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Abstract

Let E be a totally real number field of degree d over Q. We give a
method for constructing a set of Hilbert modular cuspforms f1, . . . , fd
with the following property. Let K be the fraction field of a complete
dvr A, and let X/K be a Hilbert-Blumenthal abelian variety with mul-
tiplicative reduction and real multiplication by the ring of integers of E.
Suppose n is an integer such that n divides the minimal valuation of fi(X)
for all i. Then X[n′]/K extends to a finite flat group scheme over A, where
n′ is a divisor of n with n′/n bounded by a constant depending only on
f1, . . . , fd. When E = Q, the theorem reduces to a well-known property
of f1 = ∆. In the cases E = Q(

√
2) and E = Q(

√
5), we produce the de-

sired pairs of Hilbert modular forms explicitly and show how they can be
used to compute the group of Néron components of a Hilbert-Blumenthal
abelian variety with real multiplication by E.
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Introduction

Let A be a complete dvr with fraction field K, and valuation ord : K∗ → Z. Let
X/K be a Hilbert-Blumenthal abelian variety, or HBAV (Definition 1.3) with
multiplicative reduction over K. Let n be an integer. We are interested in the
following question:

Does the torsion subscheme X[n]/K extend to a finite flat group
scheme over A?

Suppose X is an elliptic curve, with minimal discriminant ∆min. It follows
from the theory of Tate [22] that the above question has an affirmative answer
whenever ord(∆min) is divisible by n. In the present work, we will generalize
this fact, replacing the modular form ∆ with a finite set of Hilbert modular
forms.

More precisely: we define a discriminantal set of Hilbert modular forms to
be a set of modular forms whose q-expansions satisfy a certain convex-geometric
condition (Definition 2.12.) In the following theorem, a totally real field E and
a fractional ideal c ⊂ E are fixed, and all HBAV’s have real multiplication by
the ring of integers of E.

Theorem (Corollary 2.16). Let f1, . . . , fr be a discriminantal set of c-Hilbert
modular forms of level N (Definition 1.9.) Then there exists an integer m{fi}
such that the following is true. Suppose X/K is an HBAV with multiplicative
reduction over A, and

• λ is a c-polarization for X; (Definition 1.5)

• ω is a Néron non-vanishing differential on X; (Definition 1.22)

• ι is a Néron N -level structure on X. (Definition 1.22)

Let n be an integer such that n|ord(fi(X,λ, ω, ι)) for all i, and let n′ be the
numerator of n/m{fi} expressed in lowest terms.

Then X[n′]/K extends to a finite flat group scheme over A.

In fact, given the values of the ord(fi(X,λ, ω, ι)), the valuation of the Tate
parameter of X can be confined to a finite set of possibilities (Remark 2.17.) So
the work here may be thought of as a small step in the direction of a “Tate’s
algorithm for HBAV’s.”

We also prove an existence theorem for discriminantal sets.

Theorem (Theorem 2.18). Let E be a totally real number field of degree d
over Q, and c ⊂ E a fractional ideal. Then there exists a discriminantal set of
c-Hilbert modular forms for E, with cardinality d.

Our ultimate aim is to investigate Diophantine equations associated to mod-
uli spaces of HBAV’s. The current work can be seen as the geometric portion
of this arithmetic-geometric problem. To illustrate the ideas involved, consider
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the following situation. Suppose that X/Q is a modular elliptic curve, with
semistable reduction over Z[1/m]. Let p 6 |m be a prime, and let

ρ : Gal(Q̄/Q)→ GL2(F̄p)

be the Galois representation on the p-torsion points of X. Then the primes `
not dividing pm such that X[p]/Q` extends to a finite flat group scheme over
Z` are exactly those which do not divide the Artin conductor of ρ. Moreover,
the weight k(ρ) is equal to 2 if and only if X[p] extends to a finite flat group
scheme over Zp. [20, Prop. 4].

