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Abstract

We discuss some problems of arithmetic distribution, including conjectures of
Cohen-Lenstra, Malle, and Bhargava; we explain how such conjectures can be
heuristically understood for function fields over finite fields, and discuss a gen-
eral approach to their proof in the function field context based on the topology
of Hurwitz spaces. This approach also suggests that the Schur multiplier plays
a role in such questions over number fields.

1. Arithmetic Counting Problems

We begin with a concrete example, which has been well-understood for many
years.

Let Sx denote the set of squarefree integers in [0, X] that are congruent to 1
modulo 4; let Cx denote the set of isomorphism classes of cubic field extensions
K/Q whose discriminant belongs to Sx. Davenport and Heilbronn proved [6]
that

@—>1, as X — oo. (1)
ISx| 6

Our goal is to understand why limits like that of (1) should exist, why they
should be rational numbers, and what the rational numbers represent.

More precisely, we will study several variants on (1) — replacing cubic fields
by extensions with prescribed Galois group, and “squarefree discriminant” by
other forms of prescribed ramification. We make a heuristic argument as to what
the corresponding limits should be when Q is replaced by the function field of a
curve over a finite field, and lay out a program for a proof in certain cases. This
program has been partially implemented by us in certain settings, leading to a
weak form of the Cohen-Lenstra heuristics (see §4.2) over a rational function
field. In the number field case we have no new theorems; however, the study
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of the function field case suggests interesting refinements of known heuristics,
related to the size of Schur multipliers.

Let us describe — briefly and approximately — how the % makes an appear-
ance over a function field. Let k be a finite field, and k an algebraic closure
of k; we consider cubic extensions L of k(t) with squarefree discriminant and
totally split at co. By a marking of L we shall mean an ordering of the three
places above co. “Marked” cubic extensions can be descended: they are identi-
fied with fixed points of a Frobenius acting on marked cubic extensions of k(t).
Recall that the average number of fized points of a random permutation on a
finite set is 1; thus, if the Frobenius behaves like a random permutation, we
expect there to be on average one marked cover per squarefree discriminant.
Since there are six markings for each cubic field that is totally split at oo, we
recover %.

The rest of this paper will discuss methods for trying to make this heuristic
into a proof, and how it suggests corrections to our view of number fields. In
the function field case, results such as (1) are related to the group-theoretic
structure of étale m1; we may speculate that results such as (1) are reflections
of some (as yet, not understood) group-theoretic features of the absolute Galois

group of Q.

1.1. Context. There has been a great deal of work on the topics discussed
here. We note in particular that related topics have been discussed [1, 3, 7]
in the last three ICMs. Indeed, [1] contains an overview of Bhargava’s results
for quartic and quintic fields, and [3] discusses both theoretical and numerical
evidence for conjectures of the type described in the present paper.

Our point of view is influenced very much by the study of the function field
case; in turn, our study of that case was influenced by both Cohen and Lenstra’s
work and the more recent paper [8] of Dunfield and Thurston on finite covers
of hyperbolic 3-manifolds.

The present paper has three sections; although related, they are also to a
large extent independent, and can be considered as “variations on the theme of

(1).”

— §2 discusses the conjectures of Bhargava-Malle about distribution of num-
ber fields, generalizing (1). We also discuss the role that Schur multipliers
may play in formulating sharp versions of such conjectures (§2.4). The
reader may wish to first look at Section 3.4, which provides the geometric
motivation guiding the computations in Sections 2.4 and 2.5.

— 83 discusses the function field setting and its connection with the geometry
of Hurwitz spaces; in particular, how purely topological results on the
stable homology of Hurwitz spaces would imply function field versions of
Bhargava-Malle conjectures.

— 84 discusses the special case of the Cohen—Lenstra heuristics, and our
proof (with Westerland) of a weak version in the function field setting.
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This proof suggests more general connections between analytic number
theory and stable topology.

1.2. Notation. By a G-extension algebra (resp. field) of a number field
K, we shall mean a conjugacy class of homomorphisms (resp. surjective homo-
morphisms) from the Galois group Gk := Gal(K/K) to G. In other words,
G-extension fields are in correspondence with isomorphism classes of pairs
(L O K,G = Gal(L/K)), where an isomorphism of pairs (L, f) and (L', f’)
is simply a K-isomorphism ¢ : L — L’ which commutes with the induced
G-actions.

A pair (G,c) of a group G and a conjugacy class ¢ C G will be called
admissible — for short, we say that ¢ is an admissible conjugacy class — if

1. cis a rational conjugacy class, i.e., g € ¢ => ¢" € ¢ whenever n is prime
to the order of g;

2. c¢ generates the group G.

Given a tamely ramified G-extension and an admissible conjugacy class, we say
that all ramification is of type c if the image of every inertia group is either
trivial or a cyclic subgroup generated by some g € c.

Acknowledgements. We thank Craig Westerland, our collaborator on
the work described here, for many years of advice and ideas about the topolog-
ical side of the subject. We have also greatly benefited from conversations with
Manjul Bhargava, Nigel Boston, Ralph Cohen, Henri Cohen, David Roberts,
and Melanie Wood.

