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Summary. We discuss the enumeration of function fields and number fields by dis-
criminant. We show that Malle’s conjectures agree with heuristics arising naturally
from geometric computations on Hurwitz schemes. These heuristics also suggest
further questions in the number field setting.

1 Introduction

The enumeration of number fields subject to various local and global condi-
tions is an old problem, which has in recent years been the subject of renewed
interest (a sampling includes [3], [2], [5], [6], [9], [12].) For a good survey of
recent work, see [1]. We begin by reprising some important conjectures.

If L/K is an extension of number fields, we denote by DL/K the relative

discriminant, an ideal of K, and by NK
QDL/K its norm, a positive integer.

For X ∈ R+, we set NK,n(X) to be the number of degree-n extensions L/K

(up to K-isomorphism) such that NK
QDL/K < X . It is a classical problem to

understand the asymptotics of NK,n(X) as X goes to infinity; in particular,
we have the folk conjecture:

Conjecture 1.1. There is a constant cK,n such that, as X →∞,

NK,n(X) ∼ cK,nX.

This conjecture is now known for n ≤ 5.
A more general conjecture applies to enumerating extensions with specified

Galois group. It is due to Malle [11] and refines a previous conjecture of Cohen.
To describe Malle’s conjecture, we need to introduce some notation.

LetG ≤ Sn be a transitive subgroup. For g ∈ G, set ind(g) = n−r, where r
is the number of orbits of g on {1, 2, . . . , n}. Denote by C the set of non-trivial
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conjugacy classes ofG; then ind descends to a function ind : C → Z. The group
Gal(K̄/K) acts on C via g · c = cχ(g), where g ∈ Gal(K̄/K), c ∈ C and χ :

Gal(K̄/K)→ Ẑ∗ is the cyclotomic character. Set a(G) = maxc∈C(ind(c)−1),
and set bK(G) to be the number of Gal(K̄/K)-orbits on the set {c ∈ C :
ind(c) = 1/a(G)}.

Let H be any point stabilizer in the G-action on {1, 2, . . . , n}. For each
Galois extension L/K with Galois group G, let L0/K be the degree n subex-
tension of L/K corresponding to the subgroup H ≤ G. Since G acts transi-
tively on {1, 2, . . . , n}, the K-isomorphism class of L0 is independent of the
choice of H . We then denote by NK,G(X) the number of Galois G-extensions

L/K such that NK
QDL0/K < X .

Conjecture 1.2. (Malle) There is a nonzero constant CK(G) such that

NK,G(X) ∼ CK(G)Xa(G)(logX)bK(G)−1.

This conjecture is known to be correct in certain special cases, including
that whereG = S3 orD4 (embedded in S3 and S4 respectively) and that where
G is abelian. In general, however, little is known about Malle’s conjecture –
and indeed, its difficulty is ensured by the fact that it implies a positive
solution to the inverse Galois problem.

A related problem, raised for example in [8], is the question of multiplicity
of a fixed discriminant.

Conjecture 1.3. The number of number fields K/Q with degree n and dis-
criminant D is �ε,n D

ε.

Conjecture 1.3 is unknown, and seems quite difficult, even for n = 3. In
that case it is intimately related to questions about 3-torsion in class groups
of quadratic fields.

The arithmetic of function fields and their covers is often much more ap-
proachable than that of number fields, since one can appeal to the geometry
of varieties over finite fields. In particular, one may replace K by Fq(t) in the
above discussion, and ask whether Conjectures 1.1 and 1.2 remain true (with
evident modifications) in this setting. We note that this is known to be the
case when G = S3, by the work of Datskovsky and Wright [6].

We do not know how to prove Conjecture 1.2 even in the function field
setting. However, we will establish in the present paper certain (weak) ap-
proximations to Conjecture 1.2. In Lemma 2.4 we show that the upper bound
of Malle’s conjecture is nearly valid when q is large relative to |G|. Moreover,
we prove in Proposition 3.1 a result showing that Malle’s conjecture is com-
patible with a heuristic arising from the geometry of Hurwitz spaces. A little
more precisely, Proposition 3.1 studies Malle’s conjecture using the following
heuristic:

(A) If X is a geometrically irreducible d-dimensional variety over Fq,
one has |X(Fq)| = qd.
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The heuristic (A) can be thought of as an assertion of extremely (in-
deed, implausibly) strong cancellation between Frobenius eigenvalues on the
cohomology of X . Despite its crudeness, (A) allows one to recover, in the
function field setting, the precise constants a(G) and bK(G) found in Malle’s
conjecture.

This line of reasoning suggests further questions about the distribution of
discriminants of number fields. We discuss these in Section 4. For instance,
Section 4.2 gives a heuristic for the number of icosahedral modular forms of
conductor ≤ N , and Section 4.3 proposes some still more general heuristics
for number fields with prescribed ramification data.

We note that the approach via (A) is very much in the spirit of that used
by Batyrev in developing precise heuristics for the distribution of rational
points on Fano varieties; we thank Yuri Tschinkel for explaining this to us.