It follows ([20, Prop. 7]) that an elliptic curve semistable over Z (and there-
fore modular) with ρ irreducible cannot have minimal discriminant a perfect
pth power; for in that case X[p] would extend to a finite flat group scheme over
every Z` (including Zp), so that ρ would have weight 2 and conductor 1, an im-
possibility by Ribet’s theorem. One motivation for our work here is to extend
arguments like the above to the general case of modular HBAV’s, and to study
Diophantine equations that stand in relation to Hilbert modular varieties as
Fermat’s equation does to the modular curve X(2). In [3], we apply these ideas
to show that solutions to the generalized Fermat equation A4 +B2 = Cp, under
certain 2-adic conditions on A,B,C, would produce non-modular HBAV’s. The
HBAV’s involved, however, are shown to be modular in [4]. This result and
related ones will appear in a later paper.

The article is organized as follows. In §1, we review the necessary theory
of Hilbert-Blumenthal abelian varieties and Hilbert modular forms. In §2.2, we
define discriminantal sets and prove Corollary 2.16 above. In §2.3, we prove
Theorem 2.18 above. Finally, in §2.4 we produce explicit discriminantal sets of
modular forms for the cases E = Q[

√
5] and E = Q[

√
2].
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Notation

Throughout this article, we will fix

• E a totally real number field of degree d over Q;

• ρ1, . . . , ρd the embeddings of E into R;

• O the ring of integers of E;

• o the unit ideal in O;
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• d the different of O/Z;

• U the group of units of O;

• U++ the group of totally positive units of O;

• A a complete dvr;

• K the fraction field of A;

• K̄ an algebraic closure of K;

• “ord” the valuation homomorphism K∗ → Z;

If c is a fractional ideal in O, we denote by c++ the set of totally positive
elements of c. More generally, if m is any projective rank 1 O-module, we define
a positivity structure on m to be a subset m++ which is closed under addition
and multiplication by o++.

If a and b are projective rank 1 O-modules, we mean by ab the projective
rank 1 O-module a⊗O b.

The superscript ∨ signifies the dual abelian variety when applied to an a-
belian variety, and the Z-dual when applied to an O-module.

If X/S is any scheme, and s = Spec k is a point of S, we will often write Xk

to denote the fiber product X ×S s.
If X/S is an group scheme, we denote the identity section by

eX : S → X.

If ν : X → X is an endomorphism of X, we denote the kernel of ν by X[ν]. In
particular, X[n] is the subgroup scheme of n-torsion points of X.

If X/S is a smooth group scheme, we denote the locally free OS-module
e∗XΩ1

X/S by ω(X/S). The dual of ω(X/S) (asOS-module) will be called Lie(X/S).

1 HBAV’s and Hilbert modular forms

1.1 Elliptic curves with multiplicative reduction

The goal of this paper is to generalize a rather innocuous fact about elliptic
curves with multiplicative reduction over non-archimedean local fields.

Let X/K be an elliptic curve with split multiplicative reduction over A. We
know from the theory of Tate [22] that X can be thought of as a “quotient” of
a torus by a discrete group:

X ∼= Gm/q
Z

X

for some parameter qX ∈ K∗ with ord(qX) > 0. For our purposes, we will not
need to delve too closely into the meaning of the isomorphism written above.
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Suffice it to say that there exists an elliptic curve over Z((q)), called the Tate
curve, or Tate(q), fitting into a cartesian diagram

X −−−−→ Tate(q)y y
SpecK

φX−−−−→ SpecZ((q))

where φX is induced by the ring homomorphism sending q to qX .
In view of the above, we are naturally interested in computing the parameter

qX . Indeed, the integer ord(qX) is already an important invariant of X; for
instance, the component group of the special fiber of the Néron model of X is
a cyclic group of order ord(qX).

Theorem 1.1. Let ∆min(X) be the minimal discriminant of X. Then

ord(∆min(X)) = ord(qX).

Proof. The minimal discriminant of Tate(q) is the usual q-expansion

q − 24q2 + . . .

Thus, the minimal discriminant of X is

qX − 24q2
X + . . .

and the theorem is immediate.

Corollary 1.2. If n is a rational integer dividing ord(∆min(X)), the group
scheme X[n]/K extends to a finite flat group scheme over A. In particular, let
X/A be the Néron model of X. Then the group scheme X [n] is finite and flat
over A.

Proof. Since multiplication by n is flat, only finiteness needs to be proved.
Let X 0 be the identity component of X ; let Xs be the fiber of X over the

closed point of SpecA, and let X 0
s be the identity component of Xs. Then X 0

s [n]
is a finite flat group scheme over s of degree n.

