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Very little is known about the existence of curves, and families of curves,
whose Jacobians are acted on by large rings of endomorphisms. In this paper,
we show the existence of curves X with an injection

K ↪→ Hom(Jac(X), Jac(X))⊗Z Q,

where K is a subfield of even index at most 10 in a primitive cyclotomic
field Q(ζp), or a subfield of index 2 in Q(ζpq) or Q(ζpα ). This result generalizes
previous work of Brumer, Mestre, and Tautz-Top-Verberkmoes. Our curves
are constructed as branched covers of the projective line, and the endomor-
phisms arise as quotients of double coset algebras of the Galois groups of these
coverings. In certain cases, we show the existence of continuous families of
Jacobians admitting the desired endomorphism algebras. At the end, we raise
some questions about upper bounds for endomorphism algebras of the type
described here, and ask about a “non-Galois version of Hurwitz’s theorem.”
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INTRODUCTION

Let k be an algebraically closed field, A/k a principally polarized abelian
variety, and End0(A) the Q-algebra of endomorphisms of A. It has long
been known which algebras E arise as End0(A) for some principally polar-
ized abelian variety A [23, §21]. If we restrict our attention to Jacobians
of smooth curves of a given genus, however, the question is less well under-
stood. Van der Geer and Oort remark [28, §5]:

“...one expects excess intersection of the Torelli locus and the loci corre-
sponding to abelian varieties with very large endomorphism rings; that is,
one expects that they intersect much more than their dimensions suggest.”
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This expectation has been borne out by many examples of families of curves
whose Jacobians are acted on by large algebras. Theorems of Tautz-Top-
Verberkmoes [27], Mestre [19], and Brumer [2] produce, for each odd prime
p, families of curves X of genus (p−1)/2 such that End0(Jac(X)) contains
the real cyclotomic field Q(ζp + ζ−1

p ). Brumer also produces a family of
genus 2 curves with Q(

√
2) ⊂ End0(Jac(X)). Hashimoto-Murabayashi [15]

and Bending [1] have produced families of genus 2 curves whose Jacobians
are acted on by some quaternion algebras of small discriminant. De Jong
and Noot give examples of infinitely many curves of genus 4 and 6 whose Ja-
cobians have complex multiplication [4]. Ekedahl-Serre [9] produce many
examples of curves of genus g with Q⊕g ⊂ End0(Jac(X)). Finally, Shi-
mada [26] uses methods similar to ours to produce examples of curves of
large genus whose Jacobians are acted on by quadratic fields.

In the present article we present a general procedure for constructing
curves whose Jacobians have large endomorphism algebras, and we show
that the endomorphisms produced in [27],[19], and [2], and most of those
in [9], arise via our construction. Furthermore, we show the existence of
some new families of curves whose Jacobians are acted on by totally real
fields.

Let F be a totally real number field. We say that a curve X over a field k
has real multiplication by F if g(X) = [F : Q] and if X admits an injection
F ↪→ End0(Jac(X)). 1 We denote the index n subfield of Q(ζp) by Q(ζ(n)

p ).
Our main theorem is the following.

Main Theorem. Let k be an algebraically closed field. Then

1. If p > 5 is a prime, and char k does not divide 2p, there exists a
3-dimensional family of curves of genus (p− 1)/2 over k with real multipli-
cation by Q(ζp + ζ−1

p ).
2. If p is a prime congruent to 1 mod 4, and char k does not divide 2p,

then there exists a 1-dimensional family of curves of genus (p − 1)/4 over
k with real multiplication by Q(ζ(4)

p ).
3. If p is a prime congruent to 1 mod 6, and char k does not divide 6p,

then there exists a 1-dimensional family of curves of genus (p − 1)/6 over
k with real multiplication by Q(ζ(6)

p ).
4. If p is a prime congruent to 1 mod 8, and char k does not divide 2p,

then there exists a curve of genus (p− 1)/8 over k with real multiplication
by Q(ζ(8)

p ).
5. If p is a prime congruent to 1 mod 10, and char k does not divide 10p,

then there exists a curve of genus (p−1)/10 over k with real multiplication
by Q(ζ(10)

p ).
1This notation is slightly non-standard in case char k divides the discriminant of F/Q;

see [8]. However, this case will not arise in the present work.
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6. If p, q are distinct odd primes, and char k does not divide 2pq, there
exists a 1-dimensional family of curves of genus (p−1)(q−1)/2 over k with
real multiplication by Q(ζpq + ζ−1

pq ).

7. If p is an odd prime, and char k does not divide 2p, and α > 1 is an
integer, there exists a 2-dimensional family of curves of genus pα−1(p−1)/2
over k with real multiplication by Q(ζpα + ζ−1

pα ).

Let X0/k be a smooth curve, and Y/X0 a Galois cover with Galois group
G. Let H be a subgroup of G and let X be the quotient curve Y/H. Then
the Jacobian of X is acted on by the double coset algebra Q[H\G/H]. We
say that the image of Q[H\G/H] in End0(X) is of Hecke type. The study
of endomorphism algebras of Hecke type is the main purpose of the present
paper. In section 1, we explain how to compute the endomorphism algebra
of Hecke type associated to a branched cover X → X0. We construct the
families of curves referred to above in sections 2 and 3, and show that these
families have the stated dimensions in section 4.

The negative side of the question–that is, the question of which algebras
cannot occur in End0(Jac(X))–is more mysterious. One can also ask weaker
questions about bounds on algebras which can occur as endomorphism
algebras of Hecke type attached to smooth curves. We discuss the current
state of knowledge about such questions in section 5.

NOTATION

If V is a vector space acted on by a group H, denote by V H the subspace
of V fixed by H.

A “curve” will always be a nonsingular projective algebraic curve over a
field unless specifically declared otherwise.

If A is an abelian variety, End0(A) is its Q-algebra of endomorphisms
Hom(A,A)⊗Z Q.

If p is a prime and n a divisor of p−1, we denote by Q(ζ(n)
p ) the subfield

of index n in the cyclotomic field Q(ζp). For any integer m, we write Q(ζ+
m)

for the real cyclotomic field Q(ζm + ζ−1
m ).

If X → C is a dominant morphism of algebraic curves, the Galois group
of X/C is understood to mean the group of the Galois covering Y/C, where
Y is the Galois closure of X/C.

1. ENDOMORPHISM ALGEBRAS OF HECKE TYPE

Let Y be a nonsingular projective algebraic curve over an algebraically
closed field k, and let G be a finite group which acts on Y . Write C for the
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quotient of Y by G (Precisely, C is the nonsingular curve associated to the
G-invariant subfield of k(Y ).)

The map

φ : G→ Aut(Y )

induces a map

e : Q[G]→ End0(Jac(Y )).

Now let H be a subgroup of G, and let X be the quotient curve Y/H.
Define πH ∈ Q[G] to be

(1/|H|)
∑
h∈H

h.

We define the Hecke algebra Q[H\G/H] to be the subalgebra of Q[G]
generated by πHgπH for all g ∈ G.

Remark 1. 1. We recall some basic facts about representations of finite
groups which we will need along the way. For proofs, see [18, 5.3]. The
group algebra Q[G] admits a direct product decomposition

Q[G] ∼=
⊕
i

Ai.

