such image Li is of the form

x(OF (aS + bT ) +OF (cS + dT ))

with x ∈ F ∗ and a, b, c, d ∈ Q`. Let L be the lattice generated by all the Li; then L is preserved
by the action of ρ(Gal(Q̄/Q)). Because F/L is unramified, we may write x = yu, with y ∈ L∗ and
u ∈ O∗F . So each Li can be rewritten as

y(OF (aS + bT ) +OF (cS + dT )).

Let L′i be the lattice in L2 defined by

L′i = y(OL(aS + bT ) +OL(cS + dT )),

and let

L′ = OL(αS + βT ) +OL(γS + δT ),

with α, β, γ, δ ∈ L, be the lattice generated by all the L′i. Then L = L′⊗OL OF . Let S′ = αS + βT
and T ′ = γS + δT , and write

ρ : Gal(Q̄/Q)→ GL2(F )

with respect to the basis elements S′ and T ′.
Since ρ(Gal(Q̄/Q)) preserves the lattice OFS′+OFT ′, we have ρ(Gal(Q̄/Q)) ∈ GL2(OF ). Since

S′, T ′ lie in LS + LT , we have ρ(Gal(Q̄/Q)) ∈ F ∗GL2(L). Combining these two facts yields the
desired result.

The representation ρE,` produced in Proposition 2.3 takes values in M∗λ GL2(Q`), where Mλ is
the extension of Qλ generated by the values of ι(α(σ)) for all σ ∈ Gal(Q̄/Q). Recall from the proof
of Proposition 2.3 that εE,`(σ) = α2(σ)/degµσ is a Dirichlet character. So Mλ is contained in an
extension generated by square roots and roots of unity; it is thus an abelian extension of Q`. It
follows from local class field theory that there exists an abelian extension F of Q` containing M
and such that F also contains a subextension L totally ramified over Q` over which F is unramified.
Then F and L satisfy the conditions of Proposition 2.13, so there exists a basis of F⊕2 with respect
to which ρE,` takes images in O∗F GL2(OL).
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Definition 2.14. We denote by

ρ̄E,` : Gal(Q̄/Q)→ F̄
∗
` GL2(F`).

the representation obtained by choosing a basis of F⊕2 as above and reducing the resulting repre-
sentation

ρE,` : Gal(Q̄/Q)→ O∗F GL2(OL)

modulo the maximal ideal mF of OF . The reduced representation ρ̄E,` is then well defined up to
semisimplification and conjugation by GL2(F̄`).

We observe that

det ρ̄E,` = ε̄E,`χ̄`

where the overlines indicate the reductions of the `-adic characters to mod-` characters. Let δ̄ be
the reduction mod ` of the coboundary map δ in (2.9).

From this point on, we assume that ` > 2.

Proposition 2.15. bE = δ̄(ε̄E,`).

Proof. Immediate from Proposition 2.8.

When R is a domain we abuse notation and denote by ‘det’ the determinant character from
PGL2(R) to R∗/(R∗)2.

Definition 2.16. Let ` be an odd prime. Then we define a quadratic Dirichlet character

ψ̄E,` = detPρ̄E,` : Gal(Q̄/Q)→ F
∗
`/(F

∗
` )

2 ∼= ±1.

The character ψ̄E,`, like the cohomology class bE , depends only on the isomorphism class of E/K.

Remark 2.17. The invariants bE and ψ̄E,` are easy to compute in practice. For instance, suppose K
is a quadratic extension of Q and E/K is a Q-curve. Let τ be the non-trivial element of Gal(K/Q),
and let n be the integer such that µµτ is multiplication by n. Then

bE =
{

0 if n positive
χK if n negative.

Suppose, for simplicity, that ` does not divide n. Let η : Gal(Q̄/Q)→ ±1 be the quadratic character
ramified only at `. Then

ψ̄E,` =
{
η n ∈ (Q∗` )

2

ηχK n /∈ (Q∗` )
2.
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3 The potentially supersingular, residually irreducible case

Theorem 3.1. Suppose K is tamely ramified over 3. Let E/K be a Q-curve such that

• E has good supersingular reduction over Kv for one (whence every) prime v of K above 3;

• bE ∈ H2(Gal(Q̄/Q),±1) has trivial projection to H2(G3,±1);

• Either PρE,`|G3 is unramified for some (whence every) ` 6= 3, or degµσ is not a multiple of 3
for any σ ∈ Gal(Q̄/Q);

• The restriction of ρ̄E,3 to Gal(Q̄/Q[
√
−3]) is absolutely irreducible.