Let A′ be an unramified extension of A such that the residue field k′ of A′

is separably closed. Fix an embedding of k′ into an algebraic closure k̄ of k.
It follows from Tate’s algorithm that

Φ := X (A′)/X 0(A′) ∼= Z/mZ

where m = ord(qX) is a multiple of n. In particular, Φ[n] has order n.
Let xα ∈ X (A′) be a point representing an element α of Φ[n]. Then nxα ∈

X 0(A′). Let x̄α be the restriction of xα to the geometric fiber Xs̄ = Xs ×k k̄.
Multiplication by n is surjective on k̄-points of X 0

s̄ ; thus, we may choose
y ∈ X 0

s̄ (k̄) such that ny = nx̄α.
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Now let x′α = x̄α − y. Then x′α +X 0
s̄ [n] is a subscheme of Xs̄[n], of degree n

over s̄. Moreover, x′α + X 0
s̄ [n] and x′β + X 0

s̄ [n] are disjoint for α 6= β, since they
lie in distinct components of Xs̄. We conclude that Xs̄[n] is a group scheme of
degree at least n2 over s̄, whence Xs[n] is a group scheme of order at least n2

over s.
Now X [n] is a quasi-finite scheme over a complete dvr, and as such it can

be written as the disjoint union of a finite scheme Y ′ and a scheme Y ′′ which
is void over the special point [6, (6.2.6)]. Since X [n] is flat, Y ′ has equal degree
over the generic and special points. But we have shown that the degree of X [n]
over the special point at least n2, which is the degree of X [n] over the generic
point. Therefore, Y ′′ is void, and X [n] is finite, as desired.

Our aim is to generalize the above corollary to the case where X is a Hilbert-
Blumenthal abelian variety; that is, we want to give a criterion, in terms of the
values of certain modular forms evaluated at X, for X[n]/K to extend to a finite
flat group scheme over A.

1.2 Definitions and examples

The basic theory of Hilbert-Blumenthal abelian varieties (HBAV’s), also called
abelian varieties with real multiplication, can only be summarized in this small
space. For more detail and justification, we refer the reader to Katz [10, ch. 1],
whose definitions and notation we follow closely in this paper. Another excellent
reference is [23].

Definition 1.3. A Hilbert-Blumenthal abelian variety (HBAV) over a ring R is
a pair (X,φ), where

• X is an abelian scheme of dimension d over SpecR;

• φ : O ↪→ End(X) is an injection making Lie(X/R) a locally (on R) free
rank-1 O ⊗Z R module.

We will refer to X as “an HBAV with real multiplication by O” if there is
any ambiguity about what totally real ring of integers is acting. We will denote
the endomorphism φ(α) by [α]. When no confusion is likely, an HBAV (X,φ)
will be referred to simply as X.

Remarks 1.4. 1. If X/K is an abelian scheme of dimension d over a field
of characteristic 0, endowed with an injection φ : O ↪→ End(X), the
condition on Lie(X/K) is automatically satisfied [16, Prop. 1.4].

2. An elliptic curve is an HBAV with real multiplication by Z.

3. Brumer has shown [2] that the Jacobian of the genus-2 curve

C : y2 = x6 + 2cx5 + (c2 + 2c+ 2− bd)x4 (1.2.1)
+ (2c2 + 2c+ 2 + b− 2bd− 4d)x3

+ (c2 + 4c+ 5 + 3b− bd)x2 + (2c+ 6 + 3b)x+ (b+ 1)
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is an HBAV over Q(b, c, d) with real multiplication by Z[1+
√

5
2 ].

4. The endomorphism [α] is an isogeny [1, 7.3,Def. 4] for all α = 0, since it
factors through [n] for some rational integer n, and [n] is an isogeny.

Following Katz [10], we begin by defining some extra structures on HBAV’s.

Definition 1.5. Let X be an HBAV and c a fractional ideal of O. Let X ⊗O c
be the HBAV representing the functor T 7→ X(T )⊗O c, and let

ε : c→ HomO(X,X ⊗O c)

be the evident homomorphism. Let P (X) be the O-module of O-linear sym-
metric morphisms from X to X∨. We say an element of P (X) is positive if it
is a polarization of X as an abelian scheme.