Each simple factor Ai is isomorphic to Mni(∆i), where ∆i is a central
simple algebra whose center Ki is an abelian extension of Q. Let ejj be the
matrix in Mni(∆i) which has a 1 in the (j, j) position and zeroes elsewhere.
Then Vi := Mni(∆i)e11 is an irreducible representation of Q[G], and in fact
every irreducible representation of Q[G] arises as Vi for exactly one i. We
can think of Vi as a vector space over ∆op

i , in which case

Ai = End∆op
i

(Vi).

In particular, πH commutes with the action of ∆op
i on Vi; it follows that

V Hi = πHVi is a sub-∆op
i -vector space of Vi, and that

πHAiπH = πH End∆op
i

(Vi)πH = End∆op
i

(V Hi ) ∼= Mdi(∆i)

for some di ≤ ni. So we have a decomposition

Q[H\G/H] ∼=
⊕
i

Mdi(∆i). (1.1)
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The action e of Q[G] restricts to a natural action

Q[H\G/H]→ End0(e(πH) Jac(Y )). (1.2)

The natural map

Jac(X)→ Jac(Y )

restricts to an isogeny

Jac(X)→ e(πH) Jac(Y ).

Therefore, the action (1.2) yields an action

Q[H\G/H]→ End0(Jac(X)).

We refer to the image of Q[H\G/H] in End0(Jac(X)) as an endomor-
phism algebra of Hecke type, and denote it by HX/C . In general, we say an
element α of End0(Jac(X)) is of Hecke type if there exists some branched
cover X → C such that α ∈ HX/C .

We note in passing that there exist Jacobians of smooth curves with
endomorphisms which are not of Hecke type. The Jacobians of smooth
genus 3 curves form an open subscheme of the moduli space of principally
polarized abelian three-folds; in particular, there exist Jacobians of smooth
genus 3 curves which have real multiplication by non-abelian cubic fields.
Among these, choose a curve X whose Jacobian has no endomorphisms
other than those coming from the cubic field.

Let X → C be some surjective maps of curves, with Galois group G. Now
HX/C is a quotient of Q[H\G/H], and as such is a direct sum of central
simple algebras over abelian extensions of Q. In particular, HX/C cannot
be a non-abelian cubic extension of Q. So Jac(X) has endomorphisms
which are not of Hecke type.

Let ` be a a prime not equal to the characteristic of k. The natural map

End0(Jac(X))→ End0(H1(X,Q`))

is injective. Thus, to compute HX/C it suffices to study the representation
of Q[H\G/H] on H1(X,Q`) ∼= πHH

1(Y,Q`). This representation, in turn,
is determined by the action of G on H1(Y, Q̄`). Refer to this representation
of G as ρY , and denote its character by χY . One can compute χY from the
branching data of the map Y → C, by means of Proposition 1.1 below.
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Notation: for each g ∈ G, denote by χg the character of G induced from
the trivial character on the cyclic group 〈g〉. Write χtriv for the trivial
character of G.

Remark 1. 2. Let U be the open curve C − {p1, . . . , pr}. If t ∈ k(C) is
a uniformizer at pi, then we have a morphism

Spec k((t))→ U

which induces a map of étale fundamental groups

Gal(k((t))sep/k((t)))→ π1(U),

defined only up to conjugacy, since we have neglected to specify basepoints.
The étale G-cover Y ×C U → U allows us to extend this diagram to

Gal(k((t))sep/k((t)))→ π1(U)→ G.

When we say “Y → C has monodromy gi at pi,” we mean that the compos-
ite homomorphism above factors through the tame quotient of the Galois
group Gal(k((t))sep/k((t))), and that the image of a generator of tame iner-
tia lies in the conjugacy class of gi. In case k = C, this definition coincides
with the natural topological one.

Proposition 1.1. Suppose the map Y → C is branched at r points
p1, . . . pr ∈ C(k), with monodromy g1, . . . , gr, and suppose that each gi has
order prime to char k. Then

χY = 2χtriv + 2(g(C)− 1)χ1 +
∑
i

(χ1 − χgi). (1.3)

Remark 1. 3. Note that χY depends only on the unordered set of
conjugacy classes of g1, . . . , gr. Suppose C = P

1. Then the existence of
a cover Y → C with monodromy conjugate to {g1, . . . , gr} implies that
there are elements g′1, . . . g

′
r and a permutation σ such that g′i is conjugate

to gσ(i) and g′1 . . . g
′
r = 1. If char k is prime to |G|, the converse is true; see

Proposition 1.2 below.

Remark 1. 4. It seems natural to call a character χ of a finite group
a Hurwitz character if χ is of the form (1.3) for some set of generators
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g1, . . . , gr with g1 . . . gr = 1. It follows from Proposition 1.1 and the Rie-
mann Existence theorem that a Hurwitz character is the character of a
rational representation (not merely a virtual rational representation) of G;
a purely group-theoretic proof of this fact is given by Scott in [25]. We call
such a representation a Hurwitz representation of G.

The question of which characters of a finite group are Hurwitz characters
is purely combinatorial, and seems quite mysterious; we will discuss this
question further in section 5.

We should also note that χY , while strictly speaking an `-adic character,
takes values inQ; we will freely refer to the values of χY as rational numbers
in what follows.

Proof. The proposition follows from the Lefschetz fixed point formula
in étale cohomology; see for instance [21, V, Cor. 2.8]. The formula given
there for χY is

χY = 2χtriv + 2(g(C)− 1)χ1 +
∑
i

api ,

where api is the Artin character associated to the branch point pi ∈ C(k).
It thus suffices to show that

api = χ1 − χgi .

Let y1, . . . , ym be the points of Y (k) lying over pi. Take g ∈ G with g 6= 1.
Then −(χ1(g)− χgi(g)) is the number of the yj which are fixed by g. On
the other hand,

api(g) = −
∑
j

ij(g)

where ij(g) is the multiplicity of the fixed point of g at yj . Since char k
is prime to the order of gi, the map Y → C is tamely ramified at y,
so ij(g) = 1 for each yj which is a fixed point. ([21, p. 188].) We
have thus shown that api(g) = χ1(g) − χgi(g) for all g 6= 1; since api

and χ1−χgi are both orthogonal to the trivial character, they are equal.

We recall for future reference Grothendieck’s computation of the prime-
to-p fundamental group of a curve, which we use here as a replacement for
the Riemann existence theorem in characteristic p.

Proposition 1.2. Let k be an algebraically closed field. Let G be a
finite group whose order is prime to char k, or an arbitrary finite group
if char k = 0. If g1, . . . , gr are generators for G satsifying g1 . . . gr = 1,
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there exists an Galois covering Y → P
1 with Galois group G, branched at

r points with monodromy g1, . . . , gr.

Proof. Immediate from [11, XIII,2.12].

We will give examples in the following sections to show that judicious
choices of {G,H, g1, . . . , gr} yield interesting endomorphism algebras of
Hecke type.

2. METACYCLIC GROUPS

Let F be a totally real number field. In this section, we use covers
of P1 with metacyclic Galois groups in order to produce curves with real
multiplication by certain totally real number fields.

Let p be a prime, and n be an integer such that n|p − 1. Let G = Gp,n
be the metacyclic group

〈σ, α : σp = αn = 1, ασα−1 = σk〉

where k is an element of order n in (Z/pZ)∗. Let H be the subgroup of G
generated by α. Let ` be a prime not equal to char k. For consistency with
étale cohomology, we will take Q̄` as the algebraically closed characteristic
0 base field in which we compute the irreducible representations of G.