Acknowledgments. The authors thank Karim Belabas, Manjul Bhargava,
Henri Cohen, and Johan de Jong for many useful conversations about the topic
of this chapter, and the organizers of the Miami Winter School in Geometric
Methods in Algebra and Number Theory for inviting the first author to give
the lecture on which this article is based.

The first author was partially supported by NSF Grant DMS-0401616 and
the second author by NSF Grant DMS-0245606.

Notation: Throughout this paper, G will be a transitive subgroup of the
permutation group Sn and q will be a prime power that is coprime to |G|.

2 Counting extensions of function fields

2.1 Hurwitz spaces

In this section, we recall basic facts about Hurwitz spaces, i.e., moduli spaces
for covers of P1. We will make constant use of the fact that the category
of finite extensions L/Fq(t), with the morphisms being field homomorphisms
fixing Fq(t), is equivalent to the category of finite (branched) covers of smooth
curves f : Y → P1 defined over Fq, the morphisms being maps of covers
over P1. Recall that q is coprime to |G|, eliminating painful complications
concerning the residue characteristic.

Let Y be a geometrically connected curve over Fq and f : Y → P1 a
Galois covering equipped with an isomorphism G → Aut(Y/P1). We refer to
such a pair (Y, f) as a G-cover. Let H be a point stabilizer in the G-action on
{1, 2, . . . , n}, and let f0 : Y0 → P1 be the degree-n covering corresponding to
the subgroup H ≤ G. We then set r(f) to be the degree of the ramification
divisor of f0. Call qr(f) the discriminant of f .

We denote by Nq,G(X) the number of isomorphism classes of G-covers
f : Y → P1/Fq with qr(f) < X . Note that, by requiring that Y be geometri-
cally connected, we have excused ourselves from counting extensions of Fq(t)
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which contain some Fqf /Fq as a subextension. This decision will not affect the
powers of X and logX in the heuristics we compute, though it may change
the constant terms.

The G-covers P1 with discriminant qr are parametrized by a Hurwitz va-
riety Hr. More precisely:

Proposition 2.1. There is a smooth scheme Hr over Z[ 1
|G| ] which is a coarse

moduli space for G-covers of P1 with discriminant r. The natural map

{isomorphism classes of G-covers of P1/Fq} → H(Fq) (1)

is surjective, and the fibers have size at most |Z|, where Z is the center of G.

Proof. We refer to [16] for details of the construction of Hr in positive charac-
teristic. Let h be an Fq-rational point of H. Then the obstruction to h arising
from a cover Y → P1 defined over Fq lies in H2(Fq, Z) where Z is the center of
G; since Gal(F̄q/Fq) has cohomological dimension 1, this obtruction is trivial
(see [7, Cor. 3.3] for more discussion of this point.) Further, the isomorphism
classes of covers f parametrized by the point h are indexed by the cohomology
group H1(Fq, Z), which has size at most |Z|. �

What’s more, Hr is the union of open and closed subschemes which
parametrize G-covers with specified ramification data. In order to express
this decomposition, we need a bit more notation.

We call a multiset c = {c1, . . . , ck} of conjugacy classes of G a Nielsen

class, and denote by r(c) the total index
∑k
i=1 ind(ci). We also write |c| for

the number of branch points k. Finally, for each Nielsen class c we define Σ̃c
to be the subset of Gk consisting of all k-tuples (g1, . . . , gk) such that

• The multisets c and {c(gi), . . . , c(gk)} are equal, where c(g) denotes the
conjugacy class of g;

• g1g2 . . . gk = 1;
• the gi generate G.

Note that Σ̃c is preserved by the action of G given by

(g1, . . . , gk) 7→ (gg1g
−1, . . . , ggkg

−1).

We denote by Σc the quotient of Σ̃c by this action.
Let f : Y → P1

F̄q
be a G-cover whose branch locus in P1(F̄q) is {x1, . . . , xk}.

By consideration of the action of tame inertia at x1, . . . , xk, we can associate a
Nielsen class c to f which is fixed byGal(K̄/K) and which satisfies r(c) = r(f)
[4, 1.2.4]. The set of Nielsen classes inherits a Gal(F̄q/Fq)-action from the
cyclotomic action on C, as described in Section 1; we call a Nielsen class
which is fixed by this action an Fq-rational Nielsen class. If f descends to a
G-cover Y → P1

Fq
, it follows that the Nielsen class c is Fq-rational.

Denote by Ck the configuration space of k disjoint points in P1. The (geo-
metric) fundamental group of Ck is the (spherical) braid group on k-strands.
We denote by σk ∈ Ck the braid that pulls strand i past strand i+ 1.
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Proposition 2.2. For each Nielsen class c, there is a Hurwitz space Hc/F̄q
which is a coarse moduli space for G-covers f : Y → P1

F̄q
with Nielsen class c.

The action of σ ∈ Gal(F̄q/Fq) sends Hc to Hcσ ; so the Fq-rational connected
components of Hr are each contained in Hc for an Fq-rational c with r(c) = r.