Then a c-polarization of X (as an HBAV) is an isomorphism

λ : X ⊗O c→ X∨

such that the map c→ P (X) given by

c→ λ ◦ ε(c)

is an isomorphism which associates the totally positive elements of c to the
totally positive elements of P (X).

Remark 1.6. If c′ is a fractional ideal in the same narrow ideal class as c, then
any c-polarization of an HBAV X naturally gives rise to a c′-polarization. So
the choice of c is essentially only a choice of a narrow ideal class of O.

Since ωX/R is R-dual to Lie(X/R), it is locally isomorphic to d−1 ⊗R, and
is hence also a locally (on R) free O ⊗R-module.

Definition 1.7. A non-vanishing differential on a HBAV X is a generator for
ωX/R as O ⊗R-module.

Equivalently, we may say that a non-vanishing differential is an isomorphism
between Lie(X/R) and d−1 ⊗Z R.

Finally, we stipulate a notion of level structure.

Definition 1.8. An N -level structure (or Γ00(N)-structure) for a HBAV X is
an O-linear closed immersion of group schemes over R

ι : d−1 ⊗ µN ↪→ X,

where µN/R is the (finite) group scheme of N -th roots of unity.

In case N = 1, we write ι1 for the trivial level structure.
Now we are ready to define Hilbert modular forms.
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Definition 1.9. Suppose d > 1. A c-Hilbert modular form of level N and
weight k over R0 is a function on quadruples (X,λ, ω, ι), where

• X is an HBAV over an R0-algebra R;

• λ is a c-polarization of X;

• ω is a non-vanishing differential on X;

• ι is an N -level structure for X,

such that

• f(X/R, λ, ω, ι) is an element of R depending only on the R-isomorphism
class of (X,λ, ω, ι);

• f commutes with any extension of scalars R→ R′;

• For any x in (O ⊗R)∗,

f(X,λ, xω, ι) = NE
Q

(x)−kf(X,λ, ω, ι).

The R0-module of such functions is denoted by Mk
O(c, N ;R0). The ring of

modular forms of arbitrary integral weight is called M∗O(c, N ;R0).

Remark 1.10. If d = 1 (that is, if O = Z) another condition on f is necessary,
namely that it be “holomorphic at the cusps.” That this condition is unnec-
essary when d > 1 is the content of the Koecher principle (Proposition 1.17
below.)

Example 1.11. Suppose O = Z[1+
√

5
2 ], and let c = d. Since the narrow class

group of O is trivial, this is essentially the only choice (see Remark 1.6); we
choose d rather than o for notational convenience later on.

Then

M∗O(d, 1;C) ∼= C[φ2, χ5, χ6, χ15]/R

where the generators are modular forms of weights 2, 5, 6, 15, and R is a relation
in weight 30. (See Hirzebruch [8]). Nagaoka [15] proved that the forms χ6 and
χ12 := (1/4)(χ2

6 − φ2χ5) are in fact base changes of forms in M∗O(d, 1;Z).

1.3 Semi-HBAV’s

We will often want to consider a class of group schemes somewhat more general
than HBAV’s. Recall that a semi-abelian scheme X over a base S is a smooth
commutative group scheme over S, each of whose fibers is an extension of an
abelian variety by a torus. If the fiber over s ∈ S is an extension of an abelian
variety by a split torus, we say X is split at s.
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Definition 1.12. A semi-HBAV over SpecR is a pair (X,φ), where

• X is a semi-abelian scheme of dimension d over R;

• φ : O ↪→ End(X) is a homomorphism making Lie(X/R) a locally (on R)
free rank-1 (O ⊗Z R)-module.

Note that it follows from the second condition in Definition 1.12 that each
fiber of a semi-HBAV is either an abelian variety or a torus. We say a semi-
HBAV is split if each of its geometric fibers is either an abelian variety or a split
torus.

If K is the fraction field of a complete dvr A, and Y/K is an abelian variety,
we say that Y has multiplicative reduction (resp. split multiplicative reduction)
if the identity component of its Néron model is a semi-abelian variety whose
special fiber is a torus (resp. semi-abelian variety whose special fiber is a split
torus.)