The irreducible Q̄`-representations of G fall into two types:

• n one-dimensional representations Va, indexed (non-canonically) by
a ∈ Z/nZ; these arise as compositions

G→ Z/nZ→ Q̄
∗
`

where the second map sends 1 to ωan, for some fixed nth root of unity
ωn ∈ Q̄`.
• (p− 1)/n representations of dimension n, which are induced from 〈σ〉.

We denote by W the direct sum of all the n-dimensional irreducible
Q̄`-representations of G.

Let g1, . . . , gr be non-trivial elements of G, and for each i in 1, . . . , r let
di be either 0 (if gi has order p) or n/ord(gi) (if gi has order dividing n.)
Note that di determines the cyclic group generated by gi up to conjugacy.
Recall that, for any g ∈ G, we denote by χg the character of G induced
from the trivial character on 〈g〉. We can compute

χgi = diχ(W ) +
∑

a∈Z/nZ:adi=0

χ(Va).
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Suppose now that k is an algebraically closed field of characteristic prime
to |G|. Let Y be a Galois cover of P1, with Galois group G, branched at r
points with monodromy g1, . . . , gr. It follows from Proposition 1.1 that

χY = mχ(W ) +
∑

a∈Z/nZ

caχ(Va)

where

ca =
{
−2 + |{i : adi 6= 0}| a 6= 0
0 a = 0

and

m = −2n+
∑
i

(n− di).

Let X be the quotient curve Y/H. Since no non-trivial element of Va is
fixed by H for a 6= 0, we have

H1(X, Q̄`) ∼= (WH)⊕m

as Q̄`[H\G/H]-modules.
Let WQ be the (unique) Q-representation of G such that WQ⊗Q Q̄` = W .

Then the map

Q[H\G/H]→ End(H1(X, Q̄`)H) = End((WH)⊕m)

factors through

p : Q[H\G/H]→ End(WH
Q

).

An element of Q[H\G/H] acts as the zero endomorphism of Jac(X) if and
only if it acts as zero on H1(X, Q̄`)H , which is to say if and only if it is the
kernel of p. We conclude that HX/P1 is isomorphic to the image of p. Now
the image of Q[G] in End(WQ) is isomorphic to the n × n matrix algebra
over Q(ζ(n)

p ), and πH maps to a projection of rank 1. It follows that the
image of Q[H\G/H] = Q[πHGπH ] in End(WH

Q
) is isomorphic to Q(ζ(n)

p ).
Note that the dimension of WH is (p− 1)/n. So if n is even and m = 2,

we have exhibited a real field of degree (p− 1)/n acting on Jac(X), which
is of dimension (p− 1)/n. So X has real multiplication.

There are only finitely many possibilities for n and d1, . . . , dr satisfying
m = 2. Of these, only nine possibilities can arise from Gp,n by means of
the above construction:
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1a. n = 2; {di} = {0, 0, 1, 1}
1b. n = 2; {di} = {0, 1, 1, 1, 1}
1c. n = 2; {di} = {1, 1, 1, 1, 1, 1}
2a. n = 4; {di} = {0, 1, 1}
2b. n = 4; {di} = {1, 1, 2, 2}
3a. n = 6; {di} = {2, 2, 3, 3}
3b. n = 6; {di} = {1, 1, 2}
4. n = 8; {di} = {1, 1, 4}
5. n = 10; {di} = {1, 2, 5}.

The first three cases give examples of curves whose Jacobians have real
multiplication by real cyclotomic fields Q(ζ+

p ). The families of curves de-
scribed by Tautz, Top, and Verberkmoes [27] fall under cases 1a and 1b
above. In case 1c, the curve Y is a cover of P1 whose Galois group is the
dihedral group D2p. The subcover corresponding to Z/pZ ⊂ D2p is a dou-
ble cover of P1 branched over six points–that is, a genus 2 curve C ′. The
curves X in case 1c are exactly those produced by Brumer [2] as quotients
of étale covers of genus 2 curves. The curves produced by Mestre in [19] are
special cases of case 1c, arising when C ′ admits a non-constant morphism
to an elliptic curve.

In cases 2b and 3a, the argument above results in the following two
propositions.

Proposition 2.1. Let g2, g
′
2, g4, g

′
4 be elements of Gp,4, of orders 2, 2, 4, 4

respectively, satisfying g2g
′
2g4g

′
4 = 1. Let H be an order-4 subgroup of Gp,4.

Let k be an algebraically closed field of characteristic greater than 2.
Suppose Y/k is a Galois cover of P1/k, with Galois group Gp,4, branched

at four points with monodromy g2, g
′
2, g4, g

′
4, and let X = Y/H.

Then X has real multiplication by the index-4 subfield of Q(ζp).

Proposition 2.2. Let g2, g
′
2, g3, g

′
3 be elements of Gp,6, of orders 2, 2, 3, 3

respectively, satisfying g2g
′
2g3g

′
3 = 1. Let H be an order-6 subgroup of Gp,6.

Let k be an algebraically closed field of characteristic greater than 3.
Suppose Y/k is a Galois cover of P1/k, with Galois group Gp,6, branched

at four points with monodromy g2, g
′
2, g3, g

′
3, and let X = Y/H.

Then X has real multiplication by the index-6 subfield of Q(ζp).

Case 2a provides further examples of a curve with real multiplication by
Q(ζ(4)

p ); likewise, case 3b provides further examples of real multiplication
by Q(ζ(6)

p ). Cases 4 and 5 bring new fields of real multiplication into the
picture; we record the results in the following propositions.
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Proposition 2.3. Let g1, g2, g3 be elements of Gp,8, of orders 2, 8, 8
respectively, satisfying g1g2g3 = 1. Let H be an order-8 subgroup of Gp,8.
Let k be an algebraically closed field of characteristic greater than 2.

Suppose Y/k is a Galois cover of P1/k, with Galois group Gp,8, branched
at three points with monodromy g1, g2, g3, and let X = Y/H.

Then X has real multiplication by the index-8 subfield of Q(ζp).

Proposition 2.4. Let g1, g2, g3 be elements of Gp,10, of orders 2, 5, 10
respectively, satisfying g1g2g3 = 1. Let H be an order-10 subgroup of Gp,10.
Let k be an algebraically closed field of characteristic prime to 10.

Suppose Y/k is a Galois cover of P1/k, with Galois group Gp,10, branched
at three points with monodromy g1, g2, g3, and let X = Y/H.

Then X has real multiplication by the index-10 subfield of Q(ζp).

We note in the following Proposition that the covers described above
actually do exist.

Proposition 2.5. Suppose char k does not divide 2p (resp. 6p, 2p, 10p).
Then there exists a cover Y of P1/k with the branching properties described
in Proposition 2.1 (resp.2.2, 2.3, 2.4).

Proof. Immediate from Proposition 1.2.

Note that we have now completed the proof of cases 4 and 5 of the Main
Theorem.

