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Introduction and definitions

Let K be a number field, Galois over Q. A Q-curve over K is an elliptic curve over K which is
isogenous to all its Galois conjugates. The current interest in Q-curves, it is fair to say, began with
Ribet’s observation [27] that an elliptic curve over Q̄ admitting a dominant morphism from X1(N)
must be a Q-curve. It is then natural to conjecture that, in fact, all Q-curves are covered by modular
curves. More generally, one might ask: from our rich storehouse of theorems about elliptic curves
over Q, which ones generalize to Q-curves?

In this paper, we discuss recent progress towards several problems of this type, and some Dio-
phantine applications. We will also state several open problems which seem both interesting and
accessible to existing methods.
Remark 1. Elliptic curves with complex multiplication supply a natural population of Q-curves.
Indeed, the original use of the term “Q-curve”, by Gross [13], referred to CM curves exclusively.
The arithmetic of CM curves is much more fully understood than that of curves without extra
endomorphisms. For that reason, we will assume hereafter that our Q-curves are not CM.

One might think of the class of Q-curves as the “mildest possible generalization” of the class of
elliptic curves over Q. For many structures on elliptic curves over Q are invariant under isogeny.
And since a Q-curve E/K has an isogeny class which is fixed by Gal(Q̄/Q), we should expect that
any isogeny-invariant structure of elliptic curves over Q can be defined for Q-curves as well.

The structure we have chiefly in mind is the `-adic Galois representation

ρC,` : Gal(Q̄/Q) → End(T`C)

attached to any elliptic curve C over Q. The isomorphism class of ρE,` depends only on the isogeny
class of C, and so one expects to find `-adic representations of Gal(Q̄/Q) attached to Q-curves as
well. Indeed, given a Q-curve E/K, there exists a representation

ρE,` : Gal(Q̄/Q) → Q̄∗
` GL2(Q`)

such that the restriction ρE,`|K agrees, up to multiplication by scalars, with the action of Gal(K̄/K)
on T`E. We define ρE,` as follows. For each σ ∈ Gal(Q̄/Q), let µσ : Eσ → E be an isogeny. Then
we can define

ρ̃E,`(σ) ∈ GL(T`E)
∗Partially supported by NSA Young Investigator Grant MDA905-02-1-0097.
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by the rule
ρ̃E,`(σ)(P ) = µσ(Pσ).

Now ρ̃E,` is not a homomorphism from Gal(Q̄/Q) to GL(T`E). However, it is easily checked that

ρ̃E,`(σ)ρ̃E,`(τ)ρ̃E,`(στ)−1

acts on T`E in the same way as does

cE(σ, τ) = (1/ deg µστ )µσµσ
τ µ∨στ ∈ (Hom(E,E)⊗Z Q)∗ = Q∗.

In particular, the projectivizations of the ρ̃E,`(σ) fit together into a projective Galois representation

PρE,` : Gal(Q̄/Q) → PGL2(Q`).

It is easy to check that cE is a cocycle in H2(Gal(Q̄/Q), Q∗). A theorem of Tate shows that cE is
trivial when the coefficients are extended from Q to Q̄, and this gives the existence of ρE,`. One point
of view is that ρE,` is the `-adic Galois representation attached to an abelian variety of GL2-type,
which admits E as a factor over Q̄ [27, §6].

Note that the description above defines ρE,` only up to twisting by scalars. In some cases
there may be a “best” choice among the twists of ρE,`, but in this paper we will always take the
projectivization PρE,` as our real object of interest. This projective Galois representation is an
invariant of the geometric isogeny class of E.

What kinds of Q-curves are there?

A priori, a Q-curve can be defined over an arbitrarily complicated number field. Of course, a Q-
curve defined over a large number field L might be geometrically isogenous to a curve over a smaller
number field K. In fact, if we are considering Q-curves only up to isogeny, we may assume that
K is a compositum of quadratic extensions of Q. (Of course, this would be false if we allowed our
Q-curves to have CM!)

