On the average number of octahedral modular forms
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Let N > 0 be an integer, x a Dirichlet character modulo N, and k either 0 or 1. Let f
be a primitive eigenform, not necessarily holomorphic, of level N and Nebentypus x, and
let Af(n) be the eigenvalue of T}, on f. We say f is associated to a Galois representation

p: Gal(Q/Q) — GLy(C) if

A(p) = Tr(p(Frob,))
x(p) = det(p(Frob,))

for all p not dividing N. Following [4], we define Sﬁ};’t]jn(N ,X) to be the finite set of
primitive weight k cupsidal eigenforms which admit an associated Galois representation.
If p: Gal(Q/Q) — GL2(C) is a Galois representation, we define Pp to be the composition
of p with the natural projection GL2(C) — PGL2(C).

Two-dimensional complex Galois representations fall naturally into four types; we call
p dihedral, tetrahedral, octahedral, or icosahedral according as the projectivized image
Pp(Gal(Q/Q)) is isomorphic to a dihedral group, A4, Sy, or As. Cusp forms associated to
Galois representations are classified likewise.

The latter three types are called “exotic”; it is widely believed that the number of
exotic cusp forms of level IV is at most N€. The first results in this direction are due to
Duke [3]. These results were later sharpened by Wong [6] and Michel and Venkatesh [4].
The latter authors proved that

(N, X, k) <o N3O (N, x k) <o NPT RIS (N, x, k) < NO/THe

where n” (N, x, k) is the number of weight k cusp forms of level N, Dirichlet character Y,
and type T. (Note that n” (I, x, k) = 0 unless y sends complex conjugation to (—1)*.)
The goal of this paper is to show that the Michel-Venkatesh bound on octahedral
forms can be sharpened on average over squarefree levels V.
We begin by showing that, in the case of square-free level, one does not need to consider
very many different Dirichlet characters x when counting exotic cusp forms.
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Lemma 1. Let N range over square-free integers. Then the number of Dirichlet characters
x of conductor N such that there exists an exotic cusp form of level N and Nebentypus x
is O(N°€).

Proof. Let p be the Galois representation attached to an exotic cusp form of level N and
conductor x. Let p be a prime dividing N. Then, since p||N, the restriction p : I, —
GLy(C) must decompose as x @ 1. In particular, the projection from p(1)) to Pp(1)) is
an isomorphism. So x(I,) is a cyclic subgroup of either A4, Sy, or Ss; in particular, Y% is
unramified everywhere, whence trivial. Now the number of characters x of level N such
that x% = 1 is O(N¢), which proves the lemma. O

Suppose from now on that N is squarefree. Let nOCt(N) be the number of octahedral
cusp forms of level N. It follows from Lemma 1 and the theorem of Michel and Venkatesh
that

nOCt (N) <e N4/5+€.

Let p : S4 — S3 be the natural surjection. Then every homomorphism Gal(Q/Q) — S,
can be composed with p to yield a homomorphism ¢ : Gal(Q/Q) — Ss3. By combining
arguments from [6] and [4], we obtain the following sharpening of Theorem 10 of [6]:

Proposition 2. Let k be 0 or 1, and N a positive squarefree integer. Let ¢ : Gal(Q/Q) —
Ss be a homomorphism, and let ngCt(N) be the number of octahedral weight k cusp forms

associated to Galois representations p such that p o Pp = 1.

Then anCt(N) < N2/3+e,

Proof. Let x be a character of level N. In the proof of [6, Thm. 10], Wong constructs an
amplifier—that is, a set of complex numbers { ¢, } nen such that, for some absolute constants

C and (',
hd anB lenl < CBY4,
o Y,<plenl> <CBYL

e If p is an octahedral Galois representation such that p o Pp = ¢, and f is a cusp
form in Sﬁitkm(N, x) associated to p, then |3 _peadp(n)| > C'BY*/log B.

In [4, §3], Michel and Venkatesh use the Petersson-Kuznetzov formula and standard
bounds on Kloosterman sums to obtain the following inequality:
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where



e Y is a set of eigenforms in SlA/thin(N . X);

e (f,f) is the Petersson self-product of f;
e {c,} is an arbitrary sequence of complex numbers.

Speaking loosely, the idea of [4] and [3] is that, by the Petersson-Kuznetzov formula,
the vectors {Af(n)}rex and {A¢(m)} rex are “approximately orthogonal” when m and n
are distinct integers. On the other hand, Wong shows that there exists a large set of n
such that the Fourier coefficients A¢(n) are real numbers of a fixed sign as f ranges over
3. The desired bound on ¥ will follow from the tension between these two constraints.