3. MORE DIHEDRAL GROUPS

In this section, we produce some curves whose Jacobians have real mul-
tiplication using dihedral groups of order 2m, where m is odd but not
necessarily prime. Let G = Dm be the dihedral group of order 2m:

〈σ, τ : σm = τ2 = 1, τστ−1 = σ−1〉

Let H be the subgroup generated by τ .
The group G has two irreducible Q̄`-representations of dimension 1, and

(m − 1)/2 of dimension 2. Denote by V1 and V−1 the representations of
dimension 1, and by W the direct sum of the 2-dimensional representations.
Note that W splits over Q into a direct sum of representations

W =
⊕

d|m:d6=1

Wd
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where dimWd = φ(d), and Wd is the base change to Q̄` of an irreducible
Q-representation Wd;Q. Now the image of Q[G] on End(Wd;Q) is a 2 × 2
matrix algebra over Q(ζ+

d ), and πH is sent to a rank 1 projection. So the
image of Q[H\G/H] = Q[πHGπH ] in End(Wd;Q) is isomorphic to Q(ζ+

d ).

Suppose m = pq, where p and q are distinct odd primes. Let g1, g2, g3, g4

be elements of G conjugate to τ, τ, σp, σq respectively, and satisfying

g1g2g3g4 = 1.

(For instance, we can take g1 = τ, g2 = τσ−q−p, g3 = σp, g4 = σq.) Let k
be an algebraically closed field of characteristic prime to |G|, and let Y be
a Galois cover of P1, branched at 4 points with monodromy g1, g2, g3, g4.
It then follows from Proposition 1.1 that

(ρY )H = (WH
pq )⊕2.

Let X be the quotient curve Y/H. Then X is a curve of genus (1/2)(p −
1)(q − 1). By the same argument as the one preceding Proposition 2.1,
the image of Q[H\G/H] in End(Jac(X)) is isomorphic to its image in
End(Wpq;Q), which is Q(ζ+

pq). So X has real multiplication by Q(ζ+
pq).

Now consider the case m = pα, with p an odd prime and α > 1. Let
g1, g2, g3, g4, g5 be elements of G conjugate to τ, τ, τ, τ, σp

α−1
respectively,

and satisfying

g1g2g3g4g5 = 1.

For instance, we may take g1 = g2 = g3 = τ, g4 = τσ−p
α−1

, g5 = σp
α−1

. Let
k be an algebraically closed field of characteristic prime to |G|, and let Y be
a Galois cover of P1, branched at 5 points with monodromy g1, g2, g3, g4, g5.

Another application of Proposition 1.1 gives

(ρY )H = (WH
pα)⊕2.

Again setting X = Y/H, we have X a curve of genus (1/2)(pα − pα−1)
whose Jacobian has real multiplication by Q(ζ+

pα).
One can check that the dihedral groups of orders 2p, 2pq, and 2pα are

the only ones which produce curves with real multiplication via the above
strategy.

4. FAMILIES OF JACOBIANS WITH REAL
MULTIPLICATION
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In the sections above, we have exhibited curves with real multiplica-
tion by various totally real abelian number fields. These curves arose as
branched covers X → P

1 with specified ramification above the branch
points. By moving the branch points, we naturally expect to obtain con-
tinuously varying families of curves X with real multiplication.

The problem is that, a priori, we do not know that moving the branch
points alters the curve. For instance, it might be the case that there is a
single curve X such that every 4-branched cover of P1 with Galois group
Gp,4 and monodromy elements of order 2, 2, 4, 4 is isomorphic to X! Our
goal in this section is to prove that such annoying circumstances do not, in
fact, arise.

For the length of this section, we fix:

• a finite group G with a subgroup H;
• an algebraically closed field K with characteristic prime to |G|;
• an r-branched Galois cover Y/K → P

1/K with Galois group G and
monodromy elements g1, . . . , gr.

Let χY the character of G acting on H1(Y, Q̄`), as computed in Propo-
sition 1.1.

We let X = Y/H be the quotient curve, and π : X → P
1 the projection

map. In X×X we have a divisor D = X×P1X; concretely, the closed points
of D are the points (x1, x2) : π(x1) = π(x2). The irreducible components
of D are in bijection with the double cosets HgH of H in G. Write Dg

for the component of D corresponding to HgH. An important step in the
argument below is the observation that, in most of the cases we consider, Dg

has negative self-intersection. The self-intersection is computed by means
of the following proposition.

Proposition 4.1. The self-intersection of Dg is

|H|−2
∑

g1,g2∈HgH
2− χY (g1g

−1
2 ).

Remark 4. 1. The summand 2 − χY (g1g
−1
2 ) can be thought of as the

number of fixed points of the action of g1g
−1
2 on Y , whenever g1 6= g2.

Proof. Let D̃g be the graph of g in Y ×Y . It follows from the Lefschetz
fixed point theorem in étale cohomology [21, VI,12.3] that

D̃g1 · D̃g2 = D̃g1g
−1
2
· D̃1 =

2∑
i=0

(−1)iTr(g1g
−1
2 |Hi(Y, Q̄`)) = 2− χY (g1g

−1
2 ).
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Moreover, if f : Y → X is the quotient map, we have

(f × f)∗Dg =
⋃

g1∈HgH
D̃g1 .

The result now follows.

Suppose now that K has an algebraically closed subfield k, such that
K has finite transcendence degree over k; we may think of k as a field of
constants and K as the algebraic closure of a function qyfield over k. In
particular, we will say that the branched cover π : X/K → P

1
K is non-

varying if it fits into a diagram

X X −−−−→ X0

π

y y yπ0

P
1
K

α−−−−→ P
1
K

g−−−−→ P
1
k

where the right-hand square is Cartesian, g is the base change of the struc-
ture map SpecK → Spec k, and α is some automorphism of P1

K .
We show below that, under a certain numerical condition on the rami-

fication of π, that “a branched cover from a curve defined over k to P1 is
non-varying.”

Theorem 4.1. Suppose X = X0 ×k K for some curve X0/k. Suppose
furthermore that there exists a double coset HgH with cardinality |H|2 such
that ∑

g1,g2∈HgH
2− χY (g1g

−1
2 ) < 0. (4.4)

Then π : X → P 1
K is non-varying.

Proof. The basic algebro-geometric ingredient of the proof is the fact
that divisors with negative self-intersection cannot vary continuously. More
precisely, we need the following lemma.

Lemma 4.1. Let S/k be a smooth projective algebraic surface over an
algebraically closed field. Let K/k be a algebraically closed extension of k
of finite transcendence degree. Suppose that C ↪→ SK = S ×k K is an
irreducible closed curve with negative self-intersection. Then C = C0×kK
for some irreducible closed curve C0 ↪→ S.
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Proof. Let U be a variety over k, the algebraic closure of whose function
field is K. Let CU be a closed subscheme of S×kU whose geometric generic
fiber is C. Replacing U by an open subscheme of U , we may assume that
U is affine and that the fibers of CU → U are irreducible curves.

Now let P be a k-point of U . Write C0 for the restriction of C to P ;
define C ′ = C0×P K and C ′U = C0×P U . Note that C ′, being smooth and
connected, is an irreducible curve in SK . We claim that C = C ′.

To prove the claim, observe that the intersection product can be ex-
pressed in terms of Euler characteristics [22, Lecture 12]:

(C0 · C0) = χ(OS)− χ(OS(−C0))− χ(OS(−C0)) + χ(OS(−2C0))

and

(C · C ′) = χ(OSK )− χ(OSK (−C))− χ(OSK (−C ′)) + χ(OS(−C − C ′)).

