
Lecture I

I. VECTOR SPACES
For the moment, I’ll postpone discussion of the row space and the left

nullspace, until the end of the week when this discussion becomes more
natural.

First, I want to remind you how to express a linear transformation as a
matrix.

Procedure: Given a linear transformation T : Rn → R
m, we only need

to know how T acts on the basis ~e1, . . . , ~en. To wit, the desired matrix A is
given as

A =

 | | |
T (~e1) . . . T (~en)
| | |

.
Example: Suppose the transformation is T : R2 → R2 given by “reflect

through the line y = x, then reflect through the x-axis.” To determine the
corresponding 2× 2 matrix, it is enough to compute T (~e1) and T (~e2). One
readily sees that

T (~e1) = −~e2, T (~e2) = ~e1

So the corresponding matrix is [
0 1
−1 0

]
which you might note is identical to the matrix representing “rotation by
90 degrees clockwise.” In other words, the product of two reflections is a
rotation–not so obvious geometrically.

Now, on to a sort-of definition.
“Definition” A vector space is any set of objects which can be added

together and multiplied by scalars.
This is not very precise, and to make it precise would make it rather

unreadable. But see exercise 2.1.5 in Strang for the precise definition. The
most important thing is to have at our disposal a population of examples.

Examples:

• Rn

• any subspace of Rn
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• the set of polynomials

• the set of polynomials of degree at most 2

• the set of all 2× 2 matrices

The game is that all the basic notions of linear algebra apply just as
well to any vector space as they do to Rm. For instance, basis, dimension,
nullspace, column space....

LECTURE 2
Example
Let P2 be the space of polynomials of degree at most 2.
Claim 1: A basis for this space is {1, x, x2}.
They are evidently linearly independent, and every polynomial of degree

at most 2–more or less by definition–can be expressed as some combination
of these three guys. (Write more on the board–this may be a subtle point.)
This also means that P2 has dimension 2.

Now let T : P2 → P2 be the map defined by

T (f) = f ′ − f

Claim 2: T is a linear transformation.
To check:

• D(f + g) = D(f) +D(g)

• D(af) = aD(f)

Both are straightforward. To check the first, for instance, just check

D(f + g) = (f + g)′ − (f + g) = f ′ + g′ − f − g = (f ′ − f) + (g′ − g) = D(f) +D(g)

as desired.
Claim 3: T can be expressed as a matrix.
We would like to do this just as before. But the problem is, we don’t

have the ~ei! But this only appears to be a problem.
The fact of the matter is: the only important thing about the ~ei is that

they are a basis for Rn. And we have a basis for our space P2. So we’ll use
that basis in place of the ~ei.

Let ~v1 = 1, ~v2 = x,~v3 = x2 be our basis. If f is the polynomial ax2 +
bx+ c, we can write f = c~v1 + b~v2 + a~v3. Or, more compactly, we can define

[f ] =

 c
b
a


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MOTTO: The choice of a basis allows us to write each element
of the vector space as a column vector.

In fact, this choice allows us to make a one-to-one association between
elements of P2 and elements of R3. In the math biz, we would say we have
exhibited an isomorphism between P2 and R3. Note also that ~vi corresponds
to ~ei.

Now we would like to represent T by a matrix; that is, we would like to
find A such that

[T (f)] = A[f ]

(this is an equality of vectors.)
Just as in the case treated earlier, it is true that we can find such a

matrix: it is given by

A =

 | | |
[T (~v1)] [T (~v2)] [T (~v3)]
| | |

 .
And we have

[T (~v1)] = [1′ − 1] = [−1] =

 −1
0
0


and

[T (~v2)] = [x′ − x] = [1− x] =

 1
−1
0


and

[T (~v3)] = [(x2)′ − x2] = [2x− x2] =

 0
2
−1

 .
To sum up, T can be represented by the matrix

A =

 −1 1 0
0 −1 2
0 0 −1

 .
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Observe that A has rank 3; it follows that A is invertible (by Rank
Theorem). It follows that

A~x = ~y

has a unique solution for every y. Translating from vectors to polynomials,
we are saying that

T (f) = g

has a unique solution for every polynomial g ∈ P2; that is, the differential
equation

f ′ − f = g

has a unique solution. This solution can be computed explicitly by finding
the inverse matrix of A. So we’ve obtained a theorem about the uniqueness
of the solution to a differential equation by means of linear algebra!

Remark: Even more fun, we might try to look at this problem again
using a different basis... but that’s another story.

LECTURE 3

I. Orthogonality
I want to talk about the transpose now.
Recall: If A is an m× n matrix, then AT is the n×m matrix obtained

by “writing A sideways.”
The transpose has everything to do with the idea of dot product. For

instance: let ~v and ~w be two vectors. Then

~vT ~w = [~v · ~w].

Definition: Let ~v, ~w ∈ Rn. We say ~v and ~w are orthogonal if (and only
if)

~vT ~w = 0.