Then E is modular.

Proof. The basic tool will be the theorem of Wiles and Taylor-Wiles [24, 23], as refined by Dia-
mond [6] and by Conrad, Diamond, and Taylor [2]. In particular, our argument follows closely the
proof of Theorem 7.2.1 of [2].

We have from Proposition 2.3 that ρE,3 is an odd, continuous representation unramified away
from finitely many primes.

Write Gv, Iv for the absolute Galois group and the inertia group of Kv. Write Iw3 for the subgroup
of wild inertia in I3.

Lemma 3.2. ρ̄E,3 is modular.

Proof. We follow closely the usual argument that the 3-division points of an elliptic curve over Q
form a modular representation–see [8, I.1] for more details.

The image of ρ̄E,3 lies in F̄∗3 GL2(F3). We suppose without loss of generality that the chosen
extension of the 3-adic valuation of Q to Q[

√
−2] is given by the prime (1 +

√
−2).

We can define a homomorphism

ι : F̄∗3 GL2(F3)→ µ∞GL2(Z[
√
−2]),

where µ∞ denotes the group of roots of unity, as follows: set

ι

[
−1 1
−1 0

]
=
[
−1 1
−1 0

]
,

ι

[
1 −1
1 1

]
=
[

1 −1
−
√
−2 −1 +

√
−2

]
,

and, for each scalar a ∈ F̄∗3, define ι(a) to be the preimage, under the chosen embedding Q̄ ↪→ Q̄3,
of the Teichmüller lift of a.

Let F be a number field such that the image of ι ◦ ρ̄E,3 lies in GL2(F ), and let w be the chosen
extension of the 3-adic valuation to F . Then the composition of ι ◦ ρ̄E,3 with reduction mod w is
ρ̄E,3.

The composition ι◦ρ̄E,3 is a continuous complex representation of Gal(Q̄/Q), odd and irreducible
because ρ̄E,3 is odd and absolutely irreducible. It follows from the theorem of Langlands and Tunnell
that there exists a weight 1 eigenform, of some level and Dirichlet character,

g =
∞∑
n=1

bnq
n

10



such that

bp = Tr(ι ◦ ρ̄E,3(Frobp))

for almost all p. Let F ′ be a number field containing all the bn. If E is a weight 1 Eisenstein series
whose Fourier expansion is congruent to 1 mod 3, then gE is a weight 2 cusp form, of some level and
Dirichlet character, such that Tn(gE) is congruent mod w to bngE, for some prime w′ of F ′ above
w. It then follows from an argument of Deligne and Serre [5, §6.10] that there exists an eigenform

f =
∞∑
n=1

anq
n

of weight 2 with an ∈ F ′ and an ≡ bn mod w for all n. In particular, ap = Tr(ρ̄E,3(Frobp)) for
almost all p. So ρ̄E,3 is the mod w′ representation associated to f .

We will show that ρE,3 satisfies the conditions of Theorem 7.1.1 of [2].
Recall that, for any `,

φE,` : Gal(K̄/K)→ GL2(Z`)

is the Galois representation attached to E/K as elliptic curve, and that PφE,` and PρE,` are iso-
morphic projective representations of Gal(K̄/K), by Proposition 2.3.

The representation ρE,` produced by Proposition 2.3 depends on a choice of α : Gal(Q̄/Q)→ Q̄
∗,

a cochain whose coboundary is cE . We begin by observing that α can be chosen so as to impart to
ρE,` some useful arithmetic properties.

Lemma 3.3. There exists a choice of α : GQ → Q̄
∗ such that

• for all ` 6= 3, the representation ρE,`|G3 is tamely ramified;

• for all `, det ρE,`|G3 = χ`|G3;

• εE has 2-power order.

Proof. Since K is tamely ramified, cE |G3 is the inflation of an element of

H2(Gt3,Q
∗).