2. Number Fields

In this section, we discuss Bhargava’s heuristics for discriminants of S,-
extensions of Q, and propose that for extensions with certain Galois groups
G these heuristics should be modified by a term related to the Schur multiplier
of G.

Before proceeding, however, we warn the reader of the alarming gap be-
tween theory and experiment. For example, the statement “there are % totally
real cubic fields per odd squarefree discriminant” is indeed only asymptotically
valid; for instance, the smallest squarefree discriminants of real cubic fields are
229,257 and 321, and in fact (1) looks quite inaccurate for small X. However,
there is convincing numerical evidence [22] that the ratio of (1) converges from
below, with a secondary term decreasing proportionally to D~1/6. This unpleas-
ant situation — very slow numerical convergence to the expected limit — persists
in all the examples we shall discuss in this paper, making it very difficult to
test ideas except in somewhat indirect ways. For more discussion of this point,
see §2.6.
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2.1. Malle’s conjecture. For definiteness, we work over the base field
Q for the moment; the ideas generalize in a straightforward fashion, and we
will anyway pass to the case of a general number field in §2.4.

Suppose G is provided with an embedding into S,,. In that case, there is a
well-defined “discriminant” of any G-extension algebra or field L, since the map
G — S, associates to L an étale Q-algebra of degree n which has a discriminant
in the usual sense. (In what follows, then, the “discriminant” of an S,, extension
field refers to the discriminant of the associated degree n field, and not to the
discriminant of its Galois closure.)

In this case, Malle has conjectured [18, 19] that

. # G-extension fields of discriminant less than X
lim
X—o00 X1a(log X)b

(2)

exists and is nonzero, for certain integers a and b depending on G. For instance,
n — a is the maximal number of orbits of any nontrivial ¢ € G C S,,.! This
statement has some consequences which are surprising at first glance: for in-
stance, a positive fraction of quartic fields (ordered by discriminant) contain
Q(v-1).

Malle’s conjecture has been proved by Davenport—Heilbronn in the case
G = S5 (prior to Malle’s general formulation!) and by Bhargava in the case
S4, S5, in each instance with a precise description of the limit in (2) as an Euler
product.

2.2. The asymptotic constant. As originally stated, Malle’s conjec-
ture gives no information about the asymptotic constant, i.e. the limit of (2)
as X — oo.

In fact, we do not regard the limiting value of (2) as the object of primary
interest. This is because it conflates several independent issues; in particular, it
mingles together fields with many different types of ramification, and it is also
strongly influenced by the notion of “discriminant” (if we change the embedding
G — Sy, the limit will change).

Instead, we shall study the asymptotic constant only after “controlling” for
these effects. For example: if we prescribe a set of primes and the ramification
type at each prime, what is the expected number of global extensions realizing
this “ramification data”? The word “expected” implies a suitable average; we
usually mean to average over all sets S of primes with Hpe ¢P < X, and then
let X — o0.

In the rest of this paper, we shall discuss the case where we fix a conjugacy
class ¢ C G and study G-extensions where all ramification is of type c. (See
§1.2 for the notation.) For instance, (1) corresponds to the case of G = S3 and
c the class of transpositions; in the next section, we shall discuss totally real

IThe value of b in Malle’s original conjecture is now known to be incorrect in some cases
when the extension fields being counted can contain extra roots of unity: see [17],[25].



Statistics of Number Fields and Function Fields 5

Sn-extensions of odd squarefree discriminant, which corresponds to the case
where G = S,, and c is the class of transpositions.

The ideas that we describe can be generalized to multiple ramification types,
and one can eventually return to the setting of (2) by putting this information
together.

2.3. The asymptotic constant: Bhargava’s heuristic. On the
basis of his results for G = S; and G = S5, Bhargava has formulated a general
and very beautiful conjecture [2, Conjecture 1.2] for the constant in the case
G = S,,. We quote from his paper [2, page 10] and then explain by example:

The expected (weighted) number of global S, -number fields of dis-
criminant D is simply the product of the (weighted) number of local
extensions of Q, that are discriminant-compatible with D, where v
ranges over all places of Q (finite and infinite).

By a local extension of Q,, we mean simply a degree n étale algebra E over
Q.; by discriminant—compatible, we mean (in the non-archimedean case) that
the valuation of the discriminant of E coincides with the valuation of D and (in
the archimedean case) that the signs match. Bhargava conjectures further that
the expected number of S,-extensions of discriminant D with a specified local
behavior at v is obtained by the appropriate modification of the local factor at
v in the above product.

Let us consider, for instance, what this means for totally real fields of odd
squarefree discriminant D, i.e. totally real S,-extensions all of whose ramifica-
tion is of “transposition” type. To compute the expected number, one takes the
product of local factors weight(v), where

weight (v

1
)= 2 RE/au))

the sum being taken over all degree n étale algebras E/Q, that are:
— unramified, if v is a place not dividing D;
— have discriminant of valuation 1, if v(D) = 1;

— totally real, if v is infinite.

