
LECTURE 1.

Start with Strang’s elegant description of errors and blunders. Errors are
unavoidable aspects of any computation, whether because of a computer’s
inherent limitations or our own human capacity for mistakes. Blunders are
avoidable mistakes that come from careless interpretations of data. I expect
you not to make blunders–it would be too much for me to expect you to
make no errors!

Main example: Suppose we have a system we’ve analyzed–amount of two
chemicals, for instance. So suppose we have ~xt be the state of the system at
time t, and suppose that we find

~x9 =
[

1 1
1 1.00001

]
~x0.

Note that we seem to see that, at time 9, we expect to have approximately
equal amounts of each chemical. Write the matrix above as A.

Now suppose we know how much chemical there is at time 9, and want
to work backwards–given ~x9, how do we find ~x0? Well, that’s easy–we just
have

~x0 = A−1~x9.

So suppose you find ~x9 =
[

100
100

]
. Then you can easily compute

A−1 =
[
−100000 100000
100001 −100000

]
and

A−1

[
100
100

]
=
[

0
100

]
Great! But maybe not so great. After all, there’s naturally some exper-
imental error. But your instruments are really good, and you know that
you’ve measured the chemicals correctly with an error of at most 0.0004

grams. So you say, well, OK, maybe ~x9 =
[

100
100.0004

]
. That’s not a very

big difference. But when you work backwards, you find

~x0 = A−1

[
100

100.0004

]
=
[

40
60

]
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In other words, a really tiny uncertainty in measurement–less than one one-
thousandth of a percent–translates into complete cluelessness about the ac-

tual value of ~x0. If you said confidently that ~x0 was
[

0
100

]
, you would

have committed a blunder!
So let’s analyze this more closely. Suppose you’re trying to solve the

Main problem, A~x = ~b. But suppose ~b you have a certain unknown error
~δb; that is, maybe what you actually measure is ~b+ ~δb. How far off is your
computation of ~x? Write ~x for the solution to A~x = ~b and ~x′ for what you
actually measure.

Well, you get

~x′ = A−1(~b+ ~δb) = A−1~b+A−1 ~δb = ~x+A−1 ~δb.

So the question is, how big is ~δx = A−1 ~δb?
Clearly this depends on the nature of A−1. But note–we’re not really

so interested in the size of ~δx itself; we’re more interested in the percentage
error. An error of 1000 is no big deal if the coordinates of ~x are 10, 000, 000.

Relative error in ~b is given by

‖~δb‖/‖~b‖

and the relative error in ~x by

‖ ~δx‖/‖~x‖

We say a matrix is well-conditioned if ‖ ~δx‖/‖~x‖ is small whenever ‖~δb‖/‖~b‖
is small.

Definition. The condition number of a matrix is the smallest number c
such that

‖ ~δx‖/‖~x‖ ≤ c‖~δb‖/‖~b‖

for any ~b and ~δb.
Example: in the case we did above, we had

A =
[

1 1
1 1.00001

]
,~b =

[
100
100

]
, ~δb =

[
0

.0004

]
, ~x = ~0100, ~δx = 40−40.

So we find

‖ ~δx‖/‖~x‖ = 40
√

2/100 ∼ 0.565
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and

‖~δb‖/‖~b‖ = 0.0004/100
√

2 ∼ 0.0000282

In particular, we find that the condition number is at least 200, 000! That’s
just awful. A very tiny percentage error in the measurement yields a huge
percentage error in the conclusion.

Silly example: take A the identity matrix. Then of course ~x = ~b and
~δx = ~δb, so the condition number is 1.

So if the matrix in our problem has a small condition number, we should
feel happy–we know that small errors won’t propagate into big ones. So how
do we compute the condition number? Actually, it takes some doing–but
it’s easy in the very often encountered case where A (whence also A−1) is a
positive definite symmetric matrix.

We want to try to work out a condition number. So we ask: How big
can ~δx = A−1 ~δb be, compared to ~b How small can ~x = A−1~b be, compared
to ~b?

Groupwork. Let A be a matrix such that

A−1 =
[

2 −1
−1 2

]
.

Suppose ~δb has length c. How long can A−1 ~δb be? Suppose ~b has length c.
How short can ~x = A−1~b be?

Maybe let them think about this a while. Try some points.
Hint: To say ‖~b‖ = 1 is to say

~bT~b = c

Now A~x = ~b, so we have

~xTATA~x = ~xT
[

5 −4
−4 5

]
= c.

What do the solutions ~x to the above equation look like? And among those
points, which is shortest?

OK, so what we should find at the end of all this is that the way to
make ~x long is to have ~b point in the direction of an eigenvector of A with
an eigenvalue as close as possible to 0.

Fact. Let λn be the largest eigenvalue of A. Then |~x‖ ≥ λ−1
n ‖~b‖. Let

λn be the smallest eigenvalue of A. Then ‖ ~δx‖ ≤ λ−1
1 ‖~δb‖.
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In particular, we have that the condition number is given by

c = λn/λ1.

“A symmetric matrix is well-conditioned if the ratio between the largest
and smallest eigenvalue is not too great.”

This might seem to be the issue in general. After all, the 2 × 2 matrix
A we started with has an eigenvalue of 2 and an eigenvalue which is about
5 × 10−5. So is the above motto true for all matrices? No, not quite. We
can write down a matrix like

A =
[

1 1000
0 1

]
which has the eigenvalues very close together–in fact equal! So is this matrix
well-conditioned? No. Because

A−1 =
[

1 −1000
0 1

]
and we find

A−1

[
1000

0

]
= 10000, A−1

[
1000

1

]
= 01.

A small percentage change in the input produced a rather drastic change in
the output. So the condition number is big. At least a thousand or so.

We sum up what we have to do in the following question.
Question. Let A be a matrix. Suppose ‖~v‖ is known. How large can

‖A~v‖ be? How small can ‖A~v‖ be?
If there’s some time today, we’ll investigate this question by drawing

some pictures of ellipses.
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