The cohomology group

H2(Gt3, Q̄
∗)

is trival, as can be seen by placing Gt3 in the exact sequence

0→ It3 → Gt3 → G3/I3

and computing the initial terms of the Hochschild-Serre spectral sequence [18, §6.1]. Therefore,
there is a cochain a3 : G3 → Q̄

∗ such that

cE(g, h) = α3(g)α3(h)α3(gh)−1

11



for all g, h ∈ G3, and such that α3 vanishes on the wild inertia group Iw3 . Now let α′ : Gal(Q̄/Q)→
Q̄
∗ be any cochain whose coboundary is cE . Then (α′|G3)α−1

3 is a character θ3 of G3. Let θ be a
character of Gal(Q̄/Q) whose restriction to G3 is θ3. Then define

α = α′θ−1.

So the coboundary of α is cE , and α|G3 = α3; in particular, α vanishes on wild inertia. Since E
obtains good reduction after a tame extension of K, we know φE,` is tamely ramified at 3 for all
` 6= 3. It follows from the definition (2.5) that ρE,`|G3 is tamely ramified for all ` 6= 3.

By Proposition 2.8 and (2.6), the assumption that bE |G3 is trivial means that

εE |G3 = χ2

for some character χ : G3 → Q̄
∗. The character εE,` is tamely ramified for any ` 6= 3, because

ρE,`|G3 is tamely ramified; it follows that εE , whence also χ, is tamely ramified. Replacing α by
αχ now yields the first two desired conditions. In particular, εE |G3 is trivial. So we can modify α
by any power of εE without affecting the first two conditions. Now we can force ε to have 2-power
order by the argument of Remark 2.4.

For the rest of the proof, it is understood that α is chosen so that ρE,`|G3 satisfies the conditions
in Lemma 3.3. We now take as fixed some ` > 3. From Proposition 2.10, we have an abelian variety
Aα/Q such that

ρE,` ∼= VλAα

where λ|` is the prime of M (the number field generated by the α(g)) determined by ι.
Denote by L the ramified quadratic extension of Q3, by GL ⊂ G3 the absolute Galois group of

L, and by IL the inertia subgroup of GL. Let ψ be the ramified quadratic character of GL, and
write Aψα/L for the twist of Aα ×Q L by ψ.

From this point on, we take as fixed some ` > 3.

Lemma 3.4. Either

• ρE,`|GL and PρE,`|G3 are unramified, and Aα/L has good reduction; or

• ρE,`|GL ⊗ ψ is unramified, and Aψα/L has good reduction.

Proof. By Lemma 3.3, wild inertia is killed by ρE,`. Let τ be a topological generator of It3, and
define m = ρE,`(τ). Since m has finite order, it is diagonalizable.

Note that τ and τ3 are conjugate in G3. So m and m3 are conjugate in Q̄∗` GL2(Q`). Since
det(m) = χ`(τ) = 1, we conclude that the eigenvalues of m must be either (1, 1), (−1,−1) or (i,−i).
In the former two cases, we see that ρE,`|GL is unramified. In the latter case, (ρE,`|GL) ⊗ ψ is
unramified.

Suppose the eigenvalues of m are (1, 1) or (−1,−1); equivalently, PρE,`|G3 is unramified. Recall
from Remark 2.5 that PρE,` does not depend on the choice of ι. So ρE,λi(τ) is scalar for any i, whence
IL acts trivially on VλiAα for any prime λi of M dividing `. It then follows from Proposition 2.10
that IL acts trivially on V`Aα, and so Aα/L has good reduction.

Likewise, if the eigenvalues of m are (i,−i), then ρE,λi(τ
2) = −1 for all i, so ρE,λi |GL ⊗ ψ is

unramified for all i, and Aψα/L has good reduction.

12



Suppose PρE,`|G3 is unramified. Then ρE,`|GL is unramified. Since det ρE,`|I3 is trivial, the
image ρE,`(I3) is either trivial or ±1. So, in fact, either Aα/Q3 or its ramified quadratic twist has
good reduction over Q3. Therefore, either ρE,3|G3 or its ramified quadratic twist is associated to a
3-divisible group, and E is modular by [6, Theorem 5.3].

We therefore assume from now on that (ρE,`|GL) ⊗ ψ is unramified, so that Aψα/L has good
reduction. In this case, by the hypotheses of our theorem, 3 does not divide degµg for any g ∈
Gal(Q̄/Q).

In this case, Aψα/L has good reduction. Therefore, if ψ′ is a ramified quadratic character of
Gal(Q̄/Q[

√
−3]), the twist Aψ

′

α /Q[
√
−3] has good reduction at the prime over 3.