Recalling that S is projective, we may think of OS ,OS(−CU ),OS(−C ′U ),
and OS(−CU −C ′U ) as coherent sheaves on PNU . Now the fact that Hilbert
polynomials of coherent sheaves are locally constant in flat families implies
that

(C · C ′) = (C0 · C0) = (C · C) < 0.

So CK and C ′K must share an irreducible component; since both divisors are
irreducible curves, they must coincide.

We first consider the case in which H is trivial–that is, X = Y is a
Galois cover of P1

K . Note that in this case the numerical condition (4.4)
says precisely that g(X) ≥ 2.

Let C be the divisor X×P1X ↪→ X×KX. Then every component of C is
a translate of the diagonal by an automorphism of X×KX; since g(X) ≥ 2,
every component of C has negative self-intersection. From Lemma 4.1 we
have that C is the base change of a divisor C0 ⊂ X0 ×X0.

Now the intersection of C0 with a fiber x × X0 is a set Sx of n = |G|
points in X0 (counted with multiplicity). One can thus define a morphism

η0 : X0 → SymnX0

which sends x to Sx. Let F0 be the image of η0, and write F, η for F0 ×k
K, η0 ×k K. Now η(x) = η(y) if and only if π(x) = π(y), which is to say
that η factors as

X
π→ P

1 α→ F,
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where α is an isomorphism. Then the diagram

X X −−−−→ X0

π

y η

y yη0

P
1
K

α−−−−→ F
g−−−−→ F0

yields the desired result.

We now return to the general case. Let fg : D̃g → Dg be the restriction
to D̃g of the map f × f : Y × Y → X ×X. We claim that fg is generically
one-to-one. It suffices to consider closed points. Suppose

(f(y), f(g(y))) = (f(y′), f(g(y′))).

Then y′ = h1(y) and g(y′) = h2(g(y)) for some h1, h2 ∈ H. So g(h1(y)) =
h2(g(y)).

Suppose y (whence also y′) is not fixed by any nontrivial element of
G. Then h−1

2 gh1 = g. Since HgH has cardinality |H|2, this implies that
h1 = h2 = 1, so y′ = y. We have shown that fg is one-to-one on closed
points away from a closed subset of D̃g; it follows that fg is generically
one-to-one, as claimed. In particular, since D̃g is isomorphic to the smooth
curve Y , we have that Y is a nonsingular model for the curve Dg.

It follows from Proposition 4.1 that Dg has negative self-intersection.
Applying Lemma 4.1 with S = X0 ×X0 and C = Dg, we find that Dg =
D0 ×k K for some curve D0 ∈ X0 ×k X0. Since Y is the normalization of
Dg, we also have Y = Y0 × k. Write p = π ◦ f : Y → P

1
K . Then p is a

Galois cover. Observe that 2 − χY (g) is a rational number greater than
2−2g(Y ) for all g ∈ G; so (4.4) implies that g(Y ) > 2. It now follows from
the H = {1} case treated above that p is non-varying. After composing p
with an automorphism of P1

K , we may therefore assume that p is the base
change of a Galois cover p0 : Y0 → P

1
k. This means that the action of G on

Y is the base change of an action of G on Y0. Thus, p0 factors through a
map π0 : Y0/H → P

1
k, and π is evidently isomorphic to the base change of

π0. This yields the desired result.

We will now prove that the theorems of the previous sections actually
produce infinite families of curves with real multiplication. Our main tool
will be Theorem 4.1; however, in the cases where the field of real multipli-
cation is Q(ζ(4)

p ) or Q(ζ(6)
p ), we instead use a degeneration argument which

yields a slightly stronger result than the application of Theorem 4.1 would.
Suppose K/k is an extension of algebraically closed fields of transcen-

dence degree n. For each g ≥ 2, let Mg be the moduli space of smooth
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genus g curves. We say a genus g curve X/K is an n-dimensional family
of curves over k if the map SpecK ↪→ Mg(K) induced by X does not
factor through any SpecL, where L is an algebraically closed subextension
of K/k of transcendence degree less than n over k.

Corollary 4.1. Let k be an algebraically closed field. Then

1.If p > 5 is a prime, and char k does not divide 2p, there exists a 3-
dimensional family of curves with real multiplication by Q(ζ+

p ).
2.If p is a prime congruent to 1 mod 4, and char k does not divide 2p,

there exists a 1-dimensional family of curves with real multiplication by
Q(ζ(4)

p ).
3.If p is a prime congruent to 1 mod 6, and char k does not divide 6p,

there exists a 1-dimensional family of curves with real multiplication by
Q(ζ(6)

p ).
6.If p, q are distinct odd primes, and char k does not divide 2pq, there

exists a 1-dimensional family of curves with real multiplication by Q(ζ+
pq).

7.If p is an odd prime, and char k does not divide 2p, and α > 1 is an in-
teger, there exists a 2-dimensional family of curves with real multiplication
by Q(ζ+

pα).

Proof. We will begin by treating cases 1, 6, and 7 above, using Theo-
rem 4.1. Cases 2 and 3 require us to make an argument on the boundary
of the moduli space of curves, which we carry out in the second section of
the proof.

Let Kr be the algebraic closure of the function field of the moduli space
M0,r/k of genus 0 curves with r marked points, where r ≥ 4. Then Kr

has transcendence degree r − 3 over k. Moreover, the inclusion

ῑ : SpecKr →M0,r

gives us a set of r points p1, . . . , pr on P1
Kr

. Suppose π : X → P
1
Kr

is a cover
branched at p1, . . . , pr. Let p : Y → P

1
Kr

be the Galois closure of π. As
usual, let G be the Galois group of p and H the subgroup corresponding
to X via the Galois correspondence. Suppose that G,H, χY satisfy the
numerical condition (4.4) of Theorem 4.1. Then X is an (r−3)-dimensional
family of curves over k. For suppose otherwise; then X is isomorphic to
X0×LKr, where L/k is an algebraically closed subextension of Kr/k with
transcendence degree less than r − 3. It then follows from Theorem 4.1
that π is non-varying, which is to say that it is isomorphic the base change
to Kr of a cover π0 : X0 → P

1
L. This means, in turn, that the branch locus
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of π (i.e. the set of points {p0, . . . , pr}) is the base change to Kr of the
branch locus of π0. That is, the map

ῑ : SpecKr →M0,r

factors through SpecL, which contradicts the hypothesis that ῑ is a geo-
metric generic point of M0,r.

It follows that, in each case of the corollary, we only need to demonstrate
that there exists a branched cover π : X → P

1
Kr

branched at p1, . . . , pr
which has the desired real multiplication and which satisfies (4.4).

We will now work case by case. Let F be the field of real multiplication.
Case 1: F = Q(ζ+

p ). We use the branched cover described in section 2
with real multiplication by F . (Recall that this is the cover described by
Brumer [2].) Here r = 6, the Galois group G is the dihedral group Gp,2,
the subgroup H is generated by an involution τ , and the monodromy at
each branch point is conjugate to τ . It follows from Proposition 1.1 that

χY = 2χtriv − 2χ1 + 6(χ1 − χτ ) = 2χtriv + 4χ1 − 6χτ .

So

• χY (1) = 2p+ 2;
• χY (τ) = −4;
• χY (σa) = 2 for all a prime to p.

