
1 Opening stuff

• Pass out syllabus.

• Say name and office hours: (tentative) Monday, 3-4.

• Say I should be contacted by e-mail.

• Introduce Gergely.

• Emphasize gospel of homework. That success in this course, by which
I mean learning the material, can only be gained by persistent at-
tention to the homework problems. Remember that there is a great
distance between understanding what I say in class and being able to
work problems on your own. That the homework problems will be
difficult, but (a) you should work together, and (b) you will have the
opportunity to rewrite. Homework given out Monday, returned Friday.

On working together: Talking things out is a really good way to get
over conceptual snags; usually it helps the explainer as much as, if not
more than, the explainee; you come to understand something through
explaining it, or sometimes you realize you DON’T understand some-
thing when you try to explain it... however, group work should be done
after you’ve tried the problems on your own– don’t just go and divvy
up problems. And, of course, write-ups must be done individually.

• We’ll use Strang’s book, which I think has a nice conversational style.
I also like Otto Bretscher’s book Linear Algebra very much, and rec-
ommend consulting it if you like. You will get a lot out of reading
the sections of the book before lecture–highly recommended, since y-
ou’re going to read them anyway. Note: I don’t love to lecture and
will spend some in class doing group work. Thus, I may not get to
everything. You are responsible for what’s in the assigned sections.

• Please do interrupt me. I will inevitably use some piece of language
that seems clear to me but is not. If you are confused, so is someone
else.

• Solicit questions about the syllabus and the above.

• Most important: remember that this class is supposed to be hard.
Some of the greatest minds of their times tore their hair out figuring
this theory out. So it’s not supposed to come to you easily. But it will
come to you. Don’t get discouraged.
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• Pass out index cards, asking: name, phone, e-mail, hometown, major,
and draw a picture of yourself with any identifying marks.

(15-20 min.)

2 Sections 1.1 and 1.2: Linear equations

I. Geometry of space
For the first couple of days, we will talk about linear algebra insofar as

it involves the geometry of space. We’ll start with three-dimensional space,
because that’s where (we think) we live. Once the mathematical tools are
established, we’ll freely use these ideas to talk about the geometry of higher-
dimensional spaces, where (some think) we actually live!

In linear algebra, we will become accustomed to meeting systems of
equations like:

x+ y + z = 8
3x+ 2z = 11

x+ 2y − 8z = −11

We would like to solve this system, i.e. find values of (x, y, z) satisfying
these three equations. Draw the picture of three-space; recall that a triple
of numbers (x, y, z) corresponds to a point in this space, and the set of
solutions to one of these equations corresponds to a plane. So what does the
set of solutions to TWO of the equations look like? Three? (Draw picture of
three intersecting planes.) So it seems very plausible that there is a unique
solution to these equations.

Now what we’d like is something like

x =
y =

z =

That would be a system of linear equations we could very easily solve.
So we’d like only x in the first row, only y in the second row, only z in the

third row. And we can get rid of the stuff we don’t want by the elimination
method. To wit: from x + y + z = 8 and x + 2y − 8z = −11 we subtract
and get −y + 9z = 19. (Write THE WHOLE SYSTEM on the board again
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each time.=.) And subsequently subtract 3× row one from row two to get
−3y − z = −13. Then subtract 1/3 of second row from third row to get
(28/3)z = (70/3). Now we’re in good shape? Divide the last row by 28/3
to get z = 5/2. Then add that to the second row and get −3y = −21/2. So
divide by 3 and get y = 7/2. (Say the word “pivot” at this point.) Finally
subtract second row from first, then third row, to get x = 2.

So as expected, the solution was one point! But note that this procedure
was rather ad hoc and not a little tedious.

(30 min.)
II. Vectors.
We use vector notation, which you may or may not be familiar with. First

of all, recall that we can write a point ~v in space as a triple of numbers–say,
(8, 11,−11). We will mostly think of this as a point; when it suits us, i.e.
when there’s addition, we’ll draw the little arrow.

It will be convenient to write such a triple vertically as 8
11
−11

 = ~v.

Now we can say

5

 8
11
−11

 =

 40
55
−55


is another name for “vector in the same direction at ~v, but 5 times as far
from the origin.”

Of course, there’s nothing special about the 5 here. The other important
thing we can do is add vectors: for example, 1

3
1

+ 2

 1
0
2

 =

 3
3
5

 .
Draw what this looks like geometrically; put the tail of one vector on the
head of the next.