In the above inequality, take {c,} to be Wong’s amplifier and ¥ to be the set of

octahedral forms in SiA/itkin(N y X)-

Note that (f,f) = O(Nlog® N) by [6, Lemma 6]. So the left hand side of (1) is
bounded below by a constant multiple of

2

N7og P NY | Y endp(n)| = Nog 3 (N)|S|(C')2 B ? log™*(B)
T W
while the right hand side is bounded above by a constant multiple of
BY* 4 (BN)*B'*N~'B'/2,
Combining these bounds, one has
12| < Nlog®(N)B~'/%10g?(B)(B'* + (BN)*BN ')
The bound is optimized when we take B ~ N%/3, which yields
5| < N2/3+e,

Combined with the fact that the number of x under consideration is O(N°€), this yields
the desired result. O

Proposition 2, in combination with the theorem of Davenport and Heilbronn on cubic
fields, allows us to improve Michel and Venkatesh’s bound on n°°Y(IN) in the average.

Theorem 3. For all € > 0 there exists a constant C,. such that

(1/X) Z nOCt(N) < C€N2/3+6

N<X
Nsq.free

for all X > 1.



Proof. Let f be an octahedral form of level IV associated to a representation p. For each
prime p|N, the group Pp(l,) is a cyclic subgroup of Sy. (Recall that N is squarefree.)
Define

e N; to be the product of primes p such that Pp(1,) is a nontrivial subgroup of the
Klein four-group;

e N3 to be the product of primes p such that Pp([,) is contained in A4 but not in the
Klein four-group;

e N3 to be the product of primes p such that Pp(I},) is not contained in Ay.

Then N1NaN3 = N. Let ¢ : Gal(Q/Q) — S3 be the composition p o Pp. Then the
fixed field L of ker v is a cyclic 3-cover of a quadratic number field K, where K/Q is the
unique quadratic field ramified precisely at primes dividing N3, and L/K is ramified only
at primes dividing No.

Let b(Na, N3) be the number of such Ss-extensions L. (For notational convenience we
take b(Na, N3) to be 0 when either Ny or N3 is not square-free.) From Proposition 2, we
have

nPUN) < Y b(Ny, Ng)N2/3e, (2)

N1,Ng,N3
N1N2N3=N

Let T be the set of places of K dividing 3Naoco, and let Gp(K) be the Galois group
of the maximal extension of K unramified away from 7. Each cubic field counted in
b(N3, N3) is a cyclic 3-extension of K unramified away from T, so

The Galois cohomology group above fits in an exact sequence

0 — Hom(Cly(K), Z/3Z) — Hom(Gr(K), Z/3Z) — || Hom(Gal(K,/K.), Z/3Z)
veT

where Clp(K) is the quotient of the class group of K by all primes in 7. (See [5,
(8.6.3)]). Let h3(N3) be the order of the 3-torsion subgroup of the class group of K.
Since dimp, Hom(Gal(K,/K,),Z/3Z) is at most 4 (see [5, (7.3.9)]), we have

b(Na, N3) < hg(N3)347| <. Nshs(N3). (3)
Combining (3) and (2) yields

nPUN) < Y hg(Ng) N/

Ny,No,N3
N1 NaNy=N



Since the sums over N7 and Ns have length at most d(N) = O(N°€), we have

nO(N) < Y hg(Ng) N3+,

Ns3|N
So
X X/N3 X
ST W) < ST ha(Ns) D (kN33 < X33 N hg(N3)(1/Ns).  (4)
NN<fX N3=0 k=0 N3=0
sq.free

The sum Zé(:o hs(d)/d can be estimated as follows. Integration by parts yields

t

X X X
S hafd)/d = (1) > hald) + [ (3 ha(apeae.
d=0 d=0 1

d=1
Now by the the theorem of Davenport and Heilbronn [2, Theorem 3] we have $°%,_, h3(d) =
O(t). It follows that
Z hs(d)/d = O(log X).

Substituting this bound into (4) gives

Z nOCt (N) <. X5/3+6
N<X
Nsq.free
which yields the desired result. O

Theorem 3 can be thought of as a bound for the number of quartic extensions of Q
whose Artin conductor, with respect to a certain 2-dimensional projective representation
of Sy, is bounded by X. This is quite different from the problem, recently solved by
Bhargava [1], of counting the number of quartic extensions of Q with discriminant less
than X. For instance, quartic extensions attached to cusp forms of conductor N might
have discriminant as large as N3.
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