By analogy with the HBAV case, we define a non-vanishing differential on
a semi-HBAV X/R to be a generator for the (O ⊗Z R)-module ωX/R, and an
N -level structure to be an O-linear closed immersion

ι : d−1 ⊗ µN ↪→ X.

We have already seen that elliptic curves with split multiplicative reduction
over A can be expressed as pullbacks of a Tate curve over Z[[q]]. The situation for
HBAV’s with split multiplicative reduction (indeed, for general abelian varieties
with split multiplicative reduction) is very much the same; all HBAV’s with
split multiplicative reduction will be pullbacks of a certain “Tate HBAV.”

1.4 The Tate HBAV and q-expansion

In order to define the Tate HBAV, we must first describe the power series ring
over which it is defined. To this end we make the following definitions.

Let m be a projective rank 1 O-module endowed with a positivity structure
m++.

Definition 1.13. A linear form L : m → Z is positive if it sends all positive
elements of m to positive integers.

Definition 1.14. Let S be a set of d linearly independent positive linear forms.
An element m ∈ m is S-semipositive if L(m) ≥ 0 for every L ∈ S. The set of
S-semipositive elements of m is denoted mS .

Let a be a projective rank 1 O-module, c a fractional ideal of O, and set
b = ac−1. We define a positivity structure on ab by defining ab++ to be the
semigroup generated by all elements of the form a ⊗ ac−1, with a ∈ a and
c ∈ c++.
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Now define

Z[ab, S] = Z[. . . , qα, . . . ]/(q0 − 1, qα1+α2 − qα1qα2)

where α, α1, α2 vary over (ab)S . Let IS be the ideal generated by qα for all
α ∈ (ab)S − {0}, and let Z[[ab, S]] be the completion of Z[ab, S] in the IS-adic
topology. Let I be the ideal in Z[[ab, S]] generated by qα for all totally positive
α. We denote by Z((ab, S)) the localization of Z[[ab, S]] away from I.

Now Z[[ab, S]] is a normal Noetherian domain complete with respect to I.
Moreover, the pairing

q : b⊗ a→ Gm(Z((ab, S)))

defined by

q(β ⊗ α) = qβα.

is a polarized set of periods in the sense of the construction of Mumford [14].
Therefore, there exists an abelian variety Tatea,b(q) over Z((ab, S)) which we
may think of as the quotient

d−1a−1 ⊗Z Gm/qa(b),

where

qa : b→ d−1a−1 ⊗Z Gm(Z((ab, S)))

is the homomorphism induced by q.
We record below some basic facts about the Tate HBAV, which can readily

be derived from Mumford’s work in [14]. (See [3] for more details.)

1. Tatea,b(q) is an HBAV, which extends to a split semi-HBAV T̃atea,b(q)/Z[[ab;S]].

2. Tatea,b(q) has a canonical c-polarization λcan.

3. There is a canonical isomorphism

ωa : Lie(Tatea,b(q))→ Lie(d−1a−1 ⊗Z Gm/Z((ab, S)))

which extends to an isomorphism between Lie(T̃atea,b(q)) and Lie(d−1a−1⊗Z
Gm/Z[[ab, S]]).

In particular, if R is a ring, any isomorphism

j : a⊗Z R
∼→ o⊗Z R

induces a non-vanishing differential on Tatea,b(q) ×Z R by composition
with ωa. We denote this non-vanishing differential by ω(j).
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4. Let N be a rational integer. There exists an exact sequence of group
schemes over Z((ab, S))

0→ d−1a−1 ⊗ µN
ιa→ Tatea,b(q)[N ]→ ((1/N)Z/Z)⊗Z b→ 0,

and ιa extends to a morphism of group schemes over Z[[ab, S]]:

ιa : d−1a−1 ⊗ µN → T̃atea,b(q)[N ].

So any isomorphism

ε : o/No
∼→ a/Na

induces a level N structure on Tatea,b(q) by composition with ιa. We
denote this level N structure by ι(ε). Note that ι(ε) extends to a level N
structure on T̃atea,b(q).