Theorem 2 (Elkies,[6]). Let E be a Q-curve (without complex multiplication) over a number field
L. Then E is geometrically isogenous to a Q-curve E′/K, where K is a Galois extension of Q with
Galois group (Z/2Z)r.

See [28] for a slightly more general version of this theorem with a different proof.
One naturally wishes to place Q-curves in a moduli space. The presence of discrete invariants

(for instance, the minimal degree of an isogeny between E and its Galois conjugate) ensures that
no single connected moduli space will parametrize all Q-curves. However, if all discrete invariants
are held constant, the category of Q-curves is indeed parametrized by a modular curve.

To fix ideas, consider the class of Q-curves E which are defined over quadratic fields K, and
which admit cyclic isogenies of degree d, defined over K, to their Galois conjugates. We call such
an E a Q-curve of degree d. Let Eσ/K be the Galois conjugate of E. Then the isogeny φ : E → Eσ

is represented by a point of X0(d)(K). Moreover, the Galois conjugate Pσ represents an isogeny
φσ : Eσ → E. Since E does not have CM, φσ can only be ±φ̂. In other words, Pσ is the image
of P under the Atkin-Lehner involution wd. It follows that the image of P in the quotient curve
X0(d)/wd is defined over Q.

Let N be a squarefree positive integer, and let X∗(N) be the quotient of X0(N) by the group
generated by all Atkin-Lehner involutions wp, p|N . If x is a point of X∗(N)(Q) lying under a point
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y of X0(N)(K) for some number field K, and if E/K is an elliptic curve parametrized by y; then
the Galois conjugates of E lie in the orbit of E under the Atkin-Lehner involutions. In particular,
the Galois conjugates of E are all isogenous to E, and E is a Q-curve.

What Elkies in fact proves in [6] is that every non-CM Q-curve is isogenous to one parametrized,
as above, by a rational point of X∗(N). So the title question of this section can be rephrased as
follows: what are the rational points on X∗(N)? More precisely: what are the rational points on
X∗(N) which are neither cusps nor CM points?

We first observe that, as with the modular curves X0(N), the curves X∗(N) have genus greater
than 2 when N is sufficiently large. Gonzalez and Lario [12] give a complete list of the N for which
X∗(N) has genus 0 or 1; there are 43 values of N for which X∗(N) is rational and 38 values such
that X∗(N) has genus 1. In many of the cases where X∗(N) is rational, explicit equations for the
corresponding family of Q-curves have been worked out: see [12], [14],[16],[17], [24].

Since X∗(N) has finitely many points for N sufficiently large, it is natural to make the following
conjecture, which was first formulated (in somewhat greater generality) by Elkies. We call a point
on X∗(N) which is neither cuspidal nor CM an exceptional point.

Conjecture 3. There are only finitely many positive squarefree integers N such that X∗(N)(Q)
contains an exceptional point.

Several examples of exceptional points are known: [6] exhibits an exceptional point on X∗(191),
and Galbraith ([9],[10]) gives several more examples of exceptional points on X∗(N), with N as
large as 311.

We should emphasize that the method used by Mazur in [21] to control rational points on X0(N)
is not directly applicable to Conjecture 3. Mazur’s argument bounds the rational points on a curve
X by means of a morphism

X → A

where A is an abelian variety with |A(Q)| < ∞. But each simple factor A of the Jacobian of X∗(N)
is associated to a newform of weight 2 and level N whose functional equation has sign −1. Under
the Birch-Swinnerton-Dyer conjecture, every such A has infinite Mordell-Weil group, so Mazur’s
argument does not apply. Note that this is the same difficulty that arises in the older problem of
showing that the modular curve Xnon−split(p) does not have rational points for p large enough.

