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A long-standing question in the theory of rational points of algebraic surfaces is whether a K3
surface X over a number field K acquires a Zariski-dense set of L-rational points over some finite
extension L/K. In this case, we say X has potential density of rational points. In case XC has Picard
rank greater than 1, Bogomolov and Tschinkel [2] have shown in many cases that X has potential
density of rational points, using the existence of elliptic fibrations on X or large automorphism
groups of X. By contrast, we do not know a single example of a K3 surface X/K with geometric
Picard number 1 which can be shown to have potential density of rational points; nor is there an
example which we can show not to have potential density of rational points. In fact, the situation
is even worse; the moduli space of polarized K3 surfaces of a given degree contains a countable
union of subvarieties, each parametrizing a family of K3 surfaces with geometric Picard number
greater than 1. Since Q̄ is countable, it is not a priori obvious that these subvarieties don’t cover
the Q̄-points of the moduli space. In other words, it is a non-trivial fact that there exists a K3
surface over any number field with geometric Picard number 1!

In this note, we correct this slightly embarrassing situation by proving the following theorem:

Theorem 1. Let d be an even positive integer. Then there exists a number field K and a polarized
K3 surface X/K, of degree d, such that rank Pic(XC) = 1.

The main idea is to use an argument of Serre on `-adic groups to reduce the problem to proving
the existence of K3 surfaces whose associated mod-n Galois representations have large image for
some finite n; we then use Hilbert’s irreducibility theorem and global Torelli for K3’s to complete
the proof.

Acknowledgment: This note is the result of a conversation between the author, Brendan
Hassett, and A.J. de Jong, which took place at the American Institute of Mathematics during the
workshop, “Rational and integral points on higher-dimensional varieties.” It should also be pointed
out that the main idea, in case d = 4, is implicit in the final remark of [3].

We begin by recalling some notations and basic facts regarding K3 surfaces. An element x of
an abelian group L is called primitive if it is not contained in kL for any integer k > 1. Let X be a
K3 surface over a number field K, and write X̄ for X ×K K̄. The group H2(XC, Z) is isomorphic
to Z22; the cup product on H2(XC, Z) is a quadratic form with signature (3, 19), which we denote
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〈, 〉. A polarized K3 surface is a pair (X,L), where X/K is a K3 surface and L is an ample line
bundle on X. If X is a polarized K3, we let x be the class of L in H2(XC, Z); then the positive
even integer 〈x, x〉 is called the degree of X. We denote by LX the orthogonal complement of x
in H2(XC, Z). Denote by Γ the group of isometries of H2(XC, Z) which fix x and which lie in the
identity component of Aut(H2(XC, R)). So Γ is an arithmetic subgroup of SO(2, 19)(Q).

For each prime ` we denote by G` the group of linear transformations α of LX ⊗Z Z` such that
there exists χ(α) ∈ Z∗

` satisfying
〈αx, αx〉 = χ(α)〈x, x〉

for all x ∈ LX ⊗Z Z`. There is a natural inclusion

ι : Γ → G`

and we denote by H` the closure, in the `-adic topology, of ι(Γ).
When a polarized K3 surface X is defined over a number field K, the inclusion

LX ⊗Z Z` ⊂ H2(X̄, Z`)

induces a Gal(K̄/K)-module structure on LX ⊗Z Z`; we denote by

ρX : Gal(K̄/K) → G`

the resulting `-adic Galois representation.
We begin by showing that the desired statement about Pic XC follows if the image of ρX is large

enough.

Lemma 2. Let ` be a prime. Suppose ρX(Gal(K̄/K)) contains a finite-index subgroup of H`. Then
rank Pic XC = 1.

Proof. Suppose rankPic(XC) is greater than 1; that is, there is divisor on XC whose class is linearly
independent from the class of the polarization. This divisor can be defined over some finite extension
L/K. It follows that ρX(Gal(K̄/L)) is contained in the stabilizer of a line in LX ⊗Z Z`. But this
stabilizer does not contain a finite-index subgroup of H`.

We also need a general lemma on linear `-adic groups.

Lemma 3. Let H be a closed subgroup of GLm(Z`). Let ΓH(`n) be the kernel of projection from H
to GLm(Z/`nZ). Then there exists an integer N such that no proper closed subgroup of H projects
surjectively onto H/ΓH(`N ).

Proof. Since H is a closed subgroup of GLm(Z`), it is an analytic subgroup. In particular, there
is a subspace L ⊂ Mm(Q`) and a positive integer N such that, for all n ≥ N , the group ΓH(`n)
is precisely the set of matrices exp(λ), where λ ranges over `nMm(Z`) ∩ L. Thus, every element of
ΓH(`n) can be written as exp(`λ) for some λ ∈ L; in particular, for every u ∈ ΓH(`n) there exists
v ∈ ΓH(`n−1) with v` = u. (See [4] for basic facts used here about `-adic Lie groups.) We also
require N ≥ 2.