Suppose f is a c-Hilbert modular form of levelN over a ringR0, and (a, b, j, ε)
is a quadruple where

• a is a projective rank 1 O-module and b = ac−1;

• j : a⊗Z R
∼→ o⊗Z R is an isomorphism, for some R0-algebra R;

• ε : o/No
∼→ a/Na is an isomorphism.

Such a quadruple is called a cusp (or a cusp of level N) over R.
In case N = 1, we denote by ε1 the canonical isomorphism from o/o to a/a.

Definition 1.15. The q-expansion of f at the cusp (a, b, j, ε) is the value

f(Tatea,b(q)×Z R, λcan, ω(j), ι(ε)).

A priori, a q-expansion of a modular form at a cusp over R is an element of
R0((ab, S))⊗R0 R. In fact, q-expansions are constrained to lie in a smaller ring.
We record three standard facts below.

Proposition 1.16. The q-expansion of f at (a, b, j, ε) is independent of the
choice of S.

Proof. Let S1, S2 be two choices of S. Suppose

(ab)S2 ⊂ (ab)S1 .

Then the Tate HBAV computed using S1 is just a pullback of the Tate HBAV
computed using S2, via the natural inclusion Z[[ab;S2]] ⊂ Z[[ab;S1]]. Therefore,
the q-expansions computed using S1 are the same as those using S2.

The general result follows from choosing S3 such that

(ab)S3 ⊂ (ab)Si(i = 1, 2).
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Proposition 1.17 (Koecher principle). Suppose d > 1. Let f be a modular
form whose q-expansion at a cusp (a, b, j, ε) is∑

α∈ab

aα(f)qα.

Then aα = 0 unless α = 0 or α ∈ ab++.

Proof. See [16, Prop. 4.9].

Proposition 1.18. Let f be a modular form whose q-expansion at (a, b, j, ε) is∑
α∈ab

aα(f)qα,

and let v ∈ U be congruent to 1 (mod N). Then av2α(f) = (NE
Q
v)kaα(f) for all

α ∈ ab.

Proof. Consider the base change of Tatea,b(q) induced by the automorphism of
Z[[ab;S1]] sending q to qu. The result then follows from invariance of Hilbert
modular forms under base change.

1.5 Uniformization of HBAV’s

As described above, HBAV’s with split multiplicative reduction are pullbacks
of the Tate HBAV, just as is the case for elliptic curves.

We say a homomorphism q : ab → Gm(K) is positive if it takes ab++ to A.
Any such q yields a homomorphism

qa : b→ d−1a−1 ⊗Z Gm(K)

and, for suitably chosen S, a map of schemes

q̃ : SpecA→ SpecZ[[ab, S]].

Theorem 1.19 (Uniformization Theorem). Let X/K be a c-polarized H-
BAV with split multiplicative reduction over A. Then there exists a projective
rank 1 O-module a, a set of d linearly independent positive linear forms S, and
a positive homomorphism

qX : ab→ Gm(K)

(where b = ac−1) such that X/K is isomorphic (as a c-polarized HBAV) with
the pullback of Tatea,b(q) by q̃X . The choice of qX is unique up to multiplication
by squares of units of O.

This theorem follows from a more general theorem on abelian varieties with
split purely multiplicative reduction, proved independently by Mumford [14]
and Raynaud [18]. A thorough treatment of this theorem, and still more general
ones, can be found in the book of Faltings and Chai [5].
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Remark 1.20. If X is isomorphic to a pullback of a Tate HBAV Tatea,b(q) by
q̃X , as in the theorem, we will write

X ∼= (d−1a−1 ⊗Z Gm)/qX;a(b).

Corollary 1.21. Let X/K be an HBAV with multiplicative reduction, and let
X 0/A be the identity component of the Néron model of X. Then X 0 is a semi-
HBAV.

Proof. After passing to an étale extension, we may assume that X has split
multiplicative reduction. Then X is the pullback of Tatea,b(q) by some q̃X .
The pullback of T̃atea,b(q) by q̃X is then a semi-HBAV over A whose generic
fiber is X; such a semi-abelian variety is isomorphic to X 0 by [1, 7.4, Prop.
3].