The weights in these cases are computed to be 1,1 and < respectively; so

n!
Bhargava’s heuristic suggests that

There are, on average, %

squarefree discriminant,

totally real S,-extensions of Q per odd

where this is to be interpreted in a fashion analogous to (1) — in particular, we
again restrict to discriminants that are congruent to 1 modulo 4, a necessary
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condition by Stickelberger’s theorem. This statement is compatible with the
limit # that appears in (1).

One of the remarkable features of Bhargava’s heuristic, as well as of the
known results in degree < 5, is that there is no restriction to tamely ramified
extensions. Our knowledge in more general situations is sadly limited, and we
shall unfortunately have to restrict to tame ramification.

2.4. General groups; the role of the Schur multiplier. Let us
now consider the case of a general group G. In this case, we shall propose that
in many cases a version of Bhargava’s heuristic applies: but that the heuristic
as stated above often gives too few extensions, and must be modified by a term
related to the size of the Schur multiplier of G. The reader will find motivation
for this modification in Section 3.4.

Particularly in the number field case, what follows is speculative: We have,
in the function field case, theoretical evidence for this modification, described
in §3. But in the number field case we do not yet have serious numerical or
theoretical evidence.

Let K, then, be a global field — either a number field, or a function field of
a curve over a finite field; allowing this generality now allows ease of compar-
ison later. To isolate as far as possible the particular phenomenon we wish to
describe, we consider G-extensions L/K with the following properties:

1. G is center-free and has trivial abelianization;
2. ¢ C G is an admissible conjugacy class;

3. If K is a function field, we suppose that the characteristic of K does not
divide |Gl;

4. All ramification in L/K is tame of type c¢;

5. Fixing a set of places S, of K containing all archimedean places, we
consider only extensions L/K that are totally split at Se.

In what follows, we regard G, ¢, S, K as fixed, subject to restrictions 1, 2,
3, and will count extensions L satisfying 4, 5.

The direct analogue of Bhargava’s S,, heuristic would suggest that the av-
erage number of G-extensions L, for each set of ramified primes compatible
with conditions 4 and 5, is |G| !S=|. More precisely, let V be S, together
with all places whose residue characteristic divides the order of an element of
¢; if we denote by Sx the collection {S a subset of finite places of K : SNV =
0,11 cs @ < X}, and by Fx the set of G-extensions L satisfying conditions
4,5 and which are ramified precisely at some S € Sy, then

| Fx|

— G715l as X — o0.
‘SX| ‘ | )
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Based on our results in the function field case, we do not think this is right
in general, and we speculate instead that
|Fx] hG,c, K)
. ’
|Sx| |G|15=]

as X — oo, (3)

for some rational number h(G, ¢, K) related to the order of the Schur multiplier
of G. We make precise predictions for the value of h(G, ¢, K) in some special
cases below.
Let Q = Q. C H2(G,Z) be the subgroup generated by ¢.(Ha(Z x Z,7Z)),
as ¢ ranges over homomorphisms Z x Z — G taking (0, 1) to an element of c.
We put
Hy(G,¢;Z) := Hy(G,Z)/Q.. (4)

The following interpretation in terms of covering groups will be useful: Fix
a universal central covering Ho(G,Z) — G — G (such exists because G is as-
sumed perfect). Fix g € cand alift § € G. Then any element h € G centralizing
g has the property that ﬁgirl € gQ.. Consequently, the natural projection in-
duces a bijection from the conjugacy class of g@. in C:'/QC to the conjugacy
class c¢. Write G, for the quotient of G by Q.; it is the “largest covering to
which the conjugacy class of ¢ lifts bijectively.” Then Hy(G,c;Z) is precisely
the kernel of éc — G.

If the ground field K contains sufficiently many roots of unity (i.e., if uy C
K where N depends only on (G, c)) and S is large enough, we believe that

WG, e, K) = #Hy(G,¢; Z). (5)

In the general case, we anticipate h(G, ¢, K) will be a rational number between
0 and #H>(G, ¢; Z) that depends on the number of roots of unity in K.

For instance, if the order of elements of ¢ are relatively prime to
#Hs(G,c;Z), then we believe that h(G,c, K) = #Hy(G,¢;Z) as soon as the
number m of roots of unity in K annihilates Hy(G, ¢;Z) and S contains all
the primes dividing m.

In fact, in the next section, we shall associate (under these conditions) a
fundamental class 3(p) € Ha(G,c;Z) to any G-extension p, and we suggest
even the following refinement of (3): for any o € Hy(G, ¢; Z),

x|

— |G719=], as X — o0, (6)
Sx|

where F§ is now restricted to those G-extensions with fundamental class a.

Remark. Heuristic (3) is definitely not valid as stated for general (G, ¢) with
no hypotheses on the extension. The case G = D, is one whose difficulties have
been much studied. There are no quartic extensions of Q with Galois group Dy
and squarefree discriminant, although there are no local obstructions to this;
indeed, squarefree discriminant implies that the Galois group is S,,. When one
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counts quartic dihedral extensions with |disc| < X, one gets a positive multiple
of X, by a result of Cohen, Diaz y Diaz, and Olivier [5]; however, the constant
is not equal to that predicted by the heuristics discussed here. The point is
that the conjugacy class of “transpositions” in Dy is not admissible — it fails to
generate Dy.

