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Let N > 0 be an integer, χ a Dirichlet character modulo N , and k either 0 or 1. Let f
be a primitive eigenform, not necessarily holomorphic, of level N and Nebentypus χ, and
let λf (n) be the eigenvalue of Tp on f . We say f is associated to a Galois representation
ρ : Gal(Q̄/Q) → GL2(C) if

λf (p) = Tr(ρ(Frobp))
χ(p) = det(ρ(Frobp))

for all p not dividing N . Following [4], we define SArtin
1/4,k (N,χ) to be the finite set of

primitive weight k cupsidal eigenforms which admit an associated Galois representation.
If ρ : Gal(Q̄/Q) → GL2(C) is a Galois representation, we define Pρ to be the composition
of ρ with the natural projection GL2(C) → PGL2(C).

Two-dimensional complex Galois representations fall naturally into four types; we call
ρ dihedral, tetrahedral, octahedral, or icosahedral according as the projectivized image
Pρ(Gal(Q̄/Q)) is isomorphic to a dihedral group, A4, S4, or A5. Cusp forms associated to
Galois representations are classified likewise.

The latter three types are called “exotic”; it is widely believed that the number of
exotic cusp forms of level N is at most N ε. The first results in this direction are due to
Duke [3]. These results were later sharpened by Wong [6] and Michel and Venkatesh [4].
The latter authors proved that

ntetr(N,χ, k) �ε N
2/3+ε, noct(N,χ, k) �ε N

4/5+ε, nicos(N,χ, k) �ε N
6/7+ε

where nT (N,χ, k) is the number of weight k cusp forms of level N , Dirichlet character χ,
and type T . (Note that nT (N,χ, k) = 0 unless χ sends complex conjugation to (−1)k.)

The goal of this paper is to show that the Michel-Venkatesh bound on octahedral
forms can be sharpened on average over squarefree levels N .

We begin by showing that, in the case of square-free level, one does not need to consider
very many different Dirichlet characters χ when counting exotic cusp forms.
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Lemma 1. Let N range over square-free integers. Then the number of Dirichlet characters
χ of conductor N such that there exists an exotic cusp form of level N and Nebentypus χ
is O(N ε).

Proof. Let ρ be the Galois representation attached to an exotic cusp form of level N and
conductor χ. Let p be a prime dividing N . Then, since p‖N , the restriction ρ : Ip →
GL2(C) must decompose as χ ⊕ 1. In particular, the projection from ρ(Ip) to Pρ(Ip) is
an isomorphism. So χ(Ip) is a cyclic subgroup of either A4, S4, or S5; in particular, χ60 is
unramified everywhere, whence trivial. Now the number of characters χ of level N such
that χ60 = 1 is O(N ε), which proves the lemma.

Suppose from now on that N is squarefree. Let noct(N) be the number of octahedral
cusp forms of level N . It follows from Lemma 1 and the theorem of Michel and Venkatesh
that

noct(N) �ε N
4/5+ε.

Let p : S4 → S3 be the natural surjection. Then every homomorphism Gal(Q̄/Q) → S4

can be composed with p to yield a homomorphism ψ : Gal(Q̄/Q) → S3. By combining
arguments from [6] and [4], we obtain the following sharpening of Theorem 10 of [6]:

Proposition 2. Let k be 0 or 1, and N a positive squarefree integer. Let ψ : Gal(Q̄/Q) →
S3 be a homomorphism, and let noctψ (N) be the number of octahedral weight k cusp forms
associated to Galois representations ρ such that p ◦ Pρ = ψ.

Then noctψ (N) �ε N
2/3+ε.

Proof. Let χ be a character of level N . In the proof of [6, Thm. 10], Wong constructs an
amplifier–that is, a set of complex numbers {cn}n∈N such that, for some absolute constants
C and C ′,

•
∑

n≤B |cn| ≤ CB1/4.

•
∑

n≤B |cn|2 ≤ CB1/4.

• If ρ is an octahedral Galois representation such that p ◦ Pρ = ψ, and f is a cusp
form in SArtin

1/4,k (N,χ) associated to ρ, then |
∑

n≤B cnλf (n)| ≥ C ′B1/4/ logB.

In [4, §3], Michel and Venkatesh use the Petersson-Kuznetzov formula and standard
bounds on Kloosterman sums to obtain the following inequality:

∑
f∈Σ

(f, f)−1

∣∣∣∣∣∣∣∣
∑
n≤B

(n,N)=1

cnλf (n)

∣∣∣∣∣∣∣∣
2

�ε

∑
n≤B

(n,N)=1

|cn|2 + (BN)εB1/2N−1

 ∑
n≤B

(n,N)=1

|cn|


2

(1)

where
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• Σ is a set of eigenforms in SArtin
1/4,k (N,χ);

• (f, f) is the Petersson self-product of f ;

• {cn} is an arbitrary sequence of complex numbers.

Speaking loosely, the idea of [4] and [3] is that, by the Petersson-Kuznetzov formula,
the vectors {λf (n)}f∈Σ and {λf (m)}f∈Σ are “approximately orthogonal” when m and n
are distinct integers. On the other hand, Wong shows that there exists a large set of n
such that the Fourier coefficients λf (n) are real numbers of a fixed sign as f ranges over
Σ. The desired bound on Σ will follow from the tension between these two constraints.

