LECTURE 1

So last time we introduced the matrix [ 9/8 7/8

], which had small

7/8 9/8
determinant but whose powers grew very quickly.
]2 . o
Another example of such a matrix is 0 1(/) 4l Here it’s quite visible

what goes wrong; the matrix has small determinant, but a high power of it
is not going to be close to 0. In fact, it’s very easy to say what a high power
of M is; it is

2" 0
n __
M7= [ 0 1/4" ]
. . 9/8 7/8
In fact, these examples are related. Draw a picture showing that
7/8 9/8
is a stretch of dilation factor 2 in the direction of [ 1 } , but a shrink of di-
lation factor 1/4 in the direction of [ _11 } . That is,

THEH AR}

So this makes it clear what M does to any vector. For instance, this
makes it very easy to calculate M10¢,. Without multiplying it out. Namely,
write

& = (1/2) [ X } +(1/2) [ _11]

and now have
A0z = 210(1/9) [ 1 ] +(1/4')(1/2) [ _}1 ]

which is very close to

210(1/2) [ 1 ] = 512512.

Also

a=a)|y|-am| ]
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and so one finds similarly that

A8, ~ 210(1/2) [ 1 ] = [ gg } .

Conclude that

512 512
10
A [ 512 512 ]

as I told you yesterday. Of course, this is not ezactly correct, since M19 has
512 512
512 512

So having found these two special vectors was very useful in our analysis
of the matrix! They give us

determinant 1/2'° and ] has determinant 0.

e a geometric sense of what the matrix does;
e an ability to compute the action of large powers of the matrix.

Definition. Let A be an n xn matrix. An eigenvector for A is a nonzero
vector ¥ € R™ such that

AV = \T

for some scalar A\. The scalar A is called the eigenvalue of the eigenvector .

REMARK: The word “eigen” means “characteristic of” or “belonging to”
in German and is cognate to the English word “own.”

MOTTO: If we understand the eigenvectors and eigenvalues of a matrix,
we understand its essence.

Example:

1. The matrix [ 9/8 7/8

7/8 9/8 ! }, with eigenvalue 2,

} has eigenvectors [ 1

and [ ], with eigenvalue 1/4.

1
-1
. 11 . . .
2. Take the matrix 01| Does it have an eigenvector? See if anyone

1 o .
offers one. Observe that [ 0 } = €1 is an eigenvector. Are there any others?

Hard to say! Let’s see. Maybe there’s an eigenvector with eigenvalue 2.
That is, maybe there’s a nonzero vector v satisfying

1 1],
[0 1]”_2
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That is,

Lo =L = 18]

No, for in that case x = 2z,s0 x =0, and then z+y=0+y =2y, soy =0
as well. Let’s put this computation another way: from

get

(1] 1 -2I) = _01 _11 } has nonzero deter-
minant, so is invertible. In particular, it has no nullspace. So the equation
above has no nonzero solution.

Now the point is, there is nothing special about 2 in the above argument!
So, arguing exactly as above, we find that the following statements are

equivalent:

But one checks that ([

e U is an eigenvector of A with eigenvalue \;
o Ve N(A—X).

But note that N(A — AI) contains a nonzero vector if and only if A — AT
is not invertible (Rank Theorem!) So this gives us a very hands-on way to
compute the eigenvalues. Namely, the following are equivalent:

e ) is an eigenvalue of A;
e N(A — \I) contains a nonzero vector;

e A — )\ is not invertible;

det(A — AI) # 0.

This motivates the following definition.

Definition. Let A be an n x n matrix. The characteristic polynomial
P4 () of A (which should perhaps be called the eigenpolynomial) is det(A —
).



Example. If A = 9/87/87/89/8, we get

9/8— X  7/8

pa(A) = det 7/8  9/8— A

=(9/8 = \)? — (7/8)2 = 81/64 — 9/4\ + N\? — 49/64 = \? — 9/4.
So indeed, the only eigenvalues are 2 and 1/4!

If S = 1101, compute pa(A) = (A —1)2. So A = 1 is the only eigenvalue.

Remark: We can check from the definition of determinant that p(\)
is a degree n polynomial. So by the fundamental theorem of algebra, it has
at most n different roots. So an n X n matrix A has at most n different
eigenvalues. But it really could be less—witness S above, which is 2 x 2 but
only has one eigenvalue.

Remark: The characteristic polynomial method only tells us the eigen-
values; to find the eigenvectors corresponding to an eigenvalue A\ we must
still compute the nullspace of A — AI.

Let’s do a bigger example!

Try

— O =
O = =
=== O
— = O

How to find the eigenvalues? Well, we have to compute

1-x 1 0 1
1 1-x 1 0
Pa(A) = det(A — M) = det | N
1 0 11—

Good thing we computed that last Wednesday! We get
Pa(A) = (1= \)?(3 = A)(—1 — A).

So A is an eigenvalue of A exactly when P4(\) = 0. That is, the eigenvalues
of A are 1,3, and —1.

Can we find the eigenvectors associated to these eigenvalues? Well, like
for instance let us find the eigenvector associated to the eigenvalue 3. Then
we are computing N (A — 31); that is, the nullspace of

-2 1 0 1
1 -2 1 0
0o 1 -2 1
1 0 1 -2



We could certainly do Gaussian elimination as usual to compute the nullspace,
but let’s just observe that

!
_ = =

does the trick.