2.5. Lifting invariants over global fields. Motivated by the con-
siderations of the prior section, we shall now associate to a homomorphism
p: Gx — G, satisfying certain local conditions, a “fundamental class” 3(p) in
Hy (G, ¢; Z). (This association depends on the choice of a generator for the roots
of unity in K.) This fundamental class is an invariant of the conjugacy class of
p, meant to analogize the Fried-Serre “lifting invariant” of branched G-covers
of the projective line [11, 24].

In addition to the group-theoretic conditions from §2.4 (namely, G center-
free with trivial abelianization, ¢ C G admissible) we impose the following
restrictions:

1. Let p, be the group of roots of unity in K. Then n annihilates Hy(G, ¢; Z).
2. The order e of any element of ¢ is relatively prime to #H2(G, ¢; Z).

These conditions are satisfied, for instance, when G = Aj and c is the class of
3-cycles. If these conditions fail, one may still obtain an invariant by passing
to a sufficiently large cyclotomic extension, but we have not yet studied the
resulting construction in sufficient detail to be confident about its properties.

Let G, be the covering of G constructed after (4). Condition (2) of the
prior paragraph implies that there is a unique conjugacy class ¢ of G, which
projects bijectively onto ¢, and whose elements have order e. Moreover, if x is
an element of ¢, there exists a unique lifting of the cyclic subgroup (x) C G to
a cyclic subgroup of G. of order e.

For brevity, we denote Hy(G,c;Z) by A. We fix an algebraic closure K of
K and let Gx = Gal(K/K) be the absolute Galois group; for each place v of
K, we let G, C Gk be a decomposition group and (for v finite) I, C G, an
inertia group.

Lemma. Let S, be a finite set of places of K, containing archimedean places.
Let p: Gg — G be a homomorphism satisfying the following local properties:

a. p is trivial on G, for v € S.
b. p is tamely ramified;

c. If v is a ramified place, p(I,) is a cyclic subgroup of G generated by an
element of c.

Then p lifts to a representation jp : Gx — Ge. Moreover p can be chosen so
that it has properties (a), (b), i.e. it is everywhere tame, and trivial on G,, for
VE Soo.
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Proof. The obstruction to such a lift lies in H?(Gx, A); it suffices to compute
the obstruction locally, since the map

H2(Gx, A) — P H*(G,, A)

is injective, by virtue of the assumption that p,, C K.

For v infinite it is clear that p|G,, can be lifted to a homomorphism G, — G..
For v finite, p|G, factors through the maximal tame quotient of G,. Fixing a
generator 7, for tame inertia as well as a Frobenius element Fr,, we can specify
p|G, by means of a pair (t = p(7,), F = p(Fr,)) € G x G satisfying

Ftr~! =11, (7)

where ¢ = ¢, is the cardinality of the residue field at v.
Let ¢ be the unique preimage of ¢ with exact order e, and F an arbitrary
lift of F. By (7), t? has order e, and so ¢ is relatively prime to e; thus

FiF—' ={4, (8)

since both sides are lifts of 7 with order e.

Thus p|G, lifts to G. for all v; thus p also lifts to a representation p : Gxg —
Ge.
It remains to check that p can be chosen to be tame at all finite places and
trivial at v € So.. We have already constructed a tamely ramified lift of p|G,
for each finite v. It follows that there exists, for every v ¢ S, for which p|G,
is wild, a character x : G, — A so that y,p is tame at v. Similarly, for v € S,
there exists a character x : G, — A so that x,p is trivial on G,,.

We now twist p by any character x : Gx — A which extends x, at S, and
all other places wildly ramified in p, and which is tame at all other places; one
checks that such a y exists by using weak approximation. O

We now take S, to be the set of archimedean places, together with all
places dividing n. We shall associate an invariant 3(p) € H2(G,¢;Z) to any
p: Gg — G that satisfies the condition of the Lemma. Fix a lifting p as in the
Lemma.

For each place v ¢ S, consider the sequence

I, - Wi S K
where W, is the local Weil group and the latter isomorphism is class field theory.
This induces a map I'*™° — kX, where k, is the residue field at v.

Fix a generator g for p, C K; regarding it as an element of k), let g, be
any preimage of g inside [!*™¢ with the property that the image of g, inside
the tame quotient I¥*™° generates a subgroup of index %
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—1
Such g, exist and any two choices g, g/, satisty g/, = g, g, = g{,)‘ where

A lies in the kernel of the reduction Z* — (Z/nZ)*.

Recall that the image p(I,) is either trivial or a cyclic subgroup generated
by some element of ¢ and, in either case, admits a unique lift z — z* to a
cyclic subgroup of the same order in G.. We define the lifting invariant of the
homomorphism p: Gxg — G as

30)= T 2 20=0l90) (p(9,)") ! € A.
v S

1. Independence of p: Any other lift of p as in the Lemma is necessarily of the
form pip, for some character ¢ : Gg — A that is everywhere tame, and
trivial on all G, (v € S ). Independence now follows from the reciprocity
law of class field theory.

