
LECTURE 1

So last time we introduced the matrix
[

9/8 7/8
7/8 9/8

]
, which had small

determinant but whose powers grew very quickly.

Another example of such a matrix is
[

2 0
0 1/4

]
. Here it’s quite visible

what goes wrong; the matrix has small determinant, but a high power of it
is not going to be close to 0. In fact, it’s very easy to say what a high power
of M is; it is

Mn =
[

2n 0
0 1/4n

]
.

In fact, these examples are related. Draw a picture showing that
[

9/8 7/8
7/8 9/8

]
is a stretch of dilation factor 2 in the direction of

[
1
1

]
, but a shrink of di-

lation factor 1/4 in the direction of
[

1
−1

]
. That is,

A

[
1
1

]
= 2

[
1
1

]
, A

[
1
−1

]
= (1/4)

[
1
−1

]
.

So this makes it clear what M does to any vector. For instance, this
makes it very easy to calculate M10~e1. Without multiplying it out. Namely,
write

~e1 = (1/2)
[

1
1

]
+ (1/2)

[
1
−1

]
and now have

A10~e1 = 210(1/2)
[

1
1

]
+ (1/410)(1/2)

[
1
−1

]
which is very close to

210(1/2)
[

1
1

]
= ~512512.

Also

~e2 = (1/2)
[

1
1

]
− (1/2)

[
1
−1

]
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and so one finds similarly that

A10~e2 ∼ 210(1/2)
[

1
1

]
=
[

512
512

]
.

Conclude that

A10 ∼
[

512 512
512 512

]
as I told you yesterday. Of course, this is not exactly correct, since M10 has

determinant 1/210 and
[

512 512
512 512

]
has determinant 0.

So having found these two special vectors was very useful in our analysis
of the matrix! They give us

• a geometric sense of what the matrix does;

• an ability to compute the action of large powers of the matrix.

Definition. Let A be an n×n matrix. An eigenvector for A is a nonzero
vector ~v ∈ Rn such that

A~v = λ~v

for some scalar λ. The scalar λ is called the eigenvalue of the eigenvector ~v.
Remark: The word “eigen” means “characteristic of” or “belonging to”

in German and is cognate to the English word “own.”
MOTTO: If we understand the eigenvectors and eigenvalues of a matrix,

we understand its essence.
Example:

1. The matrix
[

9/8 7/8
7/8 9/8

]
has eigenvectors

[
1
1

]
, with eigenvalue 2,

and
[

1
−1

]
, with eigenvalue 1/4.

2. Take the matrix
[

1 1
0 1

]
. Does it have an eigenvector? See if anyone

offers one. Observe that
[

1
0

]
= ~e1 is an eigenvector. Are there any others?

Hard to say! Let’s see. Maybe there’s an eigenvector with eigenvalue 2.
That is, maybe there’s a nonzero vector ~v satisfying[

1 1
0 1

]
~v = 2~v.
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That is, [
1 1
0 1

] [
x
y

]
=
[

x
x+ y

]
=
[

2x
2y

]
.

No, for in that case x = 2x, so x = 0, and then x+ y = 0 + y = 2y, so y = 0
as well. Let’s put this computation another way: from[

1 1
0 1

]
~v = 2~v = 2I~v

get

(
[

1 1
0 1

]
− 2I)~v = 0

.

But one checks that (
[

1 1
0 1

]
− 2I) =

[
−1 1
0 −1

]
has nonzero deter-

minant, so is invertible. In particular, it has no nullspace. So the equation
above has no nonzero solution.

Now the point is, there is nothing special about 2 in the above argument!
So, arguing exactly as above, we find that the following statements are
equivalent:

• ~v is an eigenvector of A with eigenvalue λ;

• ~v ∈ N(A− λI).