On the other hand, Mazur’s method may apply if we specify the field of definition K of the
Q-curve. For example, Mazur shows in [21, §8] that, if K is a quadratic imaginary field, and N
is a sufficiently large prime which is inert in K, then X0(N)(K) is empty. In particular, there are
no Q-curves over K of degree N . More generally, let K be a quadratic field, χ the corresponding
quadratic Dirichlet character, and σ a generator for Gal(K/Q). Let N be a prime. We denote by
Xχ

0 (N)/Q the modular curve admitting an isomorphism

φ : Xχ
0 (N)×Q K → X0(N)×Q K

satisfying φσ = wN ◦ φ. Note that φ induces a bijection between Xχ
0 (N)(Q) and the points P of

X0(N)(K) satisfying Pσ = wNP . In particular, every Q-curve of degree N over K is parametrized
by a point of Xχ

0 (N)(Q).
The cuspidal points of Xχ

0 (N) are no longer defined over Q, so it is not immediately clear that
Xχ

0 (N) has any rational points at all, even locally.

Problem A: For which χ and N does Xχ
0 (N) have rational points over every completion of Q?

Noam Elkies pointed out to me that the answer to Problem A is certainly not “all χ and N”;
for instance, the genus-0 curve Xχ

0 (5) is a Brauer-Severi curve which is rational if and only if 5 is a
norm from K.
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Even if Xχ
0 (N) has local points, one should be able to use Mazur’s argument to obtain reduction

information about the corresponding Q-curves.

Problem B: Suppose K is a real quadratic field, and let N be a prime which splits in K.
Suppose E is a Q-curve over K of degree N . Show that E has potentially good reduction at all
primes greater than 3.

The conditions on N and K imply that the Jacobian of Xχ
0 (N)(Q) has quotients of the form

Af , where f is a cusp form whose functional equation has sign +1. By the results of Kolyvagin and
Logachev, in order to show Af has rank 0, it suffices to show that the special value of the L-function
L(f, s) at s = 1 is nonzero. This should be achievable by an averaging argument as in [8]. One
then applies Corollary 4.3 of [21] to obtain the desired result. Can the arguments of [21, §5,6,7] be
modified to show that under some circumstances there are no rational points on Xχ

0 (N)?

We have seen already that Q-curves yield rational points on X∗(N); the problem of describing
a Q-curve attached to a point of X∗(N)(Q) is more subtle, due to the fact that X∗(N) is not a
fine moduli space. In particular, it is a delicate matter to determine a number field K over which
all Galois conjugates of E and the isogenies between them can be defined. We will not treat this
problem here, simply referring the reader to [24], [25], [11].

Modularity

We say a Q-curve E is modular if ρE,` is the `-adic Galois representation attached to a cusp form
on Γ1(N) for some N . Equivalently, E is a quotient of J1(N)Q̄. Note that this definition depends
only on PρE,`.

Ribet showed in [27] that every elliptic curve over Q̄ which admitted a non-constant morphism
from J1(N) for any N is a Q-curve. He also conjected the converse:

Conjecture 4 (Ribet). All Q-curves are modular.

Naturally, progress towards this conjecture followed very closely upon the work of Wiles on mod-
ular deformations. Since this technique involves passing between `-adic and mod-` representations,
we now introduce the mod ` representation

ρ̄E,` : Gal(Q̄/Q) → F∗` GL2(F`)

associated to a Q-curve E. Defining this representation is subtle only when ` divides the degree µσ

for some σ [7, Def. 2.14].
The first advance towards Conjecture 4 was made by Hasegawa, Hashimoto, and Momose [15].

Their idea was to consider a prime ` ≥ 5 such that one of the isogenies

µσ : Eσ → E

has squarefree degree which is a multiple of `. Then the curve E/K admits a rational `-isogeny, which
means the image of GK under ρ̄E,` lies in a Borel subgroup. In fact, under certain circumstances
the authors show that the image of Gal(Q̄/Q) under ρ̄E,` is a dihedral group. But dihedral Galois
representations are known classically to be modular, so one can use the theorems of Wiles, Taylor-
Wiles, and Diamond to conclude that the deformation ρE,` of ρ̄E,` is modular as well. Hida,
working independently, proved a similar result using a similar method in [18], as did Momose and
Shimura [23]. A typical result is the following:

4



Theorem 5 (Hida,[18]). Let E be a quadratic Q-curve of degree p ≥ 5 over a quadratic field
unramified at p. Then E is modular.

This approach generalizes quite nicely to Hilbert-Blumenthal abelian varieties over Q̄ which are
isogenous to all their Galois conjugates, or Q-HBAV’s: see [19, Cor. 3.3].