(35 min.)
2 minute contemplation. Consider the set of all vectors of the form

x

 1
3
1


3



where x ∈ R is some real number. (Note introduction of notation R!) What
are some examples? What, geometrically, does this set look like? How would
things change if I replaced the vector above with some other vector?

Solicit responses, discuss.
2 minute contemplation. Consider the set of all vectors of the form

x

 1
3
1

+ y

 1
0
2


with x, y ∈ R. What are some examples? What, geometrically, does this set
look like? How would things change if I replaced the pair of vectors above
with some other pair of vectors?

[Note: this is as far as we got on the first day in spring 2000]
Solicit, discuss. Get to the point where we say that the two vectors

produce a plane iff they don’t lie on a line.
We write the original equation as

x

 1
3
1

+ y

 1
0
2

+ z

 1
2
−8

 = ~v.

Now according to our dicussion above, we rather expect that the set of
all

x

 1
3
1

+ y

 1
0
2

+ z

 1
2
−8


forms a three-dimensional space–in other words, the whole world! So we
expect once again that there is some choice of x, y, z making the equation
hold.

(Although, from this point of view, it’s not quite as clear why there’s
only one. Some people’s geometric intuition will tell them this is so.)

Note also that this point of view–like the other geometric point of view–
gives us no clue how to find x, y, z.

(50 min.)
III. Geometry of planes.
Just to give an idea; what can go wrong with the process? Do three

planes necessarily meet in a point? Give an example where they don’t: say
x − 2y + z = 4 and x − 2y + z = 5 and 3x + 4y + 5z = 0. Start to do
the elimination–get the nonsensical 0 = 1. If there’s time, ask about the
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different ways the planes can intersect–but just walk around and discuss. If
not, then end here.

LECTURE 2
0. Contemplation Ask about the question from last time, about the

space spanned by two vectors.
I. Gaussian elimination This is no more than a systematization of

the technique we used last time. So no new concepts here. The idea is:
”work one column at a time, from left to right, transforming the augmented
matrix we have into an augmented matrix of the sort we like.” Another
useful feature is that we never have to do anything but i) swap two rows or
ii) add some multiple of a row to a lower row or iii) multiply a row by a
scalar (define) The problem is, we may not be able to get it in such a nice
form as the above. In fact, one notes that we can get it in that nice form
exactly when our solution sets intersect in exactly one point!

Do the following example.

3x+ 6y − 3z = 3
x+ 2y + 2z = 3

2x+ 4y − 5z = 0

To eliminate, we will have to subtract 1/3 times the first column from
the second column, and 2/3 times the first column from the third column.
The number 3 here is called the pivot–it’s the diagonal coefficient, by which
we have to divide.

Now after eliminating, the first column, we are left with

3x+ 6y − 3z = 3
2z = 2
−3z = −2

Now there’s a problem here, which is that our next pivot is zero! And
we can’t divide by zero! Hmm!

ASK: How many solutions are there? what sort of configuration of
planes does this system represent? How can we tell?

If there’s plenty of time, in fact, it might be good to break them into
groups and ask them to figure out a way to describe all solutions to this equa-
tion. Maybe better to have them turn-to-the-neighbor and take 3 minutes
to talk about it. I need them to start meeting each other at this point.
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II. Matrices. Write up the eq’n from last time,

x+ y + z = 8
3x+ 2z = 11

x+ 2y − 8z = −11

and point out that we might as well just save our time by not writing
the x, y, and z, and writing instead

1 1 1 8
3 0 2 11
1 2 −8 −11

with the understanding that we can now add and subtract multiples of
rows from one another, and we are aiming to wind up with something like

1 ∗
1 ∗

1 ∗

Note that if we have

1 ∗ ∗ ∗
1 ∗ ∗

1 ∗

we’re in business. So we see that what we’re doing is really manipulat-
ing rectangular arrays of numbers in certain ways, and that motivates the
following definition.

Definition: A matrix is an array of numbers. If a matrix A has m rows
and n columns, we say A is an m× n matrix.

