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Let G be a pro-p p-adic analytic group, thought of as a closed subgroup of GLN (Zp), and let
Σ be a closed subgroup of G. Write Λ for the completed group algebra Zp[[G]] and let M be a
finitely generated Λ-module. Let G = G0 ⊃ G1 ⊃ G2 ⊃ . . . be the descending sequence of principal
congruence subgroups of G; write Gn for the quotient G/Gn and Σn for the image of Σ in Gn.
Write Mn for the coinvariant quotient of M under Gn. Then Mn is a module for the group algebra
Zp[Gn].

In Iwasawa theory, one often finds that the growth of arithmetic invariants of interest (e.g. class
numbers, Mordell-Weil ranks) is controlled by a Λ-module M . In particular, the growth can be
related to the Zp-ranks of the coinvariant quotients of M by various subgroups of G. Understanding
these quotients is a purely algebraic problem. For instance, Harris [3, Theorem 1.10] shows that, if
M is a Λ-torsion module,

rankZp Mn = O(pn(dim G−1)). (1)

Note that if M is replaced by a free module of rank 1, we have

rankZp ΛGn = |Gn| ∼ pn dim G.

So one can read Harris’s result as saying “the coinvariants of a torsion Λ-module by congruence
subgroups grow more slowly than do the coinvariants of a free Λ-module.” The goal of the present
paper is to show a similar result for subgroups which are in some sense “far from normal.” As
corollaries, we show that induced modules are often faithful in the sense of Venjakob [7] and we
give an upper bound for the growth of Mordell-Weil ranks of elliptic curves over certain non-Galois
towers of field extensions.

Definition 1. We say Σ ⊂ G is eccentric if

lim
n→∞

|Σn\Gn/Σn|
|Gn||Σn|−2pn

= 0.

Example 2. Suppose G = K o Σ, where K is isomorphic to Zr
p and Σ to Zp. Then Σ is eccentric

precisely when the action of Σ on K is nontrivial.

Remark 3. It seems likely that the limit

lim
n→∞

log |Σn\Gn/Σn|
n log p

exists and is a non-negative integer, though this seems a bit complicated to prove. When this limit
is an integer, it seems interesting to ask whether it is a “dimension” associated to the pair (G, Σ)
in any cohomological sense.

1



Remark 4. The condition of eccentricity, as we have written it, depends on the structure of G as a
subgroup of GLN (Zp); in fact, though we will not need this here, the condition is intrinsic to (G, Σ)
and can be computed using the p-lower central series in place of the descending series of congruence
subgroups.

We will prove the following theorem.

Theorem 5. Let G be a pro-p p-analytic group with no p-torsion, and let M be a finitely generated
torsion module for Λ = Zp[[G]]. Let Σ be an eccentric subgroup of G. Then

lim
n→∞

rankZp
(Mn)Σ

rankZp Λ(G)GnΣ
= 0.

Recall that a Λ-module M is called faithful if AnnΛ M = 0. When Λ is abelian, a torsion
module cannot be faithful. By contrast, in the non-abelian cases, faithful torsion Λ-modules are
quite prevalent; indeed they are ubiquitous among Λ-modules arising in arithmetic applications.
Many examples of faithful torsion Λ-modules were constructed by Venjakob in [7]; for instance, he
shows there that if G is a non-abelian semidirect product K oΣ with K ∼= Σ ∼= Zp, then the induced
module IndG

Σ Zp is a faithful Λ-module [7, Prop. 4.2]. In another example, he shows that if G is a
pro-p subgroup of SL2(Zp), and Σ is a maximal torus, then IndG

Σ Zp is again a faithful Λ-module.
The following corollary generalizes these examples.

Corollary 6. Let G be as above and let Σ be an eccentric subgroup. Then AnnΛ IndG
Σ Zp is trivial.

Proof. Suppose A = AnnΛ IndG
Σ Zp is nontrivial. Equivalently, the nonzero two-sided ideal A is

contained in the left augmentation ideal ΛI l
Σ. Since Λ is isomorphic to its opposite algebra, there

is a nonzero two-sided ideal B contained in the right augmentation ideal Ir
ΣΛ. Now take M to be

the torsion module Λ/B. Then

MGnΣ = Λ/(B + Ir
ΣΛ + IGn) = Λ/(Ir

ΣΛ + IGn) = Λ(G)GnΣ

which contradicts Theorem 5.

Remark 7. Venjakob also proves that certain modules for the completed group algebra Fp[[G]] have
trivial annihilator. The method of the present paper does not work in characteristic p; it is an
interesting question whether the analogue of Theorem 5 still holds.

Remark 8. When Σ is trivial, Theorem 5 follows from the theorem of Harris cited above. Note
also that some form of the eccentricity hypothesis on Σ is certainly necessary: if Σ is normal, for
instance, then Zp[[G/Σ]] is a torsion Λ-module whose coinvariants are identical with those of the
free module Λ.

Remark 9. Eccentricity of Σ implies that dim Σ ≤ (1/2) dim G. If dim Σ is any larger, it is not clear
that any version of Theorem 5 can hold. Indeed, it is an interesting open question whether IndG

Σ Zp

is faithful in this case. This question seems substantially harder; in particular, it does not seem
likely that it can be resolved by consideration of representation theory in characteristic 0, as in the
present paper.