The results of [15],[18], and [23] yield modularity for many classes of Q-curves. However, these
theorems do not apply to Q-curves of degree 2, a case which has particularly nice Diophantine
applications described below. The author and Chris Skinner took a different approach to proving
modularity of Q-curves in [7]. Instead of exploiting the isogenies between conjugates, [7] uses the
mod 3 representation attached to E, which has solvable projective image and is therefore modular
by the Langlands-Tunnell theorem. The lifting theorems of Wiles, as refined by Conrad, Diamond,
and Taylor, then yield a modularity result for Q-curves, under certain local conditions at 3. For
instance, one has the following theorem.

Theorem 6 (Ellenberg-Skinner,[7]). Let E/K be a Q-curve with semistable reduction at all
primes of K dividing 3, and suppose that K/Q is unramified at 3. Then E is modular.

There are infinitely many Q-curves whose modularity has not yet been proven. One example is
the curve

E : y2 = x3 + (−994708512
√

5257
√

73− 414461880
√

5257− 4973542560
√

73− 1089620282520)x

+36601957546560
√

5257
√

73 + 5349307626327168
√

5257
+55021459817878848

√
73 + 32065347994985088.

This curve is parametrized by a point of X∗(6); we obtained the equation by specializing the explicit
description of the universal Q-curve over X∗(6) given by Quer in [24, §6] to the point a = 22 ·32 ·73.

The final proof of the Shimura-Taniyama conjecture for elliptic curves rests crucially on the use
of the “3 − 5 switch.” The ideas is as follows: suppose we wish to show an elliptic curve C/Q is
modular, but the local behavior of C at 3 is so unpleasant that the 3-adic Tate module of C cannot
be proved modular. Then one uses the rationality of the curve X(5) to find a curve C ′ with an
isomorphism of Galois modules

C[5] ∼= C ′[5]

and which has a “better” mod 3 representation. One then uses the 3-adic representation to show
modularity of C ′, and the coincidence of mod 5 representations suffices to show that modularity of
C ′ implies modularity of C.

This approach is unlikely to work for Q-curves. For instance, let E be a Q-curve of degree 2.
Then the set of pairs (E′, φ), where E′ is a quadratic Q-curve of degree 2 and φ is an isomorphism
ρ̄E,5

∼= ρ̄E′,5, is parametrized by the rational points of a modular curve X, which is geometrically
isomorphic to X0(2) ×X(1) X(5). In order to execute the desired switch, one wants X to have
many rational points. But in fact, X has genus 4. So one expects (though it’s not clear how to
prove!) that, for most E, there will be no other Q-curve with the same mod 5 representation. In
other words, no “switch” is available, and we are stuck with the 3-adic behavior of E, no matter
how disagreeable. The proof of Ribet’s conjecture in full, therefore, will require results on modular
deformations on Galois representations which go beyond those currently available.

Problem C. New results on Artin’s conjecture for icosahedral Galois representations have
recently appeared ([1], [29].) Note especially that the result of [1] does not stipulate local conditions
at 3. Can these theorems be used in place of the Langlands-Tunnell theorem to show modularity for
some Q-curves whose behavior over Q3 is very bad, but which, say, have good ordinary reduction
at primes over 5?
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Surjectivity of mod-p representations

The resolution of the Fermat problem rests on two crucial theorems concerning the Galois represen-
tations attached to elliptic curves over Q. One, the modularity theorem of Wiles and Taylor-Wiles,
we have already discussed. The other is the theorem of Mazur:

Theorem 7 (Mazur, [21]). Let C/Q be an elliptic curve, and p > 163 a prime. Then ρ̄C,p is
irreducible.

To what extent are theorems of this kind true for Q-curves? The nice fact is that, in some sense,
the situation for Q-curves is better than that for elliptic curves over Q.

Theorem 8 ([8]). Let K be an imaginary quadratic field, and d a squarefree integer. There exists
a constant MK,d such that, for all quadratic Q-curves E/K of degree d, and all primes p > MK,d,
either

• Pρ̄E,p is surjective;

• E has potentially good reduction at all primes greater than 3.