Let θ be the prime of M determined by the chosen embedding M ↪→ Q̄3. Then, by Proposi-
tion 2.12, we can define a finite flat group scheme Aα[θ] as the 3-torsion (equivalently, the θ-torsion)
of the 3-divisible group TθA

ψ′

α /Q[
√
−3]. Because ρ̄E,3 is absolutely irreducible when restricted to

Gal(Q̄/Q[
√
−3]), and because

ρE,3 ⊗ ψ′ ∼= VθA
ψ′

α ,

we have an isomorphism of (OMθ
/θ)[Gal(Q̄/Q[

√
−3])]-modules

ρ̄E,3 ⊗ ψ′ ∼= Aψ
′

α [θ].

Restricting this isomorphism to GL yields an isomorphism of (OMθ
/θ)[GL]-modules

ρ̄E,3|GL ⊗ ψ ∼= Aψα [θ].

In particular, (ρ̄E,3|GL)⊗ ψ is flat. Recall that a representation of GL with finite image is said
to be flat if the attached finite flat group scheme over L is the generic fiber of a finite flat group
scheme over OL. In the case, the finite flat group scheme in question is (Aψα)[θ].

Lemma 3.5. The centralizer of ρ̄E,3(G3) consists entirely of scalars.

Proof. The result follows from a theorem of Conrad [1, Theorem 4.2.1]. As above, the relevant finite
flat group scheme over OL is G = (Aψα)[θ]. To apply Conrad’s theorem, we need only to verify that
G is connected and has connected Cartier dual, and that G satisfies a certain exactness condition
on Dieudonné modules. The connectedness of G and its dual follow from the fact that G is a closed
subgroup scheme of the 3-torsion subscheme of the supersingular abelian variety Aψα . The exactness
condition is automatically satisfied because G is the 3-torsion in the 3-divisible group TθA

ψ
α .

Let F be a finite extension of Q`. Recall that an `-adic representation ρ of the Galois group of
F is said to be Barsotti-Tate if it arises from the generic fiber of an `-divisible group, and to be
potentially Barsotti-Tate if some restriction of ρ to a finite-index subgroup of Gal(F̄ /F ) is Barsotti-
Tate. (See [2, §1.1].) The representation ρE,3|G3 is potentially Barsotti-Tate, because it is realized
on the θ-adic Tate module of Aα, which has potentially good reduction. From now on, we will abuse
notation and refer to the local representation ρE,3|G3 simply as ρE,3.

Let V be a d-dimensional vector space over a finite extension F ′ of Q`. One can associate to
any potentially Barsotti-Tate representation ρ : Gal(F̄ /F )→ GL(V ) a continuous representation

WD(ρ) : WF → GL(D)

of the Weil group of F on a Q̄`-vector space D of dimension d, as in Conrad, Diamond, and Taylor [2,
Appendix B]. In the lemma that follows, we will freely use definitions and facts from that paper,
especially §1.2, §2.3, and Appendix B.
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Lemma 3.6. The type of WD(ρE,3) is strongly acceptable for ρ̄E,3.

Proof. We take F ′ = Mλ.
Let τ be the restriction of WD(ρE,3) to I3. It follows from Proposition 2.10 and [2, Prop. B.4.2]

that ρE,3 is Barsotti-Tate over L′ for any finite extension L′/Q` such that τ is trivial. Our choice
of α in Lemma 3.3 guarantees that det ρE,3 = χ3 and det ρ̄E,3 = χ̄3. It follows that ρE,3 is a
deformation of ρ̄E,3 of type τ , according to the definition in [2, §1.2].

We know that (ρE,3|GL) ⊗ ψ is Barsotti-Tate, because it is associated to the 3-divisible group
TθA

ψ
α . So

WD((ρE,3|GL)⊗ ψ) = WD(ρE,3|GL)⊗WD(ψ)

is unramified, so τ |IL = WD(ψ)|IL. We know that WD(ψ) = ψ|WL ⊗Mλ
Q̄` ([2, §B.2]); that is,

WD(ψ)|IL is a non-trivial quadratic character of IL. We also know that the determinant of τ is
trivial on I3, because the WD functor commutes with exterior products, and the determinant of
ρE,3 is the cyclotomic character χ3; the character WD(χ3) is shown to be unramified in [2, §B.2].
We conclude that

τ ∼= ω̃2
2 ⊕ ω̃6

2 ,

where ω̃2 : It3 → Q̄
∗
3 is the Teichmüller lift of ω2, the fundamental tame character of level 2.