The map π : Hc → C|c| that sends a cover f to its ramification divisor is
étale. Moreover, the geometric points of the fiber of π above {x1, . . . , xk} ∈ Ck
are naturally identified with Σc. The action of π1(Ck) on π−1({x1, . . . , xk})
is given by

σi(g1, . . . , gk) = (g1, . . . , gigi+1g
−1
i , gi, . . . , gk)

so that the connected components of Hc are in bijection with the π1(Ck)-orbits
on Σc.

Proof. For the existence ofHc, see [4, §1.2.4]. The description of the connected
components of Hc is due to Fried; see, e.g., [10, §1.3], and [16, Cor 4.2.3] for
the extension of Fried’s results to positive characteristic prime to |G|. �

2.2 An upper bound on the number of extensions of Fq(t)

Proposition 2.1 shows that, up to a constant factor, one can reduce the prob-
lem of controlling NFq(t),G(X) to the problem of controlling the number of
Fq-rational points on the varieties Hr, as r ranges up to logqX . Bounding the
number of Fq-points on a variety of high dimension over a small finite field is a
difficult matter. In the context at hand, we may give a straightforward upper
bound, but the exponent is far from the one appearing in Malle’s conjecture.
We carry this out below; to clarify matters, we fix q and G and consider only
the dependence as X →∞.

We will use the following easy lemma to bound various sequences arising
in this paper.

Lemma 2.3. Suppose {an} is a sequence of real numbers with an = 0 when-
ever n is not a power of q, and suppose

∞∑

r=1

aqrq−rs,

considered as a formal power series, is a rational function f(t) of t = qs. Let
a be a positive real number. If f(t) has no poles with |t| ≥ qa, then:

X∑

n=1

an � Xa.

If f(t) has a pole of order b at t = qa and no other poles with |t| ≥ qa, then:

X∑

n=1

an � Xa(logX)b−1.



156 Jordan S. Ellenberg and Akshay Venkatesh

Here we use the notation A(X) � B(X) to mean that there are real constants
C1, C2 > 0 such that C1A(X) ≤ B(X) ≤ C2A(X).

Proof. It follows immediately from the decomposition of f(t) in partial frac-
tions that

R∑

r=1

aqr � qaR

when f(t) has no poles with |t| > qa. Moreover, if f(t) has a pole of order b
at t = qa and no other poles with |t| ≥ qa, then

R∑

r=1

aqr ∼ CqaRRb−1

for some C ∈ R. Then the lemma follows, since qblogq Xc � X . �

Lemma 2.4. Let q and G be fixed. Denote by E(j) the number of elements g
of G with ind(g) = j, and set e(G) = supj E(j)1/j . Then

lim sup
X→∞

logNq,G(X)

logX
≤ a(G) +

log(2e(G))

log q
.

In particular

lim sup
X→∞

logNq,Sn(X)

logX
≤ 1 +

log(4n2)

log q
. (2)

Note that the right-hand-side of the first inequality in Lemma 2.4 ap-
proaches Malle’s constant a(G) when q becomes large relative to |G|.

Proof. Define a sequence of integers an such that aqr = |Hr(Fq)| and an = 0
if n is not a power of q. So

Nq,G(X) �
X∑

n=1

an.

We have seen in Proposition 2.2 that the Fq-rational components of Hr
are the union of Hurwitz varieties Hc/Fq. Since Hc is a finite cover of degree

|Σc| of C|c|
∼= P|c|/Fq, we have

|Hc(Fq)| �q,G |Σc|q|c|

and
aqr �q,G

∑

c:r(c)=r

|Σc|q|c|.
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Let f(r) be the sum of qk over all k-tuples (g1, . . . , gk) in G satisfying∑
i ind(gi) = r. (Here, k is allowed to vary.) Then evidently

∑

c:r(c)=r

|Σc|q|c| ≤ f(r).

On the other hand,

∑

r

f(r)q−rs = (1 −
∑

g∈G

(q1−ind(g)s))−1.

We conclude that
∑

r

aqrq−rs �q,G (1−
∑

g∈G

(q1−ind(g)s))−1 = (1−
∑

j≥a(G)−1

E(j)q1−js)−1. (3)

It is easy to see that (3) has no poles once we have

|qs| > 2qa(G)E(j)1/j

for every j. The first part of the proposition now follows from Lemma 2.3.
We now show that, when G = Sn, we have E(j)1/j < 2n2 for all j;

this proves the second part of the lemma. Any σ ∈ Sn with ind(σ) = j
fixes at least n − 2j elements of {1, 2, . . . , n}. Enumerating such σ by their
number l of fixed points, we obtain E(j) ≤ ∑n−2j≤l≤n−1

n!
l! < 2jn2j . Thus

E(j)1/j < n2(2j)1/j ≤ 2n2. �

Remark 2.5. It is interesting to contrast the “trivial” upper bounds of
Lemma 2.4 with what can be obtained in the number field setting.