2. Independence of g, (while fixing g): let ¢/ = g), with \ € ker(zX —
(Z/nZ)*). Then

5lgy) = (3(g) = (zuplge))
20(p(90)") = 2up(90)* = 20p(g))"

3. Independence on the choice of I,: the inertia subgroups of G are defined
up to conjugacy, and it is clear that replacing each g, by a conjugate does
not affect z,, and thus leaves 3(p) unchanged.

The invariant does depend on g; replacing g with g% for a € (Z/nZ)* has the
effect of replacing 3 with 3.

Example. Take G = A5 and K = Q. For the conjugacy class ¢ of 3-cycles,
we have #Hs(G,¢;Z) = 2; on the other hand, for the conjugacy class ¢ of
products of two commuting transpositions we have #Hy(G, ¢; Z) = 1. Thus, we
expect there to be twice as many tamely ramified totally real As-extensions,
all of whose ramification is of type ¢, than those all of whose ramification is of
type ¢’

In this case, the lifting invariant is defined as follows: The universal cover
of As is just SLy(F5) — PSL2(F5) = As. Using the lemma, lift the given
homomorphism p : Gq — As to p: Gq — SL2(F5). Let S be the set of primes
p congruent to 3 mod 4 for which 5(I,) has even order (cf. [24]).

Then the invariant 3(p) is determined by the parity of |\S|. This is indepen-
dent of our choice of g, since, for any homomorphism x : Gq — {%1} that is
tame and trivial at oo — i.e., the character associated to a quadratic field of
positive odd discriminant — the set of p = 3 mod 4 for which x(I,) # {1} has
even cardinality.
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Numerical inspection of John Jones’ number field tables [16] indeed shows,
amongst totally real, tame As-fields of small discriminant, a preponderance of
inertial types of order 3, although, as we discuss in the next section, the data
is very scarce and one should be very cautious about treating it as evidence.

Remark. Relaxing the condition that |A| and e are coprime leads to more
subtle behavior than that discussed here. For instance, take G = PSLy(F7) and
¢ the unique conjugacy class of order 4, so that G.=SLs (F7) and A = Z/27Z.
One can check that ¢ does not lift to any conjugacy class of order-4 elements
of G., and p : Gx — G need not lift locally to G, even though py C K. In this
case different modifications to Bhargava’s heuristics are needed.

2.6. Numerics. The difficulty of investigating conjectures of this kind in-
creases very rapidly with the degree, not only because of slow convergence but
because of the scarcity of examples. For instance, Jones’s database of number
fields shows that there are just eight totally real quintics with Galois group Ss
and discriminant less than 10°, while Bhargava’s asymptotic (which is provably
correct as the discriminant goes to infinity!) would predict around 600.

One can think of this scarcity as following, in part, from analytic lower
bounds for the discriminant [21]. Alternatively, one might imagine that the
number of S, -extensions of discriminant in [0..X] has a secondary main term
with negative coefficient. In the Ss case, Roberts has given convincing evi-
dence [22] that the number of totally real cubics of discriminant < X admits
an asymptotic formula

aX — bX5/6 £ O(x1/?+e),

for certain explicit constants a,b > 0. This modified heuristic, which arises
naturally from the pole structure of the pertinent Shintani zeta function, fits
numerical data far better than does the Davenport-Heilbronn asymptotic a X .

Question. Describe the lower order terms in the counting function for S, -
discriminants, the main term of which is provided by the conjectures of Malle
and Bhargava.

It seems quite likely that the phenomenon of lower-order terms only slightly
smaller than the main term is rather general; thus (barring a sudden increase in
the range where number fields can be counted exhaustively) a principled answer
to the Question above is likely necessary for any serious numerical investigation
of the conjectures, even insofar as the main term is concerned.

3. Function Fields and Hurwitz Spaces

We now discuss features of the topology of Hurwitz spaces that are responsible
for the truth of theorems such as (1) over the function fields of finite fields.
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We begin by discussing Hurwitz spaces in a purely topological setting (§3.1,
§3.2); then, in §3.3, we discuss Hurwitz schemes over finite fields and their
relevance to function field analogues of Bhargava-type heuristics; finally in §3.4
we discuss motivation for the “Schur correction” from §2.4.

We fix throughout an admissible pair (G, c) of a finite group G and a con-
jugacy class ¢ C G} for simplicity we suppose that G is center-free.

3.1. Hurwitz spaces. In this section, P{ denotes the complex points
of the projective line; however, in §3.1 and §3.2 we are only interested in its
topology, and the reader could replace it by a two-sphere without changing the
meaning.

We will consider the Hurwitz space Hurg .(n) that, informally speaking,
parameterizes G-covers of Pé, branched at n points distinct from oo, with
the monodromy around each branch point lying in ¢, and with a “marking”
of the fiber above oo, i.e. a G-equivariant identification of this fiber with G.
For brevity, we shall regard (G, ¢) as fixed and write simply Hur(n) in place of
Hurg o(n).