We now proceed as in [6, IV.3.4, Lemma 3], which proves the lemma in the case H = SL2.
Suppose H0 is a closed subgroup projecting surjectively onto H/ΓH(`N ). It suffices to prove that
H0 projects surjectively onto H/ΓH(`n) for all n > N . We proceed by induction and assume H0

projects surjectively onto H/ΓH(`n−1). We therefore need only show that, for all x ∈ ΓH(`n−1),
there exists h ∈ H0 with h−1x ∈ ΓH(`n). Since n − 1 ≥ N , there exists y ∈ ΓH(`n−2) such that
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y` = x. We may write y = 1+ `n−2Y + `n−1M1 for matrices Y,M1 ∈ Mm(Z`). By hypothesis, there
exists h′ ∈ H0 such that (h′)−1y ∈ ΓH(`n−1). Then

h′ = 1 + `n−2Y + `n−1M2.

for some M2 ∈ GLm(Z`). So take

h = (h′)` = 1 + `n−1Y + `nM2 + (1/2)(`)(`− 1)`2n−3Y 2 + . . .

which is congruent to x mod `n, since n > N ≥ 2.

The purpose of Lemma 3 is to reduce the problem of showing that an `-adic representation has
large image to the corresponding problem for a mod `N representation. Below we show how to use
Hilbert irreducibility to produce K3 surfaces X such that ρX has large image mod `N , where N > 0
is an integer to be specified at the end.

Write Ld for the rank-21 lattice 〈−d〉 ⊕H ⊕H ⊕E8⊕E8. Then LX is isomorphic to Ld for any
polarized K3 of degree d.

By a level m structure on a polarized K3 we mean a choice of isometry

φ : LX/mLX
∼= Ld/mLd.

We denote by Γ(m) the kernel of the map Γ → GL(Ld/mLd). Choose a p large enough so that
Γ(p) is a torsion-free group. (It suffices to choose p larger than the order of any finite-order element
of GL(Ld).) If (X, φ) is a polarized K3 with level p structure, any automorphism α : X → X
preserving the polarization and φ must have finite order (because it preserves the polarization) and
thus must act trivially on LX (by the hypothesis on p). But then α is trivial by the Torelli theorem
for K3’s [5].

Let M̃/Q be the moduli space of pairs (X, φp), where X is a polarized K3 surface of degree d
and φp is a level p structure, with p 6= `. We can construct this moduli space by GIT, as in the final
remark of [1]. The fact that (X, φp) admits no nontrivial automorphisms implies that M̃ is a fine
moduli space. Now let M̃(`N ) be the space of pairs (X, φp, φ`N ), where φ`N is a level `N structure
on X. Note that M̃ and ˜M(`N ) are not a priori connected.

Using again the Torelli theorem for K3 surfaces, we know that the analytic moduli space of
polarized K3 surfaces of degree d is a quotient Γ\Ω, where Ω is a certain connected 19-dimensional
domain of periods. (See [1, §3], noting that our Γ is an index-2 subgroup of Beauville’s Γq.) It
follows that Γ(p)\Ω is a connected component of the analytification M̃an of M̃, and Γ(p`N )\Ω
is a connected component of M̃(`N )an. Denote by M and M(`N ) the connected components of
M̃ and M̃(`N ) corresponding to the quotients above; then, for some number field K, the map
π : M(`N ) →M is a Galois cover of varieties over K with Galois group Γ(p)/Γ(p`N ). Denote this
finite group by Γ̄.

Now let p : M → P19 be a generically finite map of degree n. Then the composition p ◦ π
expresses the function field K(M(`N )) as a finite extension of K(P19). Let U be a Galois cover of
P19 whose function field is the Galois closure of K(M(`N ))/K(P19). Then the Galois group G of
K(U)/K(P19) is naturally contained in the wreath product W of Γ̄ with Sn. The group W fits in
an exact sequence

1 → Γ̄n → W → Sn → 1

and the intersection of G with a Cartesian factor of Γ̄n is the full group Γ̄, since Γ̄ is the Galois
group of the cover π.
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Now, by the Hilbert irreducibility theorem, there is a Zariski-dense subset of P19(K) consisting
of points x such that the Galois group of (p ◦ π)−1(x) over x is the full group G. Let x be such a
point, and let y be a Q̄-point of M lying over x. Then y ∈M(L) for some number field L, and the
Galois group of π−1(y) over y is the full group Γ̄. If X/L is the K3 surface corresponding to the
point y, the map

Gal(Q̄/L) → GL2(LX ⊗Z (Z/`NZ))

given by the Galois action on H2
et(X, Z/`NZ) has image Γ̄. Now apply Lemma 3, taking H to be

the closure in the `-adic topology of the image of Γ(p) in GL2(LX ⊗Z Z`). We conclude that, having
chosen N large enough, we can find a degree d polarized K3 surface X over a number field L such
that the image of ρX contains H, which is a finite-index subgroup of H`. Now X has geometric
Picard number 1 by Lemma 2.

Remark 4. Lemmas 2 and 3, in principle, should allow one to write down a K3 of any desired degree
which has geometric Picard number 1. One would first compute suitable values of ` and N , as
Lemma 3 guarantees we can. It remains to write down a K3 surface X such that the representation
of Galois on H2

et(X, Z/`NZ) is as large as possible. In case d = 4, this computation is precisely the
one suggested in the final remark of [3]. In order to make this computation more tractable, it might
be a good idea to restrict to a family of quartic surfaces whose monodromy group Γ0 is smaller than
Γ, but which still doesn’t have any stabilizers of points in LX as finite-index subgroups.
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