The upper bounds of Lemma 2.4 used explicit knowledge of the funda-
mental group of a punctured P1. In the number field setting, such tools are
unavailable. Nevertheless in [9] an upper bound forNn(X) was derived, similar

to (2), with the exponent log(n) replaced by a quantity of the form e
√

log(n).
The proof was considerably more complicated, but nevertheless geometric: the
key idea is to find in each number field K a small set {x1, x2, . . . , xr} of alge-
braic integers which are “nondegenerate” in the sense that they do not satisfy
an algebraic relation of low degree, and then to show that an appropriate set
of traces Tr(xg11 . . . xgr

r ) suffice to determine K.
Further, let NGal

q,n (X) denote the number of Galois extensions of P1
Fq

of

degree n and discriminant less thanX . Lemma 2.4 implies that NGal
q,n (X)�q,n

X
2
n + log(2n)

log(q) . Again, a result of a similar flavor was shown in [9], where it was
shown that NGal

q,n (X) � X3/8 if n ≥ 3. Again, the proof in the number field
case was more elaborate and in fact relied on the classification of finite simple
groups; the main idea is to prove the theorem using a low-degree permutation
representation of G when G is simple, and to proceed by induction on a
composition series otherwise.



158 Jordan S. Ellenberg and Akshay Venkatesh

3 Counting points on Hurwitz spaces under heuristic (A)

Lemma 2.4 asserts, at least, that the upper bound of Malle’s conjecture is
close to valid when q is large compared to |G|. Beyond Lemma 2.4, we can
do no more than speculate about the exact number of Fq-points on Hr. The
situation improves somewhat if we are willing to assume the heuristic (A)
from the introduction: that is, we suppose that a geometrically irreducible d-
dimensional variety over Fq has qd points. This heuristic reduces the problem
of estimating |Hr(Fq)| to the substantially simpler problem of computing the
number of geometric connected components of the spaces Hr and their fields
of definition.

Let h(q, r) be the sum of qdimC over all geometrically connected compo-
nents C of Hr which are defined over Fq. Denote by bFq(G) the number of
Gal(F̄q/Fq)-orbits on the set {c ∈ C : ind(c) = 1/a(G)}.

We shall prove:

Proposition 3.1.

∑

qr≤X

h(q, r) � Xa(G) log(X)bFq (G)−1.

Proposition 3.1 amounts, roughly speaking, to the assertion that Malle’s
conjectures are compatible with naive dimension computations for Hurwitz
spaces. The proof is more difficult than that of Lemma 2.4 but is still elemen-
tary.

The problem here is that the decomposition of Hr into geometrically con-
nected components is somewhat subtle. Let h′(q, r) be the sum of q|c| over all
Fq-rational Nielsen classes c with r(c) = r. If Hc were a nonempty geometri-
cally connected variety for every Fq-rational Nielsen class c with r(c) = r, we
would have h′(q, r) = h(q, r). (We remark that, in many cases, Hc is known
to be geometrically connected by the theorem of Conway and Parker [10,
Appendix].) In the following proposition we show that h′ is a reasonable ap-
proximation to h, at least on average.

Proposition 3.2. There exist constants m,C1, C2, depending only on G, such
that

C1

∑

r<R−m

h′(q, r) <
∑

r<R

h(q, r) < C2

∑

r<R

h′(q, r) (4)

for all R� 0.

Proof. Recall that Σ̃c consists of (g1, . . . , gk) ∈ Gk such that the multiset
{c(gi), . . . , c(gk)} equals c; g1, . . . , gk generate G; and g1g2 . . . gk = 1. Write
n(c) for the number of orbits of the braid group π1(C|c|) on Σ̃c. The right-hand
inequality above thus follows immediately from the following lemma.

Lemma 3.3. There exists a constant C2 such that n(c) < C2 for all c.
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Proof. If g = (g1, . . . , gk) and g′ = (g′1, . . . , g
′
k) are two elements of Gk, we

write g ∼ g′ when g and g′ are in the same orbit of the action of the braid group

on Gk. We shall need a simple fact about the action of the braid group on Gk:
suppose g = (g1, . . . , gk) ∈ Gk with g1 . . . gk = 1. Then, for any 1 ≤ j ≤ k,

there exists (g′1, . . . , g
′
k−1) ∈ Gk−1 such that

(g1, . . . , gk) ∼ (g′1, . . . , g
′
k−1, gj). (5)

Moreover, one knows (see, e.g., [15, Cor. 9.4]) that

(gg1g
−1, gg2g

−1, . . . , ggkg
−1) ∼ (g1, . . . , gk) (6)

whenever g belongs to the subgroup generated by (g1, . . . , gk).