In the above inequality, take {cn} to be Wong’s amplifier and Σ to be the set of
octahedral forms in SArtin

1/4,k (N,χ).
Note that (f, f) = O(N log3N) by [6, Lemma 6]. So the left hand side of (1) is

bounded below by a constant multiple of

N−1 log−3N
∑
f∈Σ

∣∣∣∣∣∣∣∣
∑
n≤B

(n,N)=1

cnλf (n)

∣∣∣∣∣∣∣∣
2

≥ N−1 log−3(N)|Σ|(C ′)2B1/2 log−2(B)

while the right hand side is bounded above by a constant multiple of

B1/4 + (BN)εB1/2N−1B1/2.

Combining these bounds, one has

|Σ| �ε N log3(N)B−1/2 log2(B)(B1/4 + (BN)εBN−1)

The bound is optimized when we take B ∼ N4/3, which yields

|Σ| �ε N
2/3+ε.

Combined with the fact that the number of χ under consideration is O(N ε), this yields
the desired result.

Proposition 2, in combination with the theorem of Davenport and Heilbronn on cubic
fields, allows us to improve Michel and Venkatesh’s bound on noct(N) in the average.

Theorem 3. For all ε > 0 there exists a constant Cε such that

(1/X)
∑
N<X

Nsq.free

noct(N) < CεN
2/3+ε

for all X > 1.
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Proof. Let f be an octahedral form of level N associated to a representation ρ. For each
prime p|N , the group Pρ(Ip) is a cyclic subgroup of S4. (Recall that N is squarefree.)
Define

• N1 to be the product of primes p such that Pρ(Ip) is a nontrivial subgroup of the
Klein four-group;

• N2 to be the product of primes p such that Pρ(Ip) is contained in A4 but not in the
Klein four-group;

• N3 to be the product of primes p such that Pρ(Ip) is not contained in A4.

Then N1N2N3 = N . Let ψ : Gal(Q̄/Q) → S3 be the composition p ◦ Pρ. Then the
fixed field L of kerψ is a cyclic 3-cover of a quadratic number field K, where K/Q is the
unique quadratic field ramified precisely at primes dividing N3, and L/K is ramified only
at primes dividing N2.

Let b(N2, N3) be the number of such S3-extensions L. (For notational convenience we
take b(N2, N3) to be 0 when either N2 or N3 is not square-free.) From Proposition 2, we
have

noct(N) �ε

∑
N1,N2,N3

N1N2N3=N

b(N2, N3)N2/3+ε. (2)

Let T be the set of places of K dividing 3N2∞, and let GT (K) be the Galois group
of the maximal extension of K unramified away from T . Each cubic field counted in
b(N2, N3) is a cyclic 3-extension of K unramified away from T , so

b(N2, N3) ≤ |Hom(GT (K),Z/3Z)|.

The Galois cohomology group above fits in an exact sequence

0 → Hom(ClT (K),Z/3Z) → Hom(GT (K),Z/3Z) →
∏
v∈T

Hom(Gal(K̄v/Kv),Z/3Z)

where ClT (K) is the quotient of the class group of K by all primes in T . (See [5,
(8.6.3)]). Let h3(N3) be the order of the 3-torsion subgroup of the class group of K.
Since dimF3 Hom(Gal(K̄v/Kv),Z/3Z) is at most 4 (see [5, (7.3.9)]), we have

b(N2, N3) ≤ h3(N3)34|T | �ε N
ε
2h3(N3). (3)

Combining (3) and (2) yields

noct(N) �ε

∑
N1,N2,N3

N1N2N3=N

h3(N3)N2/3+ε.
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Since the sums over N1 and N2 have length at most d(N) = O(N ε), we have

noct(N) �ε

∑
N3|N

h3(N3)N2/3+ε.

So

∑
N<X

Nsq.free

noct(N) �ε

X∑
N3=0

h3(N3)
X/N3∑
k=0

(kN3)2/3+ε ≤ X5/3+ε
X∑

N3=0

h3(N3)(1/N3). (4)

The sum
∑X

d=0 h3(d)/d can be estimated as follows. Integration by parts yields

X∑
d=0

h3(d)/d = (1/X)
X∑
d=0

h3(d) +
∫ X

1
(
t∑

d=1

h3(d))t−2dt.

Now by the the theorem of Davenport and Heilbronn [2, Theorem 3] we have
∑t

d=0 h3(d) =
O(t). It follows that

X∑
d=0

h3(d)/d = O(logX).

Substituting this bound into (4) gives∑
N<X

Nsq.free

noct(N) �ε X
5/3+ε

which yields the desired result.

Theorem 3 can be thought of as a bound for the number of quartic extensions of Q
whose Artin conductor, with respect to a certain 2-dimensional projective representation
of S4, is bounded by X. This is quite different from the problem, recently solved by
Bhargava [1], of counting the number of quartic extensions of Q with discriminant less
than X. For instance, quartic extensions attached to cusp forms of conductor N might
have discriminant as large as N3.
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