The double coset HσH has cardinality 4. As g1, g2 run through HσH, the
quotient g1g

−1
2 is trivial in 4 cases, conjugate to τ in 8 cases, and conjugate

to a nontrivial power of σ in 4 cases. So we have∑
g1,g2∈HσH

2− χY (g1g
−1
2 ) = 4(−2p) + 8 · 6 = 48− 8p,

which is negative once p > 5. Note that the assertion of Corollary 4.1 is
in fact false for p = 5, since the moduli space of abelian surfaces with real
multiplication by Q(

√
5) is only 2-dimensional.

Case 4: F = Q(ζ+
pq). Take r = 4 and let X be the branched cover

described in Section 3 with real multiplication by F . In this case, Propo-
sition 1.1 shows that

χY = 2χtriv − 2χ1 + 2(χ1 − χτ ) + (χ1 − χσp) + (χ1 − χσq ).

So

• χY (1) = 2(p− 1)(q − 1)
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• χY (τ) = 0;
• χY (σa) = 2 for all a prime to pq.

The sum in (4.4) is therefore

4(2− 2(p− 1)(q − 1)) + 8 · 2 = 24− 8(p− 1)(q − 1),

which is negative for all odd primes p, q.
Case 5: F = Q(ζ+

pα). Take r = 5 and let X be the branched cover
described in Section 3 with real multiplication by F . Here, Proposition 1.1
tells us that

χY = 2χtriv − 2χ1 + 4(χ1 − χτ ) + χ1 − χσpα−1 .

So

• χY (1) = 2 + 2pα − 2pα−1

• χY (τ) = −2;
• χY (σa) = 2 for all a prime to p.

It follows that the sum in (4.4) is

4(2pα−1 − 2pα) + 8 · 4 = 32− 8(p− 1)pα−1,

which is negative for any odd prime p and any α > 1.

We now turn our attention to the cases F = Q(ζ(n)
p ), where n = 4, 6.

The methods above will show the existence of 1-dimensional families of
curves with real multiplication by F for all sufficiently large p congruent to
1 mod n. In order to prove the desired result for all such p, we introduce
a different approach.

Note that to prove our family of curves is 1-dimensional, it suffices to
prove it is non-constant. In turn, to prove the family is non-constant, it suf-
fices to prove that it degenerates to a nodal curve (since the generic member
of the family is smooth.) In order to study the degeneration of our family
of branched covers, we need to recall some facts about compactifications of
Hurwitz moduli spaces.

Let C/k be a connected stable r-pointed curve; that is, X has only nodal
singularities, and every rational component of the normalization of X has
at least three points lying over either marked or nodal points on X. An
admissible cover of a stable r-pointed curve C is a finite morphism Y → C
which is étale over all smooth unmarked points of C, and which displays a
certain local behavior over the nodes of C; the precise definition will not
concern us here. (See [14, 3.G] for more information.) If C is a smooth
curve, an admissible cover of C is just a smooth r-branched cover in the
usual sense. The central fact we need is that the moduli stack of admissible
covers is a compactification of the moduli stack of smooth branched covers.
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Lemma 4.2. Let A be a strictly henselian discrete valuation ring with
fraction field K. Let B → A be a stable r-pointed curve whose generic fiber
BK is smooth, and let πK : XK → BK be an admissible cover. Suppose
that the Galois closure of πK has Galois group G with order in A∗. Then
there exists a tamely ramified extension A′ of A, with fraction field K ′,
such that πK′ extends to an admissible cover π : XA′ → BA′ .

Proof. Argue as in [20, §3.13]. The only difference is that the hypothesis
|G| ∈ A∗ replaces Mochizuki’s hypothesis d! ∈ A∗.

We use again the notations introduced in section 2. Let G be either Gp,4
or Gp,6, let g be an element of order 4 or 3, respectively, and let F be the
field Q(ζ(4)

p ) or Q(ζ(6)
p ) respectively. Let h be an element of G of order 2.

We think of G as embedded in the symmetric group Sp by means of the
action of G on G/H.

Let K be the algebraic closure of k(t). By Proposition 1.2, there exists
a Galois cover Y → P

1
K branched at the points 0, 1,∞, and t, with mon-

odromy conjugate to g, g−1, h−1, h respectively. Write X = Y/H. This
cover has a model XU → P

1
U , where U is an open subscheme of a finite

étale cover of Spec k[t], and XU → P
1
U is smooth. Note that X has real

multiplication by F , by the results of section 2.
Let R be the integral closure of k[t] in the fraction field of U , and let

S = SpecR. First of all, by the properness of the moduli space M0,4

of 4-pointed stable genus 0 curves, there is a finite cover S′ of S and a
stable 4-pointed genus 0 curve B → S′ whose geometric generic fiber is
P 1
K marked at 0, 1,∞, and t. Let U ′ = S′ ×S U . Then XU ′ → BU ′ is

a a smooth 4-branched cover. It follows from Lemma 4.2 that, possibly
after another finite extension of S′, the cover XU ′ can be extended to an
admissible cover XS′ → B. For simplicity of notation, replace S by S′.

Let s ∈ S be a closed point of S lying over the point t = 0 of Spec k[t].
Then Bs is a nodal 4-pointed curve of genus 0; any such curve consists of
two rational curves meeting at the node, with two marked points lying on
each of the irreducible components. Let Xs be the fiber of XS over s, so
that πs : Xs → Bs is an admissible cover. Let C,C ′ be the two irreducible
components of Bs. Then π−1

s (C) → C is a branched degree p cover (not
necessarily connected) of a smooth genus 0 curve, which is étale away from
the two marked points on C and the node C∩C ′. Call these points m0,mt,
and n.

Now consider an infinitesimal neighborhood of s ∈ S, which is isomorphic
to Spec k[[u]]. Since m0 is a smooth point of C, the completed local ring of
B at m0 is isomorphic to Spec k[[u, v]]. The marking divisor 0 is a section
from S to B, which is locally given by the map of rings k[[u, v]] → k[[u]]
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sending v to 0. Let SpecA be the scheme completing the Cartesian square

SpecA −−−−→ Xy y
Spec k[[u, v]] −−−−→ B.

Then it follows from Abhyankar’s Lemma that

A ∼=
d⊕
i=1

k[[u, v]][V ]/(V ni − v)

where the n1, . . . , nd are the lengths of the orbits of the element g of Sp.
Now, restricting SpecA to the fiber u = 0, we see that the monodromy
around m0 in the cover πC : π−1

s (C) → C is conjugate to g. Similarly,
πC has monodromy conjugate to h around mt. So the monodromy of πC
around n is g′h′, where g′ is some conjugate of g−1 and h some conjugate of
h−1. It is now an easy Riemann-Hurwitz computation that every compo-
nent of π−1

s (C) has genus 0 or 1, and that the same is true of π−1
s (C ′). In

particular, the stable model of Xs is not a smooth curve of genus (p−1)/n.
We conclude that the generically smooth family of curves X has a fiber Xs

whose stable model is non-smooth; therefore, X is the desired non-constant
family of curves with real multiplication by F .

One would like to have explicit equations, as in [27],[19] and [2], for the
families of branched covers π : X → P

1
Kr

discussed above. These families
of branched covers are parametrized by certain Hurwitz spaces, which are
smooth schemes of dimension r − 3 over k.