We show that n(c) ≤ |G||G|2 . This is clear if |c| ≤ |G|2.
Suppose k = |c| > |G|2. Then any k-tuple (g1, g2, . . . , gk) in Σ̃c contains

an element g0 ∈ G with multiplicity at least |G|+ 1. Let g′0 be any element in
G conjugate to g0. Thus, applying the braid operations (5) and (6) above, we
deduce

(g1, g2, . . . , gk) ∼ (g′1, g
′
2, . . . , g

′
k−|G|−1, g0, g0, . . . , g0) (7)

∼ (g′′1 , g
′′
2 , g

′′
k−|G|−1, g

′
0, g

′
0, . . . , g

′
0) (8)

for certain g′j, g
′′
j ∈ G, where both g0 and g′0 occur |G|+ 1 times at the end of

each expression. On the other hand g
′|G|
0 = 1. Thus, if (g1, g2, . . . , gk) ∈ Σc,

then (g′′1 , . . . , g
′′
k−|G|−1, g

′
0) belongs to Σc′ where c′ is c with |G| copies of the

conjugacy class of g0 removed. So n(c) ≤ n(c′). If |c′| > |G|2 we may apply
the procedure that led to (7) again; indeed, repeatedly applying (7) and (8)
we can bring elements of Σc to a “standard form.” We see in particular that
n(c) ≤ n(c′) for some |c′| ≤ |G|2. The result now follows. �

We now turn to the left-hand inequality in (4). Here we will make use of
the theorem of Conway and Parker [10, Appendix] in order to show that Hc
has geometric components defined over Fq for many choices of c.

We first show that Hc is nonempty for many choices of c.
Let N ⊂ G be the normal subgroup consisting of all products g1 . . . gk,

where the Nielsen class of (g1, . . . , gk) is Fq-rational. We claim that for every
element g ∈ N there exists, for some k, a k-tuple (g1, . . . , gk) such that

• g1 . . . gk = g;
• the Nielsen class of (g1, . . . , gk) is Fq-rational;
• the gi generate G.

It suffices to show that this assertion holds for g = 1; for if we have (g1, . . . , gk)
satisfying the last two conditions and having product 1, we can concate-
nate it with (gk+1, . . . , g`) having product g and representing an Fq-rational
Nielsen class. To see that the assertion holds for g = 1, merely choose
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(g1, g
−1
1 , . . . , gk, g

−1
k ) where (g1, . . . , gk) is a generating set for G which repre-

sents an Fq-rational Nielsen class.
Now let d1, . . . , dK be a finite set of Fq-rational Nielsen classes such that,

for each g ∈ N , there exists (g1, . . . , gk) representing some di which gen-
erates G and has product g. If c and d are two Nielsen classes, we denote
their concatenation by c + d. For each Fq-rational Nielsen class c, choose a
representative (g1, . . . , gk). By the discussion above, there exists an m-tuple
(g1, . . . , gk, gk+1, . . . , gm) which is contained in Σc+di

for some i. It follows
that Hc+di is nonempty for some i.

We now need to show that there are many Hurwitz spaces which are not
only nonempty but which possess a geometric component defined over Fq. Our
main tool is the following assertion, which follows immediately from Proposi-
tion 1 and Lemma 2 of [10]:

Lemma 3.4. There exists a group G̃, a surjective homomorphism G̃ → G,
and a constant C3(G) such that, for any Nielsen class c̃ of G̃ which contains
at least C3(G) copies of each nontrivial conjugacy class of G̃, the Hurwitz
space Hc̃ is geometrically connected.

By the argument prior to Lemma 3.4, applied to G̃ instead of G, there
exists a finite set of Fq-rational Nielsen classes ẽ1, . . . , ẽL such that, for every

Fq-rational Nielsen class c̃ of G̃, the Hurwitz scheme Hc̃+ẽi
is nonempty.

Now consider an Fq-rational Nielsen class c of G. We want to find an

Fq-rational Nielsen class c̃ of G̃ which “approximately” projects to c. For

each Gal(F̄q/Fq)-orbit O on the nontrivial conjugacy classes in C, let Õ be a

Gal(F̄q/Fq)-orbit of conjugacy classes in G̃ which projects to O. We note that

the projection of the multiset Õ to G will be some multiple kOO of O, where
kO ≥ 1. We know that c can be expressed as

∑

O

cOO

for some set of integers {cO}. Then the Nielsen class

c̃ =
∑

O

d cO
kO
eÕ

is Fq-rational; moreover, the projection of c̃ to G can be written as c + c′ ,
where c′ is drawn from a finite list of Fq-rational Nielsen classes c′1, . . . , c

′
M .

Now we fix, once and for all, an Fq-rational Nielsen class c̃′′ for G̃, con-

taining at least C3(G) copies of each nontrivial conjugacy class of G̃. We
know already that, for some i, the Hurwitz space attached to c̃+ c̃′′ + ẽi is
nonempty; what’s more, it is Fq-rational, and by Lemma 3.4 it is geometrically
connected.

The projection of c̃+ c̃′′ + ẽi, under the map G̃ → G, can be written as
c+ di+ni1, where di is drawn from some finite list d1, . . . , dN , and ni1 refers
to ni copies of the trivial conjugacy class.
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We claim that Hc+di
has an Fq-rational geometrically connected compo-

nent. Indeed, to any G̃-cover Y → P1 with Nielsen class c̃+ c̃′′ + ẽi, there is
canonically associated a G-cover of P1 with Nielsen class c+ di; namely, take
the quotient of Y by ker(G̃→ G).