But note that N(A−λI) contains a nonzero vector if and only if A−λI
is not invertible (Rank Theorem!) So this gives us a very hands-on way to
compute the eigenvalues. Namely, the following are equivalent:

• λ is an eigenvalue of A;

• N(A− λI) contains a nonzero vector;

• A− λI is not invertible;

• det(A− λI) 6= 0.

This motivates the following definition.
Definition. Let A be an n × n matrix. The characteristic polynomial

PA(λ) of A (which should perhaps be called the eigenpolynomial) is det(A−
λI).
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Example. If A = ~9/87/87/89/8, we get

pA(λ) = det
[

9/8− λ 7/8
7/8 9/8− λ

]
= (9/8− λ)2 − (7/8)2 = 81/64− 9/4λ+ λ2 − 49/64 = λ2 − 9/4λ+ 1/2 = (λ− 2)(λ− 1/4)

So indeed, the only eigenvalues are 2 and 1/4!
If S = ~1101, compute pA(λ) = (λ− 1)2. So λ = 1 is the only eigenvalue.
Remark: We can check from the definition of determinant that pA(λ)

is a degree n polynomial. So by the fundamental theorem of algebra, it has
at most n different roots. So an n × n matrix A has at most n different
eigenvalues. But it really could be less–witness S above, which is 2× 2 but
only has one eigenvalue.

Remark: The characteristic polynomial method only tells us the eigen-
values; to find the eigenvectors corresponding to an eigenvalue λ we must
still compute the nullspace of A− λI.

Let’s do a bigger example!
Try

A =


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


How to find the eigenvalues? Well, we have to compute

PA(λ) = det(A− λI) = det


1− λ 1 0 1

1 1− λ 1 0
0 1 1− λ 1
1 0 1 1− λ


Good thing we computed that last Wednesday! We get

PA(λ) = (1− λ)2(3− λ)(−1− λ).

So λ is an eigenvalue of A exactly when PA(λ) = 0. That is, the eigenvalues
of A are 1, 3, and −1.

Can we find the eigenvectors associated to these eigenvalues? Well, like
for instance let us find the eigenvector associated to the eigenvalue 3. Then
we are computing N(A− 3I); that is, the nullspace of

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2


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We could certainly do Gaussian elimination as usual to compute the nullspace,
but let’s just observe that

~v3 =


1
1
1
1


does the trick.

LECTURE 2
1. Trace and determinant
Let me start with a couple of interesting facts, which we can use to

check our computations of eigenvalues. First, a remark on the characteristic
polynomial.

pA(x) = (−1)n
n∏
i=1

(x− λi)

where the λi are the eigenvalues of n (counted with multiplicity.) The fact
that the λi are the roots of pA(x) tells us that

pA(x) = c

n∏
i=1

(x− λi)

To find the right value of c, we can expand det(A − xI) in cofactors and
observe that the coefficient of xn is (−1)n.

Definition: The trace of a matrix A (denoted TrA) is the sum of its
eigenvalues (with multiplicity.)

What does “with multiplicity” mean? It means that if pA(λ) has a factor
of (λ − a)m, then we count the eigenvalue a n times. So for instance the

trace of
[

1 1
0 1

]
is 2, because the eigenvalues are 1, 1.

Remark: Every matrix has n eigenvalues (counted with multiplicity,
and including complex eigenvalues.)

This follows from the fundamental theorem of algebra, which tells us that
the degree n polynomial pA(λ) has exactly n roots (counted with multiplicity,
and including complex roots.)

Proposition: Tr(A) is equal to the sum of the diagonal entries of A.
det(A) is equal to the product of the eigenvalues of A (with multiplicity.)

I’m going to stop saying “with multiplicity” now, but it is always there
implicitly.
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The determinant fact is easy to prove: we know that

det(A) = pA(0) = (−1)n
n∏
i=1

(−λi) =
n∏
i=1

(λi)

To prove the trace fact (which I won’t do–it’s interesting but not neces-
sary) one shows that both Tr(A) and the sum of the diagonal entries of A
are equal to the negative of the xn−1 coefficient of Pn(x).