It now follows from Corollary 2.3.2 of [2] that τ is acceptable for ρ̄E,3.
We have by [1, Theorem 4.2.1] that either

• (ρ̄E,3|I3)⊗F3 F̄3
∼= ωm2 ⊕ ω3m

2 , where m = 1 or 5;

• ρ̄E,3|I3 ∼=
[
χ̄m3 ∗
0 χ̄n3

]
, where (m,n) = (0, 1) or (1, 0) and ∗ is peu ramifié.

In either case, it follows from the criterion of [2, §1.2] that τ is strongly acceptable for ρ̄E,3.

Now, combining Lemmas 3.5 and 3.6, we can apply [2, Theorem 7.1.1] and conclude that ρE,3,
whence E, is modular.

4 More on residual representations

In [24], Wiles deals with the case where the 3-adic representation associated to an elliptic curve C is
residually reducible by executing a “3-5 switch”. That is, he replaces C with another elliptic curve
C ′, such that the mod 3 representation attached to C ′ is absolutely irreducible when restricted to
Gal(Q̄/Q[

√
−3]), and such that C and C ′ have isomorphic mod 5 Galois representations. Aside from

a finite set of exceptions, the common mod 5 Galois representation is absolutely irreducible when
restricted to Gal(Q̄/Q[

√
5]). This coincidence of mod 5 Galois representations is enough to show

that modularity of C ′ is equivalent to modularity of C, and the modularity of C ′ follows from the
condition on the mod 3 Galois representation of C ′. This argument relies on the fact that, given an
elliptic curve C, there are plenty of elliptic curves C ′ whose mod 5 representations are isomorphic
to that of C. This fact, in turn, depends on the fact that the modular curve X(5)/Q is isomorphic
to P1/Q. In general, the modular curve parametrizing Q-curves with full level 5 structure will not
have genus 0, rendering a 3-5 switch impossible.

We are left with two methods of treating the residually reducible cases. One method is to
generalize the lifting theorems of Wiles, Taylor Wiles, et. al. to the residually reducible situation.
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Several theorems in this direction have been proven by Andrew Wiles and the second author [21],[22]
in the case where the reduction of E is ordinary or multiplicative. We will apply those theorems to
the present situation in Theorem 5.1 below.

Another method is to exploit the fact that, in contrast with the case of elliptic curves over Q,
there are often cohomological obstructions to the reducibility of ρ̄E,`. These obstructions can be
computed explicitly in terms of the invariants described in section 2. We begin with a general fact
about reducible projective mod ` Galois representations.

Proposition 4.1. Let ` be an odd prime, and let

Pρ̄ : Gal(Q̄/Q)→ PGL2(F`)

be a projective mod ` Galois representation. Let χ : Gal(Q̄/Q) → ±1 be a quadratic Dirichlet
character (possibly trivial). Let G be the subgroup of matrices in F̄∗` GL2(F`) having determinant 1,
and let γ ∈ H2(PGL2(F`),±1) be the class of the extension

1→ ±1→ G→ PGL2(F`)→ 1.

Let ψ̄ = detPρ̄. Finally, suppose that either

(a) the image of Pρ̄ lies in the normalizer N of a Cartan subgroup C of PGL2(F`), and the
quadratic character Gal(Q̄/Q)→ N/C is equal to χ, or

(b) the image of Pρ̄ lies in a Borel subgroup of PGL2(F`), and χ is trivial.

Then either (ψ̄, χψ̄) or Pρ̄∗γ(ψ̄, χψ̄)(χ, χ) is the trivial class in H2(Gal(Q̄/Q),±1).

Proof. First, suppose the image of Pρ̄ lies in the normalizer N of a Cartan subgroup C of PGL2(F`).
Write N̄ for the group N/C2. Let π be the natural projection of N onto N̄ . Then N̄ ∼= (Z/2Z)⊕2; a
choice of isomorphism can be fixed by requiring that the first copy of Z/2Z be π(C) and the second
be the kernel of det : N̄ → F

∗
`/(F

∗
` )

2. We then have

π ◦ Pρ̄ = ψ̄ ⊕ χ : Gal(Q̄/Q)→ (Z/2Z)⊕2. (4.12)

We consider two cases.