Here is the precise definition of Hur(n): Let Conf(n) be the configuration
space of n points in the complex plane C. It is a K(7, 1) whose fundamental
group, the Artin braid group, is generated by elements {o; : 1 <i<n—1}
which pull one point in front of the next. The generators o; and o; commute
when |i — j| # 1, and o; and o;4; satisfy the braiding relation o;0;410; =
0;+10:0;+1; these relations give a presentation of the braid group. Let Hur(n)
be the covering space of Conf(n) whose fiber above a configuration D € Conf(n)
is the set of homomorphisms

Wl(PE —D,0) — G,

sending a loop around each puncture to an element of c.

Equivalently, the action of the fundamental group of Conf,, on the fiber of
Hur(n) — Conf(n) is equivalent to the standard action of the braid group on
{(g1,---+19n) €EC™: g192...gn = 1}, given by the rule

i (G1s -3 Gir Git1s -5 Gn) — (91,~--,9i+1a9i_+119¢gi+17~-~,gn)- (9)

3.2. Stable homology. The first thing to note is that the Hurwitz space
Hur(n) need not be connected: Let CHur(n) C Hur(n) be the subspace of
Hur(n) corresponding to surjective homomorphisms 71 (P& — D,00) — G
then CHur(n) parametrizes connected covers of P&. Then CHur(n) is open and
closed in Hur(n).

It was proved in the nineteenth century by Clebsch, Liiroth, and Hurwitz
that CHur(n) has only one component when G is the symmetric group and c is
the conjugacy class of transpositions. However, in general, even CHur(n) may
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not be connected, an issue we study further in §3.4. These questions can be
reduced to problems in combinatorial group theory: by (9), the components of
Hur(n) are in bijection with the orbits of the braid group on {(g1,...,9.) €
" g192...gn = 1}; the components of CHur(n) are the orbits consisting of
n-tuples which generate G.

More generally (that is, for arbitrary G, ¢) it is a pleasant exercise to check
that the connected components stabilize: that is, there exists an integer E so
that CHur(n) and CHur(n+ E) have the same number of connected components
whenever n is large enough relative to G, c.

One can think of this as a stabilization statement for the degree-zero ho-
mology group Hy(CHur(n)). What about the higher homology?

We say that (G, ¢) satisfies the stability (resp. vanishing) condition if:

1. Stability condition: There exists A > 0, E € Z so that

dim H;(CHur(n), Q) = dim H;(CHur(n + E),Q), j < An—1.

2. Vanishing condition: There exists A > 0 so that the map CHur(n) —
Conf(n) induces an isomorphism on rational homology

Hj(X, Q) AN Hj(Conf(n), Q)
in degrees j < An, for each connected component X (if any) of CHur(n).

Note that H;(Conf(n), Q) is vanishing for j > 1 and one-dimensional for j = 1,
thus the name “vanishing condition.” It is very interesting to ask to what
extent the regularities above might be satisfied with integral coefficients, or
Z[l—cl;‘]—coeﬁicients. In these settings, Conf(n) has nontrivial cohomology in many
degrees.

In [9], we prove a first theorem in this direction.

Theorem. (E., V., Westerland). Let A be an abelian group of odd order, and
D(A) the generalized dihedral group A x Z /27, where the Z/2Z acts on A by
a — —a. Then the pair (D(A),involutions) satisfies the stability condition.

The proof follows, in the large, the same lines as Harer’s proof [14] of ho-
mological stability for M. As in his argument, an essential element is the high
connectivity of a combinatorially defined complex — in this case, the “arc com-
plex” studied by Hatcher and Wahl [15] — on which the braid group acts. In
the Hurwitz space case, a key role is played by the stable Hy discussed above:

R = @,>0Ho(Hur(n), Q) (10)

As the notation suggests, R is a ring, with product given by concatenation of
n-tuples. The animating principle of our argument is that, under the conditions
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of the theorem, the homological algebra of the category of R-modules is “ap-
proximately” the same as that of the category of Q[¢]-modules. (Warning: this
ring R is not exactly the same as that used in [9], where we consider covers of
Al rather than PK.)

We believe that far more than the Theorem above is true: not only the
stability but also the vanishing condition will hold for a wide range — perhaps
all — admissible pairs (G, ¢). For safety, we formulate this as a conjecture only
in the case where we feel most secure:

Conjecture. (S,,transpositions) satisfies the vanishing condition.

The significance for arithmetic lies in the fact that the vanishing condition
essentially implies the function field version of Malle-Bhargava heuristics (in-
cluding Schur corrections as in §2.4). For instance, the stated conjecture implies

There are, on average, % totally real S,-extensions of Fy(T") per
squarefree discriminant,

where in this context “totally real” means that the extension is totally split at
oo; also — analogous to restricting to discriminants congruent to 1 mod 4 in (1)
— we restrict to discriminants of even degree, since there are no such extensions
if the discriminant degree is odd.

Similarly, the Theorem implies a (somewhat weaker) form of Malle’s con-
jecture in the case of dihedral groups; since this particular case is usually for-
mulated in terms of the “Cohen—Lenstra heuristics,” we return to it separately
in §4.