It is customary to refer to the number in row i and column j as aij .
Examples:

• A =
[

4 6
2 0

]
(2× 2)
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• A =

 0.8
0.1
0.1

 (3× 1)

• A =

 1 1 1
3 0 2
1 2 −8

 (3× 3)

Now let me remind you that the equation above could be rewritten as

x

 1
3
1

+ y

 1
0
2

+ z

 1
2
−8

 =

 8
11
−11

 .
That motivates the following definition.
Let A be an m× n matrix, and ~x a length n vector. Write

A =

 | | |
~v1 . . . ~vn
| | |


and

~x =

 x1

|
xn


So comment here: each ~vi is a length m vector, which is to say a m× 1

matrix. Each xi is a number.
Then
Definition: The product A~x is defined to be the sum

x1~v1 + x2~v2 + . . .+ xn~vn =
n∑
i=1

xi~vi.

(Remark that they should get used to sigma notation, if they’re not.)
Emphasize that this is just a new piece of notation. But a useful one–for

example, 1 1 1
3 0 2
1 2 −8

 x
y
z

 = x

 1
3
1

+ y

 1
0
2

+ z

 1
2
−8

 =

 8
11
−11

 .
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So we can now write our equation in an even simpler form: we are trying to
find a vector ~x = ~xyz such that

A~x =

 8
11
−11


(where A is the 3× 3 matrix above.)

Note that I’ve spent the last two classes giving you more and more ways
to phrase this equation, without giving you any more insight into how to
solve it!

(But remark at this point, and write on the board: one could solve the
equation if one knew how to “divide by A”! Hold that thought...)

Another important example: the dot product of vectors

 x1

x2

x3

 ·
 y1

y2

y3


is nothing more than the matrix product

[x1x2x3]

 y1

y2

y3

 = y1[x1] + y2[x2] + y3[x3] = [x1y1 + x2y2 + x3y3].

(Note: on 2 Feb 2000, this was as far as I got.)
III. Linear transformations
I’m going to jump ahead a little bit because it makes what follows make

much more sense.
First of all, notation: Rn is the set of all length n vectors. (They’ve

probably seen this before.)
Now suppose we have a matrix A. Then, given any length n vector

~x ∈ Rn, we can produce a length m matrix A~x.
In other words, an m×n matrix yields a rule for turning length n vectors

into length m vectors. Or, if you like, the matrix defines a function T : Rn →
R
m.

So we TRANSLATE the question of “is there an ~x such that A~x = ~b?”
to “is ~b in the image of T”?

Some good examples:
[

1 0
0 1

]
,

[
0 0
0 0

]
,

[
−5 0
0 −5

]
,

[
1 0
0 0

]
. To

figure out what functions these matrices describe is a great groupwork. I’ll
do one of them in class today, and then do the rest for groupwork at the
beginning of next time.

Next time: matrix multiplication.
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LECTURE 3
This is going to be a groupwork day. First, I talk about the notion

of a matrix yielding a function from R
n to Rm, which I didn’t talk about

yesterday.
Ex: The matrix  1 0 0

0 1 0
0 0 1

 ;

multiply it by a vector ~x and see what you get. You get ~x again. This is
called the identity matrix–it leaves everything the same.
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GROUPWORK: Combining matrices

Let ~x be the vector

 x
y
z

.

Let A be the 3x3 matrix  1 0 0
−3 1 0
0 0 1


and B be the 3x3 matrix  1 1 1

3 0 2
1 2 −8

 .
• What is A~x?

• What is B~x?

• What is A(B~x)? (That is: what happens if we multiply ~x by the
matrix B, and then by the matrix A?

• Is there some single matrix C that does the combined job of A and B;
that is, such that C~x = A(B~x)?

• If you found such a C, is it the only one? Or are there several choices
of C such that C~x = A(B~x)?
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So the fact is: given any two matrices A and B (of any size!), there is a
matrix such that C~x = A(B~x).

Definition. Let A be an m×n matrix and B a n×p matrix. Then AB
is the m× p matrix such that AB~x = A(B~x) for all ~x ∈ Rp.

Note that we have not yet proved such a matrix exists! That will wait
until we discuss linear transformations in earnest. For now, believe that it
does.

Computing the matrix product.
Two good ways:

A

 | | |
~v1 . . . ~vn
| | |

 =

 | | |
A~v1 . . . A~vn
| | |


Or, my favorite way:

(

 − ~w1 −

−
... −

− ~wm


 | | |
~v1 . . . ~vn
| | |

)ij = ~wi · ~wj

Do the example from the groupwork in each of these ways. If there’s
time, remark on the non-commutativity of matrix multiplication. There’s
not time to say too much–only that it’s to be paid careful attention to, and
that it’s the reason for things like the uncertainty principle.
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