Case 1: |C2| is even. Then π factors as

N → N̂ → N̄ ,

where N̂ is a dihedral group of order 8 whose cyclic subgroup of order 4 is the preimage of
π(C). So π ◦ Pρ̄ lifts to a homomorphism from Gal(Q̄/Q) to N̂ , which means that d(π ◦ Pρ̄)
vanishes in the cohomology sequence

H1(Gal(Q̄/Q), N̂)→ H1(Gal(Q̄/Q), N̄) d→ H2(Gal(Q̄/Q),±1).

The isomorphism N̄ ∼= (Z/2Z)⊕2 then tells us that d′(ψ̄ ⊕ χ) vanishes in

H1(Gal(Q̄/Q), D4)→ H1(Gal(Q̄/Q), (Z/2Z)⊕2) d′→ H2(Gal(Q̄/Q),±1),

where D4 is a dihedral group of order 8 whose cyclic subgroup of order 4 is the preimage
of the first copy of (Z/2Z). It is well known that, for any two characters χ1, χ2, we have
d′(χ1 ⊕ χ2) = (χ1, χ1χ2) [10, Prop. 3.10]. So (ψ̄, χψ̄) = 0, as desired.
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Case 2: |C2| is odd.

In this case, the inflation map

π∗ : H2(N̄ ,±1)→ H2(N,±1) (4.13)

is an isomorphism. The subgroup of N generated by an involution in C and any element
of N\C is isomorphic to (Z/2Z)⊕2; in fact, any such subgroup is the image of an injection
s : N̄ → N such that π ◦ s is the identity. Write ι for the inclusion of N in PGL2(F`). Let M
be the subgroup of G lying over s(N̄). Then s∗ι∗γ is the class c ∈ H2(N̄ ,±1) corresponding
to the extension

1→ ±1→M → N̄ → 1.

It follows from the fact that a non-scalar element of G whose square is a scalar has exact order
4 that M is the quaternion group of order 8. Now, from (4.12) and [10, Th. 3.11], one gets

Pρ∗π∗c = (ψ̄ ⊕ χ)∗c = (ψ̄, χψ̄)(χ, χ),

The isomorphism (4.13) implies that π∗s∗ acts as the identity on H2(N,±1). In particular, we
have π∗c = ι∗γ. Pulling back both of these by Pρ (or, more precisely, by the homomorphism
f : Gal(Q̄/Q)→ N such that ι ◦ f = Pρ) one obtains the equality

Pρ∗γ = Pρ∗π∗c.

which yields the desired result.

The only case remaining is that where the image of Pρ lies in a Borel subgroup but not necessarily
in the normalizer of a Cartan. In this case, the semisimplification of Pρ̄ has image lying in a split
Cartan subgroup, and we are in the case already discussed.

We now apply Proposition 4.1 to the case of mod ` representations attached to Q-curves.

Proposition 4.2. Let E/K be a Q-curve and ` an odd prime. Let χ : Gal(Q̄/Q) → ±1 be a
quadratic Dirichlet character (possibly trivial). Let q`,∞ ∈ H2(Gal(Q̄/Q),±1) be the Brauer class
of the quaternion algebra ramified only at ` and ∞. Suppose that either

(i) the image of Pρ̄E,` lies in the normalizer N of a Cartan subgroup C of PGL2(F`), and the
quadratic character Gal(Q̄/Q)→ N/C is equal to χ, or

(ii) the image of Pρ̄E,` lies in a Borel subgroup of PGL2(F`), and χ is trivial.

Then either (ψ̄E,`, χψ̄E,`) or bEq`,∞(ψ̄E,`, χψ̄E,`)(χ, χ) is the trivial class in H2(Gal(Q̄/Q),±1).

Proof. The proposition is an immediate corollary of Proposition 4.1. The only thing to check is that

Pρ̄∗E,`γ = bEq`,∞.

Let G be as in the statement of Proposition 4.1. For each σ ∈ Gal(Q̄/Q) let dσ ∈ F̄∗` be a square root
of det(ρ̄E,`(σ)). Then gσ = d−1

σ ρ̄E,` is a set-theoretic lift of Pρ̄E,` to G. To this lift one associates
a 2-cocycle c given by the rule

c(σ, τ) = gσgτg
−1
στ = d−1

σ d−1
τ dστ .
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But this is just a 2-cocycle representing the class δ̄(det ρ̄E,`), where δ̄ is defined as in Proposition 2.15.
From that proposition and from the fact that δ̄(χ̄`) = q`,∞, one has

δ̄(det ρ̄E,`) = bE δ̄(χ̄`) = bEq`,∞.