To give a rationally parametrized family of branched covers would be to
give a branched cover X → P

1
U with the specified monodromy g1, . . . , gr,

where U is an open subscheme of a rational variety. Such a cover would
produce a map from U to a Hurwitz space. In case r = 4, the Hurwitz
space is a union of curves, whose genera can be computed by passing to
characteristic 0 and using combinatorial methods. A computer calculation
shows that in the cases F = Q(ζ(4)

13 ),Q(ζ(6)
13 ), the relevant Hurwitz spaces

are already genus 1 curves. Our methods thus cannot produce rationally
parametrized families of curves whose Jacobians have real multiplication
by Q(ζ(4)

13 ) and Q(ζ(6)
13 ), and indeed, we have no reason to expect that such

families exist.
The situation is different in the case F = Q(ζ+

pq). In fact, one can
rather easily construct a rationally parametrized family of curves with real
multiplication by F .



22 JORDAN S. ELLENBERG

Proposition 4.2. Let p and q be odd primes, let k be an algebraically
closed field of characteristic prime to 2pq, and let X/k be the non-singular
curve with affine model

Tpq(y/2) = P (x)/2(x− 1)p(x− λ2)q

where Tpq is the degree pq Tchebyscheff polynomial satisfying

Tpq((z + z−1)/2) = (zpq + z−pq)/2

and P (x) is the degree p+ q polynomial such that

P (w2) = (w − 1)2p(w − λ)2q + (w + 1)2p(w + λ)2q.

Then X is a curve of genus (1/2)(p− 1)(q − 1) with real multiplication by
Q(ζ+

pq).

Proof. Let Y be the curve with affine model

zpq =
(w − 1)p(w − λ)q

(w + 1)p(w + λ)q
.

One easily checks that the map Y → P
1 sending (z, w) to w2 realizes Y as

a cover of the line with Galois group Dpq, branched over 0, 1,∞, and λ2

with ramification of order 2, q, 2, p respectively. The action of Dpq on Y is
generated by

τ : (z, w)→ (z−1,−w)

and

σ : (z, w)→ (ζpqz, w).

Let H be the subgroup of Dpq generated by τ . Then Y/H is evidently iso-
morphic to X; it now follows from the arguments of section 3 that X has the
desired real multiplication.

Remark 4. 2. By choosing λ in a field k0 which is not algebraically
closed, one can arrange for X to have a model over k0; however, the en-
domorphisms of Jac(X) will typically be defined only over an extension of
k0. The problem of determining fields of definition and fields of moduli
for the families of curves constructed here is part of the active program of
constructing models of branched covers over non-algebraically closed fields.
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The interested reader should consult the papers of Dèbes, Douai, and Em-
salem [6],[7].

5. QUESTIONS

The main goal of this paper has been to exhibit smooth curves whose
Jacobians had many endomorphisms of Hecke type. The negative version of
this question–what endomorphism algebras cannot act on the Jacobian of a
smooth curve?–seems substantially more difficult. In fact, we do not know
of a single example of an algebra E which embeds in the endomorphism
algebra of a principally polarized abelian variety but which can be proven
not to embed in the endomorphism algebra of the Jacobian of a smooth
curve. In this section, we frame some questions in the direction of bounds
on endomorphisms of Hecke type.

5.1. A non-Galois version of Hurwitz’s theorem?
Hurwitz showed [16] that a curve of genus g > 1 over a field k of charac-

teristic 0 has an automorphism group of size at most 84(g − 1). In other
words, if Y/k → C/k is a Galois cover with Galois group G, the dimension
of Q[G] is bounded linearly in g(Y ).

Now let Y,C,G,H,X be defined as in section 1. Let HX/C be the endo-
morphism algebra of Hecke type; recall that HX/C is a homomorphic image
of Q[H\G/H] and a subalgebra of End0(Jac(X)). We will always suppose
that X/C is a tamely ramified cover, so that Proposition 1.1 is in effect.

Question A: Is there a universal constant γ such that

dimHX/C ≤ γg(X)

for all X,C?

Hurwitz’s theorem implies that the answer to question A is yes, with
γ = 84, if we impose the additional condition that H is trivial.

Question A can be rephrased purely in terms of combinatorial group
theory. First of all, if π : X → C is a branched cover, we may compose
π with a map ψ : C → P

1. The endomorphism algebra of Hecke type
associated to the branched cover ψ ◦ π : X → P

1 is easily seen to contain
HX/C . So Question A does not change if we replace C by P1. When
C = P

1, the action of G on H1(Y,Q`) is described by a certain Hurwitz
character (see Remark 1.4) and the dimension of HX/C can be determined
from that character.
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To be precise: let χ be a Hurwitz character of a finite group G, and let
H be a subgroup of G. We can decompose χ as

χ =
∑
ψ

aψ(χ)ψ

where ψ ranges over the irreducible characters of G. If ψ is a character of
G (trivial or not), write ψ(H) for the inner product of χ with the character
χH induced from the trivial character on H. Now define

A(G,H, χ) =
∑

ψ:aψ(χ)>0

ψ(H)2.

Let Y → P
1 be a branched cover with Galois group G giving rise to the

Hurwitz character χ on H1(Y,Q`), and let X = Y/H. Then A(G,H, χ) is
precisely the dimension of HX/P1 . Note also that χ(H) = 2g(X).

We arrive at the following equivalent formulation for Question A.
Question A’: Is there a universal constant γ such that

A(G,H, χ) ≤ γχ(H)

for all G,H, χ?

Results of Aschbacher, Guralnick, Neubauer, and Thompson give partial
results in the direction of question A′ in case H is a maximal subgroup
of G, the intersection of whose conjugates is trivial. Such subgroups are
classified by a theorem of Ashbacher and Scott; the results of the four above
authors show that, in all but one case of the Aschbacher-Scott classification,
[G : H] is bounded above by a linear function in χ(H) [13, §1]. Plainly,
A(G,H, χ) ≤ [G : H], so in these cases Question A′ is answered in the
affirmative. For example, if G is solvable and H is subject to the above
restrictions, then γ can be taken to be 210 [24]. More results in this direction
will appear in [12].

5.2. Decomposable Jacobians
In [9], Ekedahl and Serre ask whether there are curves over C of every

genus, or even of arbitrarily large genus, whose Jacobians are isogenous to
products of elliptic curves. Let X/k be a curve over an algebraically closed
field of characteristic 0, and let d(X) be the supremum of dim(A) over all
simple isogeny factors A of Jac(X). Then we can rephrase Ekedahl and
Serre’s question to read: what conditions on the genus of X are imposed
by the condition d(X) = 1? More generally, we might ask:
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Question B: Is there an increasing, unbounded function f : N → N

such that, for all smooth genus g curves X/k,

d(X) ≥ f(g)?

By taking C to be a genus g0 curve and X to be the maximal elementary
2-abelian étale cover of C, one finds that such an f would have to be of
order at most c log g. Serre has proved that, if k is replaced by a finite
field F, and if d(X) is the maximal dimension of an F-simple isogeny factor
of Jac(X) over F, then the answer to question B is yes. In fact, de Jong
has shown [5] that f(g) can be chosen on the order of (log log g)1/2 in this
case. On the other hand, if k is taken to be an algebraically closed field
of characteristic p, the existence of supersingular curves of arbitrarily large
genus shows that the answer to question B is no.

In some cases, we can use endomorphisms of Hecke type to bound d(X).
Let X,Y,G,H,C be defined as in section 1, with |G| prime to char k.