Definition 1.22. Let X,X 0 be as above. A Néron differential on X is a non-
vanishing differential which is the restriction to K of a non-vanishing differential
on X 0/A. Likewise, a Néron N -level structure on X is an N -level structure
which is the restriction to K of an N -level structure on X 0/A.

Proposition 1.23. Suppose X/K is an HBAV such that

X ∼= (d−1a−1 ⊗Z Gm)/qX;a(b).

Suppose ω is a Néron non-vanishing differential on X and ι is a Néron N -level
structure on X. Then there exists a cusp (a, b, j, ε) over A such that ω = q̃∗Xω(j)
and ι = q̃∗Xι(ε).

Proof. The formal completion of X 0 over Spf(A) is isomorphic to that of d−1a−1⊗Z
Gm [14, §3]. So the N -level structures

ι : d−1 ⊗Z µN ↪→ X 0

are in bijection with maps

ι : d−1 ⊗Z µN ↪→ d−1a−1 ⊗Z Gm

(by [7, 5.4.1]), which are in turn classified by isomorphisms

ε : o/No
∼→ a/Na.

Likewise, [7, 5.1.6] yields an isomorphism

Lie(X 0/A) ∼= Lie(d−1a−1 ⊗Z Gm/A) = d−1a−1 ⊗Z A

which associates to every ω : Lie(X 0/A) ∼= d−1⊗ZA an isomorphism j : a⊗ZA ∼=
o⊗Z A such that ω = q̃∗Xω(j).

The power of the Uniformization Theorem is that it allows us to reduce many
questions about the geometry of HBAV’s to questions about the parameter qX .
In particular, we will see in Proposition 1.25 below that the question of whether
the n-torsion subscheme of X can be extended to a finite flat group scheme over
A can sometimes be answered immediately via knowledge of qX .
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Definition 1.24. Let

q : ab→ K∗

be a positive homomorphism. Then ord(q) is the element x ∈ (d−1a−1b−1)++

such that

ord(q(y)) = Tr(y · ord(q))

for all y in ab.

Note that if X/K is a c-polarized HBAV with split multiplicative reduction
over A, the quantity ord(qX) is defined up to multiplication by squares of units.

For the following proposition, note that, by [1, 7.3.6], the isogeny ν : X → X
extends uniquely to an isogeny ν : X → X . In particular, ν : X → X is flat.

Proposition 1.25. Let X/K be a c-polarized HBAV with multiplicative reduc-
tion over A. Let A′ be an etale extension of A, with fraction field K ′, such that
X ′ = X ×K K ′ has split multiplicative reduction. Write X ′ as

X ′ ∼= (d−1a−1 ⊗Z Gm)/qX′;a(b),

and let ν be an element of O such that

ord(qX′) ∈ νd−1a−1b−1.

Then X[ν]/K extends to a finite flat group scheme over A. In particular, let
X/A be the Néron model of X. Then the group scheme X [ν] is finite and flat
over A.

Proof. We follow closely the proof of Corollary 1.2.
Since ν is flat, only finiteness needs to be proved.
Let X ′/A′ be the Néron model of X ′. Since formation of Néron model

commutes with etale base change, X ′[ν] is isomorphic to X [ν]×AA′. Finiteness
satisfies fpqc descent; thus, if X ′[ν]/A′ is finite, so is X [ν]/A. So it suffices to
consider the case A = A′. Moreover, we may suppose the residue field k of A to
be separably closed.

Note that, by [12, 12.12], the generic fiber of X [ν] has degree N(ν)2 over
SpecK.

Let s be the closed point of SpecA, and let Xs,X 0
s be the special fibers of

X ,X 0. Recall that ν : X 0 → X 0 was produced in [14] as the algebrization of a
certain formal morphism; from that description, it follows that

X 0
s [ν] ∼= (d−1a−1 ⊗Z Gm)[ν],

and in particular X 0
s [ν] is a finite group scheme of degree Nν over s.

It follows from [5, III.8.2] that

Φ := Xs/X 0
s = d−1a−1/ord(qX)b (1.5.2)

By the functoriality of Mumford’s construction, (1.5.2) is an equality, not only
of groups, but of O-modules. In particular, Φ[ν] has order Nν.