We now prove Theorem 5.
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Proof. We know M is finitely generated, which is to say M is a quotient of ΛC for some integer C;
it follows that Mn is a quotient of Zp[Gn]C . Write MQ

n for Mn ⊗Zp Qp. Then HomGn(MQ
n ,MQ

n ) is
a quotient of HomGn

(MQ
n , Qp[Gn]C), which has dimension C dimQp

MQ
n . Now by (1) we know

dimQp
HomGn

(MQ
n .MQ

n ) ≤ Cpn dim G−n ∼ C|Gn|p−n (2)

On the other hand, if [Gn/Σn] is the permutation representation of Gn on the cosets of Σn (with
Qp-coefficients) then

dimQp HomGn([Gn/Σn], [Gn/Σn]) = |Σn\Gn/Σn|. (3)

Now rankZp
MΣn

n is precisely dimQp
HomGn

([Gn/Σn],MQ
n ). It follows from (2), (3), and the Cauchy-

Schwarz inequality that

dimQp
HomGn

([Gn/Σn],MQ
n ) ≤ (C|Σn\Gn/Σn||Gn|p−n)1/2

and the hypothesis that Σ is eccentric tells us exactly that the right hand side is o(|Gn||Σn|)−1.
Since rankZp Λ(G)GnΣ is precisely |Gn||Σn|−1, we are done.

Remark 10. We do not expect the given upper bound on rankZp MΣ
n to be sharp, because the

inequality
dimQp

HomGn
(MQ

n ,MQ
n ) ≤ dimQp

HomGn
(MQ

n , Zp[Gn]C)

is typically not sharp.

We conclude with an application to ranks of elliptic curves over towers of function fields. Let
p be a rational prime, k a field of characteristic prime to 6p, C a smooth (but not necessarily
proper) geometrically integral curve over k, and π : E → C a non-isotrivial elliptic surface with
good reduction at all points of C. Suppose furthermore that the image of the absolute Galois group
of k(C) on E [p∞] has image a pro-p principal congruence subgroup G of GL2(Zp). (This can be
arranged by replacing C with a finite cover, as long as Gm[p∞](k) is finite.)

Now let P be an element of the Tate module TpE , and let V be a pro-cyclic subgroup of E
not containing P . Then let k(Cn) be the minimal extension of k(C) over which the projections
of P and V to TpE/pnTpE are defined, and let Cn be the nonsingular curve with function field
k(Cn). Let k(C∞) be the union of all the k(Cn). Then k(C∞) is an extension of k(C), whose
splitting field k(C ′∞) has Galois group G. (Note that k(C ′∞) is obtained from k(C∞) by extending
the constant field to include µp∞ .) Write Gn for the nth principal congruence subgroup of G, and
Σ ⊂ G for the subgroup whose fixed field is k(C∞). Then Σ is the 1-dimensional subgroup of G
consisting of diagonal matrices fixing P ∈ TpE. It is easy to check that Σ is eccentric in G–indeed
|Σn\Gn/Σn| = O(p2n).

Now let πA : A → C be a non-isotrivial elliptic surface over k(C) with good reduction on C
(for instance, A might be E itself.) A theorem of Shioda [4] shows that rankZA(k(Cn)) is O(p3n).
Several papers ([2],[5],[6]) have shown that in many pro-p towers of curves, the Shioda bound can
be substantially improved, but it does not seem that the methods there apply immediately to this
case. However, Theorem 5 allows us to give a non-trivial upper bound for the growth of the rank
of A.

Corollary 11. The Mordell-Weil rank of A over k(Cn) is o(p3n).

Proof. Let j : η ↪→ C be the inclusion of the generic point, and write F for the sheaf j∗j
∗R1(πA)∗Qp/Zp.

Then we denote by S(C,A[p∞]) the Selmer group H1(C ×k ks,F) of A/C, as in [2, §2]. Then
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rankZA(k(C)) ≤ corankZp S(C,A[p∞])Gal(ks/k). We also write S(C∞,A[p∞]) for the direct limit of
H1(Ci ×k ks,F) as Ci ranges over the curves between C and C∞. Write K for the kernel of the
determinant map in G, and Kn for K ∩Gn. Then Cn×k ks → C0×k ks is a Galois cover with group
K/Kn.

For each n, we have a map

S(Cn,A[p∞]) → S(C∞,A[p∞])Kn

whose kernel is H1(Kn,A[p∞](ks(C∞))).
The coefficient module A[p∞](ks(C∞)) has Zp-corank at most 2, and the congruence subgroup

Kn, being a uniform group of rank 3, is generated by 3 elements. It follows that H1(Kn,A[p∞](ks(C∞)))
has Zp-corank at most 6. So the kernel of

S(Cn,A[p∞])Gal(ks/k) → (S(C∞,A[p∞])Kn

)Gal(ks/k)

also has Zp-corank at most 6. Now N := S(C∞,A[p∞])Gal(ks/k(µp∞ )) is a module for Λ(G); it is
cofinitely generated when considered as a Λ(K)-module by [2, Prop. 3.3], which immediately implies
it is a cofinitely generated cotorsion Λ(G)-module – see for instance [1, Prop 2.3]. Now

rankZA(k(Cn)) ≤ corankZp S(Cn,A[p∞])Gal(ks/k) ≤ corankZp NΣKn

+ 6.

Take M to be the finitely generated torsion Λ-module dual to N . Now

corankZp
NΣKn

= rankZp
MΣKn = o(p3n)

by Theorem 5, and we are done.

Indeed, the proof of Theorem 5 shows in this case that rankZ(A(k(Cn))) is bounded above by a
constant multiple of (|Σn\Gn/Σn||Gn|p−n)1/2, which is O(p5n/2).
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