Denote by M the Q[H\G/H]-module H1(X,Q`). Let V1, . . . , Vm be the
irreducible Q-representations of G. Recall the decomposition

Q[H\G/H] ∼=
∑
i

Mdi(∆i). (5.5)

given in (1.1).
For each i, write πi,j for the element

ejj ∈Mdi(∆i) ⊂ Q[H\G/H].

Then πi,j is an idempotent, and we can write

M ∼=
∑
i,j

πi,jM.

We call the subspace πi,jM a factor of M . Note that e(πi,j) Jac(X) is an
abelian subvariety of Jac(X) of dimension (1/2) dimQ`(πi,jM).

Now define

d(X/C) = max
i,j

(1/2) dim(πi,jM).

(Note that the maximization over j is really redundant, since πi,jM and
πi,j′M have the same dimension.)

The decomposition of Jac(X), up to isogeny, as

Jac(X) ∼
⊕
i,j

e(πi,j) Jac(X)
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implies that d(X) ≤ d(X/C).
A slight modification of d(X/C) is sometimes useful. We may suppose

that the first factor in the decomposition (5.5) is a copy of Q, which we
may think of as the quotient of Q[H\G/H] by its augmentation ideal. So
d1 = 1,∆1 = Q. Now define

d′(X/C) = max
i>1,j

(1/2) dim(πi,jM).

Note that π1,1 projects Jac(X) onto its G-invariant part, which is isogenous
to Jac(C). So we have

Jac(X) ∼ Jac(C)⊕
⊕
i>1,j

e(πi,j) Jac(X),

which implies that

d(X) ≤ max(d(C), d′(X/C)).

Ekedahl and Serre give many examples of curves X with large genus
such that d(X) = 1. With the exception of some modular curves, their
examples, like ours, are produced by analyzing the action of a finite group
on the Jacobian of a Galois cover of P1. In our notation, the Ekedahl-
Serre examples are given as branched covers of low-genus curves C with
d(C) = 1, and all have d′(X/C) = 1.

We are now motivated to ask whether this strategy has any chance of
providing a negative answer to Question B.

Question C: Is there an increasing, unbounded function f : N→ N such
that, for all smooth genus g curves X/k and all branched covers X → C,

d(X/C) ≥ f(g)?

We can rephrase question C as a question in combinatorial group the-
ory. By composing the map X → C with an arbitrary map C → P

1, we
may think of X as a branched cover of the projective line; since HX/C is
contained in HX/P1 , we may restrict to the case C = P

1.
Let G be a finite group, H a subgroup of G, and V be a Hurwitz repre-

sentation of G. We decompose V into irreducible Q-representations as

V =
⊕
i

V
⊕ai(V )
i .

Write χ for the character of V , and χi for the character of Vi.
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Now V H is a Q[H\G/H]-algebra. Then

dimQ πi,jV H =
{
ai(V ) dimQ∆i = 〈χi, χ〉 di > 0
0 di = 0

Suppose Y/C is a cover of curves with Galois group G such that the
action of G on H1(Y,Q`) is given by V ⊗Q Q`. Let X = Y/H. Then the
dimension of e(πi,j)(Jac(X)) is (1/2) dimQ πi,jV H .

This leads us to the following equivalent formulation of question C:

Question C’: Let G be a finite group, V a Hurwitz representation of G,
and H a subgroup of G. Let Σ be the set of i in [1..m] such that di > 0.

Is there an increasing, unbounded function f : N → N, independent of
G,H, and V , such that

max
i∈Σ
〈χi, χ〉 ≥ f(dim(V H))?

This problem seems rather difficult even for the case of Galois covers,
where H is trivial.

We will discuss one special case, from which Ekedahl and Serre derive
many examples of curves with decomposable Jacobians([9, §4]). Let X/P1

be a Galois cover with group G, and suppose that G admits a non-trivial
homomorphism to Z/2Z, with kernel K. We thus obtain a diagram

X → X0 → P
1,

where X0 is a hyperelliptic curve. Let V be the Hurwitz representation of
G corresponding to the cover X → P

1, and suppose that

max
i
〈χi, χ〉 < B.

We will derive an upper bound, in terms of B, for g(X) = (1/2) dimV H .
Let χ be the character of V , and χi the character of Vi. Now each

irreducible complex character ψ of G is a constituent of a unique χi. In
particular,

max
ψ
〈ψ, χ〉 ≤ max

i
〈χi, χ〉 < B.

Now if θ is an irreducible complex character of K, we have

〈θ, χ|K〉K = 〈IndGK θ, χ〉G.
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Since IndGK θ is a sum of either one or two irreducible characters of G we
have that 〈θ, χ|K〉K < 2B.

Suppose furthermore that g(X0) ≥ 2 and that the cover X → X0 is étale,
as is the case in Ekedahl and Serre’s examples. One has by Proposition 1.1
that

χ|K = 2χtriv + 2(g(X0)− 1)χ1. (5.6)

(Here, χtriv and χ1 are the trivial and regular characters of K, not G.) In
particular, if θ is a non-trivial irreducible complex character of K, then

〈θ, χ|K〉K = 2(g(X0)− 1)(θ(1)) < 2B. (5.7)

So K has no irreducible complex representations of dimension greater
than B. Hence the irreducible complex representations of G have dimension
at most 2B. A theorem of Isaacs and Passman [17, (12.23)] now tells us
that G has an abelian subgroup A of index at most ((2B)!)2.

We can also bound the order of an element of G. Let g be an element
of G of some order n, and let W be an irreducible complex representation
of G in which 〈g〉 acts faithfully. Since the dimension of W is at most
2B, the field of definition of the character of W must have degree at least
φ(n)/2B over Q. In particular, if Vi is the irreducible Q-representation of
G containing W , then dimQ∆i is at least φ(n)/2B.

We know from the desription of χ|K in (5.6) that 〈χi|K,χ|K〉 > 0. Let
τ be the character of G obtained by pullback from the non-trivial character
on Z/2Z. Denote χi ⊗ τ by χi′ . Then either χi or χi′ must occur with
positive multiplicity in the decomposition of χ; that is, either ai or ai′ is
positive. Note that ∆i′ = ∆i. We thus have

B > max
i
〈χi, χ〉 = max

i
ai(V ) dimQ∆i > φ(n)/2B.

We conclude that φ(n) < 2B2, where n is the order of any element of G.
This implies in turn that n < o(B2−ε).

Since K is the Galois group of a connected étale cover of X0, it can
be generated by 2g(X0) elements. Write A′ for A ∩ K. Then [K : A′] is
at most ((2B)!)2, and it follows from the Reidemeister-Schreier theorem
that A′ can be generated by 2g(X0)((2B)!)2 + 1 − ((2B)!)2 elements. For
simplicity, we say that A′ can be generated by 2g(X0)((2B)!)2 elements.
Since every element of A′ has order at most o(B2−ε), we have

log |A′| = O(2g(X0)((2B)!)2 logB).

Furthermore, since g(X0) = O(B) by (5.7), we have

log |A′| = O(B logB((2B)!)2).
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Since [G : A′] is bounded above by a constant times ((2B)!)2, we also have
log |G| = O(B logB((2B)!)2), whence

log log |G| = O(2 log(2B)!) = O(B logB).

Note that the genus of X is just 1 + (g(X0)− 1)|G|, which is O(B)|G|. So

log log g(X) = O(B logB),

from which we conclude that

d(X/P1) ≥ c log log g(X)
log log log g(X)

for some absolute constant c.
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