The associated map Hc̃+c̃′′+ẽi
→ Hc+di

has as its image a geometrically
connected Fq-rational component of Hc+di

.
For notational convenience, define h(q, c) to be the number of Fq-rational

geometric components of Hc multiplied by q|c|. By the discussion above,

h(q, c+ di) ≥ q|c+di| for some i.
We thus have, on the one hand,

∑

i,c:r(c)<R

h(q, c+ di) ≥
∑

c:r(c)<R

q|c+di| ≥
∑

c:r(c)<R

h′(q, c)

and on the other,
∑

i,c:r(c)<R

h(q, c+ di) ≤ N
∑

c:r(c)<R+r(di)

h(q, c).

This finishes the proof of the proposition, taking C1 to be 1/N and m to be
the supremum of r(di). �

We are now in a position to prove Proposition 3.1:

Proof (of Proposition 3.1). By definition
∑∞
r=0 h

′(q, r)q−rs =
∑

c q
|c|q−r(c)s,

the sum being taken over all Fq-rational Nielsen classes c. This sum factorizes
as a product indexed by the Gal(Fq)-orbits O of conjugacy classes of G:

∞∑

r=0

h′(q, r)q−rs =
∏

O

(1− q|O|(1−ind(O)s))−1. (9)

Here by ind(O) we mean the ramification index of any representative of the
orbit O, and by |O| the number of conjugacy classes in O.

Now (9) implies, via Lemma 2.3, that
∑

qr<X h
′(q, r) � Xa(G) log(X)bFq (G)−1,

where a(G), bFq (G) are as in Malle’s conjecture. The claim of Proposition 3.1
now follows at once from this and Proposition 3.2. �

4 Further conjectures

In this section, we discuss first (Section 4.1) some further questions in the
function field case. The heuristics used for Proposition 3.1 also suggest certain
“refined” heuristics for extensions of number fields; we discuss some of these in
Section 4.2. Finally in Section 4.3 we discuss some more speculative questions
about the enumeration of higher-dimensional varieties.

We note by way of caution that there is little numerical evidence to suggest
that some of the questions posed below have an affirmative answer.
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4.1 More questions about function fields.

The following question was raised by N. Katz and J. de Jong.

Question 4.1. Let q be fixed. Is it true that there is a constant c := c(q) such
that the number of isomorphism classes of genus g curves over Fq is less than
cg, for all g ≥ 1?

The emphasis of this question is on the case where q is fixed and g →∞.
The upper bound cg log(g) was established by Katz and de Jong in unpublished
work. In a certain sense this bound is analogous to Lemma 2.4. Note that this
problem, again, amounts to counting the number of Fq-points on a variety
(namely the moduli space Mg) of high dimension. One difficulty in using,
e.g., the Lefschetz fixed point formula, is that the Betti numbers of Mg grow
very rapidly with g.

Returning to the distribution of discriminants, one may also study the
properties of certain zeta functions; this serves to smooth out the irregular-
ity in the distribution of discriminants. For instance, consider the function
ξq,G(s) :=

∑
LD

−s
L/Fq(t), where L varies over degree n extensions of Fq(t) with

Galois group G, and DL is the discriminant of L. A “geometric” variant of
ξq,G is the zeta function:

ζq,G(s) =

∞∑

r=0

|Hr(Fq)|q−rs. (10)

Question 4.2. What are the analytic properties of ζq,G(s)? In particular, is it
the case that ζq,G(s) has an analytic continuation to the left of <s = 1/a(G),
with a pole of order bFq(G) at s = 1/a(G)?

4.2 Questions about number fields

The discriminant of a number field K/Q may be regarded as a measure of ram-
ification, where each ramified prime is weighted according to the conjugacy
class of tame inertia. Here we first discuss generalizations of Malle’s conjec-
ture that allow for varying this weighting. Then we take up the question of
multiplicity of discriminants, already raised in Conjecture 1.3. As an example
of these heuristics, we give heuristics for the number of icosahedral modular
forms with conductor ≤ N (Example 4.4).

The questions proposed in this section are interrelated. In particular, the
upper bounds implicit in Question 4.5, Question 4.3, and Conjecture 1.3 are
close to equivalent (see Remark 4.7.) In fact, these weak upper bounds seem
on considerably safer ground then the general questions, as they do not pre-
suppose a positive solution to the inverse Galois problem.
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Malle’s conjecture with modified weights

Set K = Q and let other notation be as described prior to Conjecture 1.2. Let
f : C → Z≥0 be invariant under the Gal(Q̄/Q)-action and such that

f(g) = 0⇐⇒ g = {id}.
We call such an f a rational class function. Set a(f) = maxc∈C,c 6={id}f(c)−1.
Let bQ(f) be the number of Gal(Q̄/Q)-orbits on the set {c ∈ C : f(c) =
a(f)−1}.

If L/Q is a Galois extension with group G and p is a prime not dividing
|G|, let cp ∈ C be the image of a generator of tame inertia at p. Now we define
the f -discriminant of L to be:

Df (L) =
∏

p-|G|

pf(cp). (11)

For instance, if f = ind, then Df (L) is the prime-to-|G| part of DL0 ,
notation being as prior to Conjecture 1.2, taking K = Q.

Let NG,f (X) (or, when the group is clear from context, just Nf(X)) be
the number of Galois extensions L/Q with Galois group G and Df (L) < X .