More generally, it seems that many questions of analytic number theory,
when considered over a function field, are related to topological phenomena
of homology stabilization, a topic that is discussed in [9, §1.7], and which we
intend to take up elsewhere.

We now turn to explaining the relation between homological stability condi-
tions, as discussed above, and counting extensions of function fields. The crucial
tool that allows us to pass from topology of complex moduli spaces to enumer-
ative questions over finite fields is, as might be expected, the Grothendieck-
Lefschetz trace formula.

3.3. Hurwitz schemes. We now explain how the homology of the Hur-
witz space is related to function-field analogues of Malle’s conjecture. In what
follows, all schemes are over Spec Z[I—(l;‘]

Let € (n) be the scheme parameterizing configurations of n unordered dis-
tinct points on A'. This can be identified with the complement of the discrim-
inant divisor inside the affine space Sym™A! of degree n monic polynomials; it
is an algebraic version of Conf(n).

It is also possible to define an algebraic version of the space CHur(n), i.e., a
Hurwitz scheme € 7€ (n) over Z[ﬁ]; it is an étale cover of € (n) parameterizing
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branched G-covers of P! with n branch points, all of whose ramification is tame
of type ¢, and which are endowed with an extra structure called “marking at
00.” The complex points of €.5#(n) are naturally identified with the topological
space CHur(n) of the previous section. For an exposition of the construction of
€ (n) we refer to [23].

In particular, if k is a finite field, the size of €57, (k) is equal to the num-
ber of isomorphism classes of G-extensions of k(t), totally split at oo and all
ramification of type ¢, together with a “marking at oco.”

The Grothendieck—Lefschetz fixed point formula gives a relation between
the number of Fg-points of an algebraic variety and its étale cohomology. It
is possible (cf. [9, §7]) to compare the singular homology of the Hurwitz space
CHur(n), and the étale cohomology of the Hurwitz scheme € .5#(n) over F,. In
this way, we obtain a relation between the singular homology of the Hurwitz
space and Malle’s conjecture.

The stability condition for (G, ¢) alone, together with relatively elementary
bounds, shows that the étale cohomology of the Hurwitz scheme is “not too
large;” although the only a priori control on the Frobenius action comes from
the Weil conjectures, this already suffices for interesting upper and lower bounds
for |€7€(F4)|. An example of a result thus obtained is the theorem given in
§4.2; see also [9, pp. 5-6] for further discussion of this technique.

However, if the Hurwitz scheme and the configuration scheme have the same
rational homology in some range — as the vanishing conjecture predicts, in
cases where CHur(n) is connected — then |6 (n)(F,)| and |4 (n)(F,)| will
be approximately equal, as long as ¢ is sufficiently large relative to (G, c).
Equivalently, as n — oo with ¢ fixed there will be an average of one marked
G-extension per discriminant. (The 1/n! term in the conjecture stated in the
previous section comes from the existence of n! different markings on each
extension that is totally split at co.)

3.4. Stable components and the Schur correction. The van-
ishing condition of §3.2 gives very strong control of the homology of each com-
ponent of CHur(n); but CHur(n) is not connected in general, and indeed, the
description of the set of connected components is somewhat subtle, especially
when the Galois action is taken into account.

Remarkably, it is possible to completely understand the connected com-
ponents in the large n limit, owing to a beautiful theorem of Conway—Parker
and Fried-Vélklein. Only a proof of a special case is available in print: [12,
Appendix], but it contains all the necessary ideas. We also do not attempt to
formulate it in the most general case, restricting to G perfect. For the definition
and basic properties of G, used in the definition below, we refer the reader to
the discussion after (4).

Theorem. (Conway-Parker-Fried-Vilklein). Suppose G is perfect; let g — g*
be a conjugacy-equivariant bijection from ¢ C G to a conjugacy class of G.
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lifting c. Then, for sufficiently large n, the map

(glv"'agn)ecn‘)gi"'g:’zgéc

induces a bijection from the stable component group to Ho(G,c;Z), as defined
in (4). In particular, the number of components of CHur(n) equals #H2(G, ¢; Z)
for n sufficiently large.

The source of the “Schur correction” in the function field case is now appar-
ent: it arises from the fact that the Hurwitz scheme 4’ 5¢,, may have multiple
components, and therefore more points than expected; the number of compo-
nents is related to the size of a Schur multiplier. More precisely, the group
Hy(G, ¢; Z) bijects onto the set of geometric components of €7, /F4; if some
of these components are not defined over F,, there may be fewer G-covers than
expected. This is what happens in the situation of the Remark, page 11; and
this is the reason why we have postulated “enough roots of unity” in (5).

Let us make precise the relation to §2.4. Let k£ be a finite field of order ¢
and K = k(t). We maintain the hypotheses that (G, c¢) is admissible, that ¢ is
relatively prime to |G|, that G is center-free and that G*" is trivial; we take the
set So, of §2.4 to consist of the place corresponding to the point at co.