The natural conjecture here is that, for p large enough, ρ̄E,p is surjective whenever E is not CM .
In this theorem one should think of “has potentially good reduction everywhere” as a proxy for “is
CM”. (Compare with [22].)

The idea of the proof is as follows. Let G be a maximal proper subgroup of PGL2(Fp). As in
Mazur’s original argument, we are trying to control points on a certain modular curve X, whose
rational points parametrize Q-curves E over K such that ρ̄E,p(Gal(Q̄/Q)) ⊂ G. In [21], G is a Borel
subgroup, K = Q, and X = X0(p); in [23], G is the normalizer of a split Cartan subgroup.

Now the main arithmetic step is to show the existence of a quotient

J(X) → A

with |A(Q)| < ∞.
The proper maximal subgroups of PGL2(Fp) are the Borel subgroups, the normalizers of Cartan

subgroups, and the exceptional subgroups isomorphic to A4, S4, or A5. If G is anything other than
the normalizer of a non-split Cartan subgroup, it is not hard to show the existence of an A as above
by imitating existing results. So from now on let X be the modular curve parametrizing quadratic
Q-curves over K of degree d, whose mod p Galois representation takes image in the normalizer
of a non-split Cartan subgroup of PGL2(Fp). If J(X) has a quotient with Mordell-Weil rank 0,
Theorem 8 follows after applying a formal immersion theorem of Darmon and Merel [3].

A result of Chen and Edixhoven ([2],[4]) shows that J(X) is a quadratic twist of Jp−new
0 (dp2)/wp.

In particular, if f is a weight 2 cusp form of level dp2 which does not come from level dp, and which
satisfies wpf = f , then J(X) has a quotient which is isomorphic over K to the modular abelian
variety Af . Thanks to work of Kolyvagin and Logachev, in order to show that a quotient A has
Mordell-Weil rank 0, we need only show non-vanishing of the special value of the L-function attached
to A at the center of the functional equation. Precisely: for us, it will suffice to prove the following
lemma.

Lemma 9. Let χ be the quadratic Dirichlet character associated to K/Q. For all sufficiently large
p, there exists a weight 2 newform f of level p2 such that wpf = f and L(f ⊗ χ, 1) 6= 0.
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In fact, more is true: as Duke observed in [5], one can use the Petersson formula to approximate
the average value of L(f ⊗ χ, 1) as f ranges over newforms satisfying the criteria in Lemma 9. In
order to prove that L(f ⊗ χ, 1) is nonzero for some such f , it suffices to prove that the average is
nonzero for p large enough, which is immediate from the analytic estimate.

Problem D: Optimize the dependence of MK,d on K and d in Theorem 8.

Problem E: Extend Theorem 8 to Q-curves over polyquadratic fields.

Diophantine problems

A solution to the Fermat equation Ap + Bp + Cp = 0 gives rise, via the Frey-Hellegouarch con-
struction, to an elliptic curve over Q whose associated mod p Galois representation is unramified
away from a small set of primes defined independently of A,B,C. Analogously, certain “twisted”
versions of the Fermat equation give rise to Q-curves whose mod p Galois representations satify
similar non-ramification conditions.

Proposition 10. Let d be a positive integer and let α ∈ Q(
√

d) be an algebraic integer of norm ±2.
Let A,B be integers. Then

E = EA,B : y2 = x3 + 4α
√

dAx2 + 2α2(dA2 − d−1/2B)x

is a Q-curve over Q(
√

d) of degree 2. The isogeny µ : E → Eσ has equation

(x, y) 7→ (α−2(y2/x2), α−3yx−2(2α2(dA2 − d−1/2B)− x2))

and the automorphism µσµ of E is multiplication by the norm of α. The invariants of the given
Weierstrass model of E are

E4 = 32α2(5dA2 + 3d−1/2B)

and
∆ = 512α6(dA2 + d−1/2B)(dA2 − d−1/2B)2.