Question 4.3. Is it true that NG,f (X) ∼ cXa(f)(logX)bQ(f)−1?

We note that this type of generalization is already, in some sense, antici-
pated in Malle’s conjecture. A given G can be equipped with many different
embeddings into symmetric groups; Malle’s conjecture already predicts an
asymptotic for Nf (X) when f is the index function corresponding to any
such embedding.

Example 4.4. Let ρ : G → GL(V ) be a complex representation. Then g ∈
G 7→ codimV g, the codimension of the invariant space, defines a rational class
function. If L/Q has Galois group G, Df (L) is the prime-to-|G| part of the
Artin conductor of the Galois representation associated to L.

For example, we may take G to be the finite subgroup of order 240 in
GL2(C) whose image in PGL2(C) is isomorphic to A5. For this group, there is
a unique conjugacy class (the conjugacy class of non-central involutions) which
has f(c) = 1. Subject to Artin’s conjecture, the holomorphic modular forms
of weight 1, conductor N , quadratic Dirichlet character, and icosahedral type
are in bijection with the Galois extensions with group G and Artin conductor
N such that complex conjugation is sent to a non-central involution.

Question 4.3 then suggests that, if s(N) is the number of icosahedral holo-
morphic weight-1 modular forms with quadratic character and conductor at
most N , then

s(N) ∼ cN
for some constant c. The best upper bound at present is s(N)�ε N

13/7+ε due
to Michel and the second author [13]. Serre [14] speculated that the number
of such forms with conductor exactly N is �ε N

ε.
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Multidiscriminants

One can use the function field heuristics described here to produce even more
refined (i.e., optimistic!) heuristics for counting number fields, in which we
attach to each field not just an element of R≥0 but an element of Rk≥0 for
some k > 1. We could call such a map a “multidiscriminant.”

Let G be a finite group, and let the orbits of the nontrivial conjugacy
classes under the action of Gal(Q̄/Q) be denoted O1,O2, . . .Om. Given a
Galois G-extension L/Q, set DOi(L) to be the product of all primes p - G
such that the image in G of tame inertia at p is conjugate to Oi; the map

L 7→ (DOi(L))1≤i≤m

can be regarded as a multidiscriminant. Set NG(X1, . . . , Xn) to be the number
of L/Q such that DOi(L) < Xi for all i. We can then ask:

Question 4.5. Is it true that, if Xj →∞ for all 1 ≤ j ≤ n, then the ratio

NG(X1, . . . , Xm)

X1 . . . Xm
(12)

approaches a fixed limit c = c(G)?

As before, (12) can be heuristically justified by dimension computations
over finite fields. Indeed, let notation be as above but let {Oi} now denote
the orbits of the conjugacy classes in G under the cyclotomic character of
Gal(F̄q/Fq). Let NG,q(X1, . . . , Xm) be the number of Galois G-covers f : Y →
P1/Fq such that the number of branch points of f in P1 with monodromy in

Oi is less than ai = b log(Xi)
log(q) c. Such covers are parametrized (as usual, up

to uniformly bounded finite ambiguity arising from descent problems) by the
Fq-points of a variety, whose largest-dimensional connected component is a
Hurwitz space of dimension about

∑
i ai. So our usual heuristic suggests that

this variety has about
∏
i q
ai , or X1 . . . Xm points.

Lemma 4.6. An affirmative answer to Question 4.5 implies an affirmative
answer to Question 4.3.

The proof of the Lemma is straightforward but tedious.

The multiplicity of discriminants

A problem of a rather different flavor is to count the extensions L/Q with
Galois group G whose discriminant is exactly X . One can show, e.g., by genus
theory, that this number can grow as fast as Xc/ log log(X). On the other hand
Conjecture 1.3 asserts that this multiplicty is �ε,G Xε.

Conjecture 1.3 implies that the l-torsion part of the class group of a number
field K/Q is�l,[K:Q] DεK/Q. (This follows immediately from class field theory,
as l-torsion in the class group of K would give rise to unramified extensions
of degree l.)
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Remark 4.7. The following conjectures are equivalent:

1. Conjecture 1.3,
2. The upper bound NG,f (X)�ε,G,f X

a(f)+ε in Question 4.3,
3. The upper bound NG(X1, . . . , Xn)� (X1X2 . . .Xn)

1+ε in Question 4.5.

The implications (1) =⇒ (3) =⇒ (2) are trivial. We show the remaining
implication in the following proposition.

Proposition 4.8. An affirmative answer to Question 4.3, or even the weaker
assumption

NG,f (X)�ε,G,f X
a(f)+ε, (13)

implies Conjecture 1.3.

Proof. Let aG(X) be the number of extensions L/Q with Galois group G and
with discriminant X . Clearly it will suffice to show aG(X)�ε,G Xε. The main
idea will be to apply (13) with G replaced by Gk and some of its subgroups.

Fix k > 0 an integer. We write an element ofGk as a k-tuple (g1, g2, . . . , gk).
Let F be the class function on Gk that is identically 1, i.e., F (c1, . . . , ck) = 1
for all conjugacy classes cj of G.