The desired result follows.

Proposition 4.2 guarantees in many cases that the 3-adic representation attached to a Q-curve
is residually absolutely irreducible, even when restricted to a quadratic field.

5 The main theorems

We are now ready to state and prove the main results of the paper. Recall that (bE)3 denotes the
restriction of bE to H2(G3,±1).

Theorem 5.1. Suppose E/K is a Q-curve with potentially ordinary or multiplicative reduction at
some (whence every) prime of K over 3, and such that (bE)3 is trivial. Then E is modular.

Proof. First, suppose that ρ̄E,3 is absolutely reducible when restricted to Gal(Q̄/Q[
√
−3]). For this

case we appeal to the main theorems of [21] and [22]. In order for these theorems to apply we need
only verify the following properties of the representation ρE,3:

(i) ρE,3 is continuous, irreducible, and odd;

(ii) det ρE,3(Frob`) = ψ(`)`k−1 for some finite character ψ, some integer k ≥ 2, and almost all
primes `;

(iii) ρE,3|G3
∼=
[
φ1 ∗

φ2

]
with φ2|I3 finite;

(iv) the reductions φ̄1 and φ̄2 are distinct;

(v) ρ̄E,3 is modular (in the sense of Lemma 3.2) if it is absolutely irreducible.

Properties (i) and (ii) follow from Proposition 2.3 and (2.6). (Here we have again used that E does
not have complex multiplication, this time to ensure that φE,3, and hence ρE,3, is irreducible.) We
next prove that property (iii) holds.

From the possibilities for the reduction type of E it follows that the restriction of φE,3 to a
decomposition group Gv at a prime v|3 of K satisfies

φE,3|Gv ∼=
[
θ1 ∗

θ2

]
with θ2 having finite order on inertia. We claim that the same is true of ρE,3|G3 . Suppose otherwise.
From the fact that ρE,3|Gal(K̄/K) is isomorphic to a twist of φE,3 it follows that there is a quadratic
extension, say L, of Q3 such that the restriction of ρE,3 to Gal(L̄/L) is the direct sum of two
characters that are interchanged by the action of Gal(L/Q3). Since the product of these two
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characters, being the restriction of det ρE,3, is infinitely ramified, so must be one, and hence both,
of these characters. But this contradicts the above description of φE,3|Gv . Write

ρE,3|G3
∼=
[
φ1 ∗

φ2

]
.

We next prove that the reductions φ̄1 and φ̄2 are distinct on G3; in other words, that ρE,3
has property (iv). To see this we note that if φ̄1 and φ̄2 were not distinct on G3 then det ρ̄E,3|G3

would be a square. Suppose this were so. Then from det ρ̄E,3 = ε̄3χ̄3 (see (2.6)) we conclude
that ε̄3|G3 = φ2χ̄3|G3 for some character φ of G3. It then follows from Proposition 2.15 that the
restriction of bE to G3 equals the restriction of δ̄(χ̄3) to G3. But the latter is non-trivial, hence so
is the former, contradicting hypothesis (ii) of the theorem.

It remains to prove that property (v) holds. If ρ̄E,3 is absolutely irreducible, then it must be
dihedral and in fact induced from a character of Gal(Q̄/Q(

√
−3)) since we are assuming that ρ̄E,3

is absolutely reducible on Gal(Q̄/Q(
√
−3)). It is a classical result that such representations are

modular.

We have shown that ρE,3 has properties (i)-(v) listed above. As mentioned before, the theorem
follows.

Now, suppose that ρ̄E,3 is absolutely irreducible when restricted to Gal(Q̄/Q[
√
−3]). By the

argument above,

ρE,3|G3
∼=
[
φ1 ∗

φ2

]
,

where φ2 has finite image on inertia and φ1|I3 = ηχ3|I3 , with η a finite-order character. After
twisting ρE,3 by a finite-order character of GQ, we may assume φ2 is unramified. We have already
shown above that φ̄1 6= φ̄2. Finally, ρ̄E,3 is modular by Lemma 3.2 (which does not use the
assumption of supersingular reduction in Theorem 3.1.) It now follows from Theorem 5.3 of [6] that
ρE,3, whence E, is modular.