(note abuse of notation; I write 0 instead of [0].)
The magnitude of ~v is

√
~vT~v. It is denoted |~v|. A unit vector is a vector

of magnitude 1.
(note abuse of notation; I write 0 instead of [0].)
Example: (Pythagorean Theorem)
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Draw the right triangle with edges ~v, ~w,~v + ~w. Then point out that
Pythagorean Theorem says |~v + ~w|2 = |~v|2 + |~w|2. Check

|~v + ~w|2 = (~v + ~w) · (~v + ~w) = ~v · ~v + 2~v · ~w + ~w · ~w = ~v · ~v + ~w · ~w.

Example: What is the set of all vectors orthogonal to

 1
2
5

?

Well, let

 x1

x2

x3

 be the relevant vector. Then

[125]

 x1

x2

x3

 = x1 + 2x2 + 5x3

So the set of all vectors orthogonal to

 1
2
5

 is

V = {

 x1

x2

x3

 : x1 + 2x2 + 5x3 = 0}.

Remarks:

• V is a subspace.

• In fact, V is the nullspace of the matrix

[125].

Example: What about the set of all vectors ~x orthogonal to

 1
2
5

 and 0
1
2

? Suppose that ~x has this property. Then evidently

[
1 2 5
0 1 2

]
~x = ~0
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That is, ~x is in N(A), where A is the 2×3 matrix above. In fact, the reverse
is true: so the set of vectors we’re interested in is just N(A).

Note that N(A) is 1-dimensional, because the rank of A is 2.
Definition: Let V be a subspace of Rn. Then the orthogonal comple-

ment of V , denoted V ⊥, is the set of vectors which are orthogonal to every
vector in V .

Fact: V ⊥ is a subspace of Rn.
Examples: Draw a line in R3, observe that the orthogonal comple-

ment is a plane. Likewise, draw a plane and observe that the orthogonal
complement is a line. Now ask: what is orthogonal complement of R3 itself?

Ask: how does the dimension of the space relate to the dimension of its
orthogonal complement? We should get to the conjecture that the sum of
the two dimensions is equal.

Theorem. dimV + dimV ⊥ = n.

Proof. (Not so formal as many proofs I give–can you find a more precise
one?)

Idea: this looks a lot like the Rank Theorem. So we should try to find a
matrix that has V ⊥ as nullspace and V as column space.

Consider the linear transformation “orthogonal projection onto V .” Let
A be a matrix representing this transformation. Now A~x = ~y has a solution
if and only if ~y ∈ V ; conclude that R(A) = V . On the other hand, A~x = 0
if and only if ~x ∈ V ⊥; thus, N(A) = V ⊥. Then the desired theorem follows
by the Rank Theorem.

Fact. (V ⊥)⊥ = V .
Proof left to the reader–see Strang p.139. (Hint: you’ll need to use the

above theorem.)
II. The other two spaces
Let A be an m× n matrix, say

A =

 · · · ~w1 · · ·
· · · | · · ·
· · · ~wm · · ·

 .
For any ~x, we have

A~x =

 ~w1 · ~x
...

~wm · ~x

 .
Suppose ~x ∈ N(A). Then the following statements are equivalent:
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• ~x ∈ N(A);

• ~wi · ~x = 0 for all i;

• ~x is in the orthogonal complement of the spaceW = span{~w1, . . . , ~wm}.

Only the last requires comment. Every vector ~w ∈W can be written as

~w = c1 ~w1 + . . .+ cm ~wm.

Now

~w · ~x = c1 ~w1 · ~x+ . . .+ cm ~wm · ~x = 0.

So we have shown that N(A) consists of those vectors which are orthog-
onal to everything in W ; in other words,

N(A) = W⊥

The space W is pretty important and gets its own name.
Definition: The row space of A is the space spanned by the rows. It

can also be described as R(AT ).
We’ve thus proved:
Theorem: The nullspace of A is the orthogonal complement to the row

space of A (and vice versa.)
This has the following remarkable corollary.
Corollary: rank(AT ) = rank(A).
The proof is so concise it almost seems not to be there.

• rank(AT ) = dimR(AT ) (by Rank Theorem.)

• dimR(AT ) = n−dimN(A) (by above theorem, and dimV + dimV ⊥ =
n.)

• n− dimN(A) = dimR(A) (by Rank Theorem again)

• dimR(A) = rank(A) (by Rank Theorem yet again!)

You might have fun trying to prove the corollary above just using the
definition of rank as the number of nonzero pivots after Gaussian elimina-
tion. You can do it–but it’s a mess! I hope this helps you appreciate the
utility of having a good theoretical language.

Definition: The left nullspace of A is defined to be N(AT ).
Fact: The left nullspace is the orthogonal complement of R(A).
Fact: The left nullspace will not be very important for us, despite S-

trang’s protestation on p.95.
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