Let S be the class of subgroups of Gk which project surjectively onto each
copy of G; for each H ∈ S we also write F for the rational class function
on H that is identically 1. Then the k-tuples of G-extensions L1, . . . , Lk are
in bijection with the H-extensions L/Q, where H ranges over S. We denote
by [L1, . . . , Lk] the H-extension associated to a k-tuple in this way, and by
DF ([L1, . . . , Lk]) the F -discriminant of this extension, given by (11).
DF ([L1, . . . , Lk]) is, away from primes dividing |G|, the square-free part of

the product
∏k
j=1DLj/Q. Thus DF ([L1, . . . , Lk]) is (relatively) large whenever

the DLi have few common factors with each other. On the other hand, if
DL1/Q = DL2/Q = · · · = DLk/Q = X , it follows that DF ([L1, . . . , Lk]) ≤ X . In
particular, ∑

H∈S

NH,F (X) ≥ aG(X)k. (14)

Combining (14) and (13), and noting that the exponent a of (13) equals 1
whenever (G, f) is replaced by (H,F ) as above, we see that aG(X)k �G,k

X1+ε. The result follows, k being arbitrary. �

4.3 The scarceness of arithmetic objects with prescribed bad
reduction

We have discussed in previous sections heuristics for counting function fields,
number fields, and Galois representations. In a certain sense all of these can
be regarded as “0-dimensional” arithmetic objects. We now briefly discuss a
plausible statement in higher dimensions, at least as regards upper bounds.
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By way of motivation, we note that Conjecture 1.3 may be regarded as
saying that there are very few number fields with very little bad reduction. If
one replaces “number field” with “proper smooth variety,” very little is known;
however, it is generally believed that there are “relatively few” proper smooth
varieties V over Z. There are a few evident examples: one may take for V ,
e.g., a flag variety associated to a Chevalley group over Z. Further, one may
blow up such a variety along an appropriate locus. However, as Jason Starr
and Johan de Jong pointed out to us, all such varieties are rational, and there
seems to be no non-rational example known. A beautiful result of Fontaine
states that there exist no abelian varieties over Z.

The question we state aims to quantify this scarceness. For a finite set
S of primes set N(S) =

∏
p∈S p. For concreteness and to avoid any tech-

nical hypotheses, we have phrased the question in terms of modular Galois
representations.

Question 4.9. Fix a Hodge–Tate type π (i.e., a set of Hodge–Tate weights),
positive integers n, d, and a prime l. Let GR(π, S) be the set of modular Galois
representations ρl : Gal(Q/Q) → GLn(Ql) with Hodge–Tate weights π and
good reduction outside S. Here “modular” means “attached to an automor-
phic form on GLn.” Let GRd(π, S) ⊂ GR(π, S) be the subset consisting of ρl
whose Frobenius traces lie in a field extension of Q with degree ≤ d.

Is it true that |GRd(π, S)| �ε,d,n,π N(S)ε?

We can ask a similar question with a more “motivic” flavor; of course, one
may expect that under suitable modularity conjectures the questions above
and below are equivalent.

Question 4.10. Fix K ∈ N and let S be a finite set of primes. Consider
the set V(K,S) of proper smooth varieties V over SpecZ[ 1

N(S) ] such that

dim(V ) ≤ K and dimH i(VC,C) ≤ K for each 0 ≤ i ≤ 2K. To each variety
V ∈ V(K,S) associate the sequence #(V (Fp))p/∈S , indexed by the primes not
in S. Then the number of distinct such sequences is �K N(S)ε.

An affirmative answer to Question 4.9 would imply Conjecture 1.3. It
would also imply that the number of elliptic curves over Q of conductor N is
�ε N

ε.
Note that even the finiteness of GR(π, S) would not be clear without

the hypothesis of modularity! Using modularity, one may probably show that
|GR(π, S)| is bounded by a polyomial in N(S). The content of the assertion is
then that |GRd(π, S)| is much smaller. A related phenomenon is well-known
in the context of holomorphic forms: fix k ≥ 2 and consider the space Sk(N) of
holomorphic forms of level N and weight k. Although dimSk(N) ∼ const ·N
as N →∞, the number of Hecke eigenforms whose coefficient field has degree
≤ d seems to grow much more slowly with N .

One can enunciate a corresponding question in the function field case; it
also seems quite difficult.
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Remark 4.11. It is interesting to note the contrast between the number field
and function field contexts. In the number field setting, the ability to aver-
age seems to make counting objects of conductor up to N much easier than
counting objects of conductor exactly N . In the function field setting, on the
other hand, counting objects of conductor up to N means counting covers
of P1 whose ramification locus varies among all divisors of P1 of degree less
than logqN , while counting covers with a fixed conductor amounts to study-
ing the arithmetic (in the case of finite covers, the étale fundamental group)
of a single open curve inside P1, which might in some ways be easier. One
way to express the contrast is to observe that our understanding of the étale
fundamental group of an open subset of P1

Fq
, though very far from complete,

is much greater than our understanding of the maximal Galois extension of
Q unramified away from a fixed finite set of primes.
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