LECTURE 2

1. Trace and determinant

Let me start with a couple of interesting facts, which we can use to
check our computations of eigenvalues. First, a remark on the characteristic
polynomial.

pa(z) = (=1)"

(2

n
({L‘ - )\1)

=1

where the \; are the eigenvalues of n (counted with multiplicity.) The fact

that the \; are the roots of p4(z) tells us that

n

To find the right value of ¢, we can expand det(A — zI) in cofactors and
observe that the coefficient of ™ is (—1)".

Definition: The trace of a matrix A (denoted TrA) is the sum of its
eigenvalues (with multiplicity.)

What does “with multiplicity” mean? It means that if p4(\) has a factor

of (A —a)™, then we count the eigenvalue a n times. So for instance the
1 1
trace of [ 0 1 ] is 2, because the eigenvalues are 1, 1.

Remark: Every matrix has n eigenvalues (counted with multiplicity,
and including complex eigenvalues.)

This follows from the fundamental theorem of algebra, which tells us that
the degree n polynomial p 4 () has exactly n roots (counted with multiplicity,
and including complex roots.)

Proposition: Tr(A) is equal to the sum of the diagonal entries of A.
det(A) is equal to the product of the eigenvalues of A (with multiplicity.)

I’'m going to stop saying “with multiplicity” now, but it is always there
implicitly.



The determinant fact is easy to prove: we know that

det(A) = pa(0) = (=1)"

n n

(=) =)

1 i=1

)

To prove the trace fact (which I won’t do-it’s interesting but not neces-
sary) one shows that both Tr(A) and the sum of the diagonal entries of A
are equal to the negative of the 2"~ ! coefficient of P,(z).

2. Complex eigenvalues

Now we must face head-on the fact that eigenvalues are not necessarily
real numbers.

Example: What are the eigenvalues and eigenvectors of

0 1
A= [ ol ]?
Observe: it shouldn’t be so surprising that there are no real eigenvalues—
geometrically speaking, it is hard to envision a rotation as “stretch so much
in one direction, so much in another direction!”

Easy to compute that pa(z) = 22 + 1. So the eigenvalues are +i. What
are the eigenvectors? Well, the eigenvector corresponding to ¢ must be in
the nullspace of

whose row-reduced form is

o o]

so the nullspace is seen to be spanned by

5[]

A vector with complex coefficients. If our eyes could see the complex num-
bers, we’d see that rotation was actually a stretch by a factor of ¢ in the

1 . 1 o
[ ; direction and by a factor of —i in the [ . ] direction!

Remark If A is a complex eigenvalue of A, then so is its complex con-
jugate A.

3. Diagonalization



Now I want to talk about diagonalization. This is a formalization of

some of the ideas we talked about Monday—it captures the usefulness of
having a basis consisting of eigenvectors for a matrix A.
9/8 17/8 2 0
7/8 9/8 } and [ 0 1/4
had the same eigenvalues but different eigenvectors, and we found that their
“behavior” was in some sense quite similar.

Proposition: Let A be a matrix with n linearly independent eigenvec-
tors ¥4, ... ,U,. Let S be the matrix

Remember the example of [ ; these matrices

|
S=|# ... @
|

and let D be the diagonal matrix

A
S =
An

Then S~1AS = D.

How do we prove this? The idea is to show that S~'AS and D have
the same eigenvalues and eigenvectors, and from there to observe that they
must be the same.

Proof. Let M = S7'AS — D. We're trying to show M is the zero
matrix.

Let €; be a standard basis element. Then De; = \;€;. Now

S_lASéi == S_IAI_)'Z' == S_l)\iﬁi == )\1(5_1171) == )\161
Conclude that
Me; = N\i€; — N\i€; = 0

Since M Xkills each of the standard basis vectors, it must be 0.

Definition: We say A is diagonalizable if it has n linearly independent
eigenvectors.

Remark: We have seen, to our dismay, that not every matrix A is

11
diagonalizable—for instance, [ is not.

0 1
Corollary: Suppose A be a matrix with n linearly independent eigen-
vectors ¥y, ... ,U,, with associated eigenvalues Ai,...,\,. Define S, D as

above. Then A = SDS~ 1.



Problem: “Find a matrix A which stretches by a factor of 3 in the
[ (1) ] direction, and by a factor of 4 in the { 1 ] direction.”

In other words: “Find a matrix A which has eigenvectors [ (1) },[ 1 }

and corresponding eigenvalues 3,4.”

11 30
ThenS—[O 1]andD—[O 4],sovveﬁnd

Cemee1 [ 31
a-sos=[3 1],

4. An application of diagonalizability
It is easy to calculate large powers of a diagonalizable matrix, for exam-

ple. Suppose A = SDS~!. Then
A? = AA = (SDS™Y)(SDS™1) = SD?s~!
Likewise, in general,
A" =8SD"S™ 1,

3 1

. 9;? .
0 4}WhatlsA ? It is

So, for instance, take A = [

9 —
SDS™! = [ é 1 ] [ 30 fg } { (1) 11 ] = mattwo3’4” — 3°04°

Much easier than multiplying it out nine times!
LECTURE 3
No notes for lecture 3; JE is out of town!