Theorem 5.2. Suppose E/K is a Q-curve such that, for some (whence every) prime ` > 3, the
projective representation PρE,` associated to ρE,` is unramified at 3. Then E is modular.

Proof. If E has potentially ordinary or multiplicative reduction, the modularity follows from The-
orem 5.1. We therefore assume that the reduction of E is potentially supersingular.

We have that ρE,`|I3 is a character θ. So

θ2 = det ρE,`|I3 = εE |I3.

Choose α such that εE has 2-power order; then εE , whence also ρE,`, is tamely ramified. We may
choose K to be a compositum of quadratic fields [13, Cor. 2.5], in which case it follows that E
obtains good reduction over a tamely ramified extension of Q3.

Let τ be a topological generator of tame inertia, and let m = ρE,`(τ); then m is a scalar which
is conjugate to its cube, so m = ±1. In either case,

detm = εE(τ) = 1,

so εE is unramified at 3, and (bE)3 = δ(εE |G3) is trivial.
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From Proposition 2.10, the action of τ on T`Aα is either 1 or −1. Thus, after modifying α by a
quadratic character, we may assume that Aα has good supersingular reduction at 3.

Therefore, Aα[3] extends to a finite flat group scheme over R = W (F̄3), to which we can apply
Raynaud’s classification [14]. Let F be the fraction field of R. Let H be a Jordan-Hölder quotient
of Aα[3]F . Then we have from [14, Cor. 3.4.4] that the action of τ on H(F̄ ) has eigenvalues

ψm(τ)n3i(i = 0, . . . ,m− 1)

where ψm is a fundamental tame character of I3, and n is an integer whose base-3 expansion contains
only 0’s and 1’s. In particular, τ4 acts trivially on H(F̄ ) if and only if τ2 acts trivially.

Suppose τ2 acts trivially on H(F̄ ). Then H(F̄ ) is a 1-dimensional F3-vector space, and H is
isomorphic to either (Z/3Z)K or (µ3)K . It then follows from [14, Cor. 3.3.6] that Aα[3]/R has either
Z/3Z or µ3 as a subquotient, which contradicts the supersingularity of Aα.

We may therefore suppose that τ4 acts non-trivially on the F̄ -points of every subquotient of
Aα[3]. In particular, ρ̄E,3(τ4) does not have 1 as an eigenvalue.

Suppose the restriction of ρ̄E,3 to Gal(Q̄/Q[
√
−3]) is absolutely reducible. As in § 3, let L be

the ramified quadratic extension of Q3. Then

(ρ̄E,3|IL)ss ∼= φ1 ⊕ φ2

for some characters φ1, φ2 : ItL → F̄
∗
3. Since (ρ̄E,3|IL) extends to a representation of G3, we have

that {φ1, φ2} = {φ3
1, φ

3
2}. The fact that ρ̄E,3|Q[

√
−3] is absolutely reducible means that in fact

φ3
i = φi for i = 1, 2; in other words, φ1 and φ2 are quadratic characters. In particular, ρ̄E,3(τ4) is

unipotent, which is a contradiction.

To sum up: we have shown that under the hypotheses of the theorem, we know that

• E obtains good supersingular reduction over a tame extension of Q3;

• (bE)3 = 1; and

• ρ̄E,3|Gal(Q̄/Q[
√
−3]) is absolutely irreducible.

It now follows from Theorem 3.1 that E is modular.

Theorem 5.3. Suppose E/K is a Q-curve which acquires semistable reduction over a field tame-
ly ramified over Q3. Suppose further that (bE)3 is trivial, and that the four classes (ψ̄E,3,−1),
bEq3,∞(ψ̄E,3,−1), q3,∞(ψ̄E,3, 3), and bE(ψ̄E,3, 3) are all nontrivial in H2(Gal(Q̄/Q),±1). Finally,
suppose that degµσ can be chosen to be prime to 3 for all σ ∈ Gal(Q̄/Q). Then E is modular.

Proof. We may assume that the reduction of E over 3 is potentially supersingular; otherwise, E is
modular by Theorem 5.1.

It follows from Proposition 4.2 that the restriction of ρ̄E,3 to Gal(Q̄/Q[
√
−3]) is absolutely

irreducible. It then follows from Theorem 3.1 that E is modular.
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