2. Complex eigenvalues
Now we must face head-on the fact that eigenvalues are not necessarily

real numbers.
Example: What are the eigenvalues and eigenvectors of

A =
[

0 1
−1 0

]
?

Observe: it shouldn’t be so surprising that there are no real eigenvalues–
geometrically speaking, it is hard to envision a rotation as “stretch so much
in one direction, so much in another direction!”

Easy to compute that pA(x) = x2 + 1. So the eigenvalues are ±i. What
are the eigenvectors? Well, the eigenvector corresponding to i must be in
the nullspace of

A− iI =
[
−i 1
−1 −i

]
whose row-reduced form is [

−i 1
0 0

]
so the nullspace is seen to be spanned by

~vi =
[

1
i

]
.

A vector with complex coefficients. If our eyes could see the complex num-
bers, we’d see that rotation was actually a stretch by a factor of i in the[

1
i

]
direction and by a factor of −i in the

[
1
−i

]
direction!

Remark If λ is a complex eigenvalue of A, then so is its complex con-
jugate λ̄.

3. Diagonalization
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Now I want to talk about diagonalization. This is a formalization of
some of the ideas we talked about Monday–it captures the usefulness of
having a basis consisting of eigenvectors for a matrix A.

Remember the example of
[

9/8 7/8
7/8 9/8

]
and

[
2 0
0 1/4

]
; these matrices

had the same eigenvalues but different eigenvectors, and we found that their
“behavior” was in some sense quite similar.

Proposition: Let A be a matrix with n linearly independent eigenvec-
tors ~v1, . . . , ~vn. Let S be the matrix

S =

 | | |
~v1 . . . ~vn
| | |


and let D be the diagonal matrix

S =

 λ1

. . .
λn

 .
Then S−1AS = D.

How do we prove this? The idea is to show that S−1AS and D have
the same eigenvalues and eigenvectors, and from there to observe that they
must be the same.

Proof. Let M = S−1AS − D. We’re trying to show M is the zero
matrix.

Let ~ei be a standard basis element. Then D~ei = λi~ei. Now

S−1AS~ei = S−1A~vi = S−1λi~vi = λi(S−1~vi) = λiei.

Conclude that

M~ei = λi~ei − λi~ei = 0

Since M kills each of the standard basis vectors, it must be 0.
Definition: We say A is diagonalizable if it has n linearly independent

eigenvectors.
Remark: We have seen, to our dismay, that not every matrix A is

diagonalizable–for instance,
[

1 1
0 1

]
is not.

Corollary: Suppose A be a matrix with n linearly independent eigen-
vectors ~v1, . . . , ~vn, with associated eigenvalues λ1, . . . , λn. Define S,D as
above. Then A = SDS−1.
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Problem: “Find a matrix A which stretches by a factor of 3 in the[
1
0

]
direction, and by a factor of 4 in the

[
1
1

]
direction.”

In other words: “Find a matrix A which has eigenvectors
[

1
0

]
,
[

1
1

]
and corresponding eigenvalues 3, 4.”

Then S =
[

1 1
0 1

]
and D =

[
3 0
0 4

]
, so we find

A = SDS−1 =
[

3 1
0 4

]
.

4. An application of diagonalizability
It is easy to calculate large powers of a diagonalizable matrix, for exam-

ple. Suppose A = SDS−1. Then

A2 = AA = (SDS−1)(SDS−1) = SD2S−1

Likewise, in general,

An = SDnS−1.

So, for instance, take A =
[

3 1
0 4

]
. What is A9? It is

SD9S−1 =
[

1 1
0 1

] [
39 0
0 49

] [
1 −1
0 1

]
= mattwo3949 − 39049

Much easier than multiplying it out nine times!
LECTURE 3
No notes for lecture 3; JE is out of town!
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