Note that the odd primes dividing ∆ are precisely those dividing (dA)4−dB2. Suppose (A,B, C)
is an integral solution in coprime integers to

(dA)4 − dB2 = 2nCp.

Then it follows from the theory of the Tate curve that the mod p representation EA,B [p] is unramified
away from 2 and primes dividing d. Moreover, if 3 6 | d, the representation EA,B [p] is modular, by
[7]. Finally, in many cases we can show that EA,B [p] is surjective, by the argument of the previous
section. By combining all these facts we can obtain Diophantine theorems. For instance, taking
d = −1 and α = 1 + i, we find ([8]) that the generalized Fermat equation A4 + B2 = Cp has no
solutions in coprime integers for p ≥ 211.

Another interesting case arises from the elliptic curve

y2 + 1 = 2x4 (1)

whose integral points are related to the problem of expressing π as a sum of rational arctangents [26,
§A.12] In particular, the point (13, 239) corresponds to Machin’s formula

π/4 = 4 arctan(1/5)− arctan(1/239).
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The problem of determining all integral solutions to (1) was first solved by Ljunggren [20]. Using
the material in this section, one can reprove Ljunggren’s result with a bonus: we can, in a sense,
explain why there is an integral point on (1) with large height.

Setting A = x, B = 2y, we have
(2A)4 − 2B2 = 8;

setting d = 2 and α =
√

2, we have a Q-curve EA,B over Q(
√

2) which has good reduction away
from 2. By Tate’s algorithm one finds that EA,B has conductor at most 210, and by [7] we know
EA,B is modular. To find the possibilities for EA,B , it thus suffices to find the Q-curves among
the modular abelian varieties of conductor dividing 210. The only difficulty is that there might be
multiple Q-curves EA,B lying in the same isogeny class. In fact, this is precisely what happens.
There is an weight 2 newform f of level 1024 with a3(f) =

√
2, a5(f) = −

√
2, a7(f) = −2 . . . It

turns out that the mod 5 Galois representation associated to this representation is reducible; that is,
there are two Q-curves, connected by a 5-isogeny, attached to the same modular form. One of these
curves is E1,2 and the other is E13,−478. In other words, the existence of a large-height solution to
Ljunggren’s equation is “explained” by the presence of a rational 5-isogeny on one of the modular
abelian varieties of conductor 210.

In general, the method outlined here should give information about integral solutions to equations
of the form

A4 −mB2 ∈ Z[1/N ]∗ (2)

and
A4 −mB2 = Cp (3)

where m is a squarefree integer prime to 3.
If (A,B) is a solution to (2), the Q-curve EA,B has good reduction away from primes 2mN , and

its conductor can thus be bounded by some constant M : if M is not too large, one can then look
up in tables the weight 2 cusp forms of conductor dividing M whose associated abelian varieties
are Q-curves. Finally, one bounds the degree of an isogeny between Q-curves of conductor dividing
M as in [21, §5,6,7], thus classifying all Q-curves associated to the modular abelian varieties under
consideration.

Finding the solutions to (3) is more subtle; one still has that EA,B is modular, but all one can
conclude is that EA,B [p] is a modular Galois representation with conductor less than some fixed
M . If there exist surjective mod p modular representations V of that conductor, it may be quite
difficult to control the set of Q-curves E such that E[p] ∼= V . On the other hand, one may be lucky
enough to find, as in [8], that the computation of the conductor forces Galois to act non-surjectively
on EA,B [p]; in this case, one can hope to use Theorem 8 to get a Diophantine result.

Problem F. What Diophantine problems are associated to quadratic Q-curves of small degree
higher than 2? A natural approach is to work out a set of generators for the ring of modular forms
on X∗(d) for small d; if this ring has the form

C[A,B, C]/f(A,B,C)

and C generates the ideal of cuspforms, then one should be able to classify triples of coprime integers
(A,B, C) such that C is a pth power and f(A,B,C) = 0. The prototypical example is the case
d = 1, in which case the ring of modular forms is given by

C[E4, E6,∆]/(E3
4 − E2

6 = 1728∆)

and the Diophantine equation of interest is

x3 − y2 = zp.
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