The methods of [9] establish the following: if k& contains sufficiently many
roots of unity (that is, if ¢ — 1 is sufficiently divisible), and ¢ is sufficiently large
— both notions depending on (G, ¢) — then, with h = #H5(G, ¢; Z) the number
of connected components of CHur(n),

The vanishing condition for (G, ¢) implies the function field case of

. |-7:qm| h .
(3): Shl ™ a7y A8 m = 00,

and the weakened version:

The stability condition for (G,c¢) implies that ‘ng:ll — \%I
q

Aq~'/?, where the constant A = A(G, ¢) is independent of ¢, m.

Concerning the notion of “enough” roots of unity: It is very likely? that
the assumptions of §2.5 — i.e. u,, C K and (e,m) = 1 where e is the order
of an element of ¢ and m annihilates #Hs(G, c;Z) — are sufficient to ensure
the validity of the above results, and moreover that, in this case, the refined
statement (6) is valid.

Remark. It is particularly interesting to examine from this point of view the
phenomenon of “lower order terms” discussed in §2.6. It is natural to sup-
pose that such lower order terms correspond to natural families of cohomology
classes on the Hurwitz schemes (albeit classes in degrees which increase with

2To verify this amounts to checking compatibility between certain definitions in charac-
teristic zero and positive characteristic; we have not done so carefully.
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the dimension of the scheme). Is there any explicit description of these unstable
cohomology classes?

4. Special Case: The Cohen—Lenstra Heuristics

The Cohen-Lenstra heuristics — as originally formulated in [4] — are concerned
with the average behavior of class groups of quadratic fields; in particular, they
try to explain numerical observations such as

Z/9Z occurs in class groups more often than Z/3Z x Z/3Z. (11)

As we explain, they can be considered a special case of the Bhargava—Malle
type conjectures formulated earlier, in the case of dihedral groups. Indeed, (1)
establishes one of the few known cases of the Cohen-Lenstra heuristics.

These heuristics are of particular importance because they are readily for-
mulated and relatively easy to investigate numerically.

4.1. Number fields. For any global field L, denote by C}, the class group.
Let Qx be the set of imaginary quadratic extensions of Q with discriminant in
[-X,0]. Let £ be an odd prime. The Cohen-Lenstra conjecture asserts that, for
any finite abelian £-group A,

2 reay [EPI(CL, A)|

lim =1. 12

where Epi(Cp, A) denotes the set of surjective homomorphisms from Cf, to A.
This implies that?, for any f-group B, the fraction of L € Qx with Cp[(*] = B

is asymptotically %. This makes manifest why (11) should be true.

But the formulation (12) emphasizes the “rationality” feature of the answer.

Before returning to function fields, let us describe a heuristic for (12) in
the spirit of Cohen and Lenstra’s original work. The class group of Cp, is the
quotient of all ideals by principal ideals. If we fix a sufficiently large set of
finite places V, Cp, will be isomorphic to the quotient of the free group Z[V]
by the image U of the V U {oo}-units. There are AY! homomorphisms from
Z[V] to A; the chance that a homomorphism is trivial on U is |A] ™2k U: since
rank(U) = |V, this suggests (12).

The Cohen-Lenstra heuristics can be viewed as a special case of Malle’s
conjecture: let D(A) be the group AxZ/2Z, where Z/2Z acts on A via a — —a,
and let ¢ be the set of elements which project to the nontrivial element of
Z/27Z. Then there is a bijection between D(A)-extensions of Q, all of whose
ramification is of type ¢, and pairs (L, f : C, - A), where f is defined only
up to +1. Thus (12) becomes equivalent to a question of the type considered
in §2.

3For the implication, see [10] for the case of ¢-torsion, [9, Corollary 8.2] in general.
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4.2. Function fields. Now let k£ be a finite field of odd cardinality g and
let Q' be the set of imaginary? quadratic extensions of k(t) with discriminant
less than X. The following counting result then follows from the homological
stability proved in [9]:

Theorem. (E., V., Westerland). Suppose ¢ £ 0,1 modulo .

, Yregy [Epi(CL, A)
lim sup X
X —o0o ‘Qx‘

=1+0(q"V?), (13)

for all q sufficiently large (this notion depending only on A). The same is true
for liminf.

There is a similar statement [9, Theorem 1.2] concerning the fraction of L
for which C[€°°] lies in a specific isomorphism class.

The proof of this theorem is based on the “program” outlined in §3.3 and in
particular is a corollary to Theorem of §3.2. As discussed in §3.3, a proof of the
vanishing conjecture would remove the factor O(g~'/?) and show the existence
of the limit, as long as ¢ is sufficiently large relative to A.

Remark. The restriction ¢ # 1 modulo ¢ ensures that k does not contain
we. If k contains gy, the methods of [9] give a corresponding theorem, but
the limit changes, because the pertinent Hurwitz scheme acquires more Fg-
rational connected components. A corresponding phenomenon in the number
field case has been predicted by Malle [20]. We regard this as an example of
a Schur correction phenomenon, even though we did not formulate §2.4 in
sufficient generality to include dihedral groups. Forthcoming work of Garton [13]
will provide an explanation of the phenomena discovered by Malle from the
viewpoint of function-field analogies.
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