The finiteness of X [ν] now follows exactly as in Corollary 1.2.
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2 Discriminantal sets of Hilbert modular forms

The main part of this paper has as its goal to derive information about ord(qX)
from the values of Hilbert modular forms, and thereby, via Proposition 1.25,
to obtain criteria guaranteeing that a torsion subscheme X[n]/K extends to a
finite flat group scheme over A.

2.1 Vertices and edges

In this section we collect some elementary results about the convex geometry of
subsets of projective rank 1 O-modules.

To begin with, let Λ ⊂ Rd be the image of an embedding Zd ↪→ R
d; that is,

Λ is a lattice in Rd. We denote by (Rd)++ the subset of Rd consisting of points
with all coordinates positive, and by Λ++ the intersection of Λ with (Rd)++.

For the following definitions, let S be a non-empty subset of Λ++.

Definition 2.1. An element α ∈ S is a vertex of S if there exists a linear form
L : Λ→ R such that

L(α) < L(α′),∀α′ ∈ S − {α} (2.1.3)

A form L satisfying (2.1.3) is said to be minimized at α.

Definition 2.2. A pair {α, β} of vertices of S is an edge if there exists a linear
form L : Λ→ R such that

L(α) = L(β)

and

L(α) ≤ L(α′),∀α′ ∈ S.

In this case, we say L is minimized at {α, β}.
A linear form L : Λ→ R is said to be positive if it maps Λ++ to R+.

Proposition 2.3. Every positive linear form L is minimized at either an edge
or a vertex.

Proof. Let α0 be an element of S. Define a subset R of (Rd)++ by

R = {x ∈ (Rd)++ : L(x) ≤ L(α0)}.

Let

yi = L(0, . . . , 1, . . . , 0),

where the 1 above is in the ith coordinate. Then R lies inside the region

{x = (x1, . . . , xd) : 0 ≤ xi ≤ y−1
i L(α0)}.
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So R is bounded, and since S ⊂ Λ is discrete, the set

S ∩R = {α ∈ S : L(α) ≤ L(α0)}

is finite. S ∩ R is also non-empty, by virtue of containing α0. In particular,
there is a unique non-empty finite subset {α1, . . . , αr} of S such that

L(αi) = L(αj),∀i, j

and

L(αi) < L(α),∀α ∈ S − {α1, . . . , αr}.

If r = 1, then α1 is a vertex of S. Suppose r > 1. Then by perturbing L
slightly to some L+ ε, one can arrange that, for some i,

(L+ ε)(αi) < (L+ ε)(α),∀α ∈ S − {αi}.

So αi is a vertex. Moreover, ε can be chosen so that L− ε is also minimized at a
vertex. Since ε(αi) < ε(αj) for all j 6= i, the vertex αj where L− ε is minimized
cannot be αi. Now {αi, αj} is the desired edge on which L is minimized.

We will now restrict to the case where Λ admits an action of O. Let a be a
projective rank 1 O-module and c a fractional ideal of O. Let b = ac−1. Then
ab is a lattice in ab⊗Z R.

If i is any fractional ideal of O, the real embeddings ρ1, . . . , ρd of E induce
an isomorphism

ρi : i⊗Z R→ R
d.

A trace form

Tr : i⊗Z R→ R

is obtained by composing the trace form on Rd (sum of coordinates) with ρi.
Likewise, a norm form

N : i⊗Z R→ R

is obtained from the norm form on Rd (product of coordinates.)
A linear form L : ab→ Rmay be thought of as an element xL of d−1a−1b−1⊗Z

R satisfying

L(α) = Tr(xLα).

A positive linear form corresponds to an element of (d−1a−1b−1 ⊗Z R)++.
Fix a finite-index subgroup V of U++, and let S be a subset of ab++ which is

stable under multiplication by V . The vertices and edges of such sets are rather
manageable, thanks to the boundedness statement below and its corollaries.
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Proposition 2.4. Let DV be the region

{x ∈ (d−1 ⊗Z R)++ : Tr(x) ≤ Tr(xu),∀u ∈ V }

and let A be a positive real number. Then the set

{x ∈ DV : N(x) ≤ A}

is bounded.

Proof. Since DV is invariant under multiplication by positive reals, it suffices
to prove that

D
(1)
V = {x ∈ DV : N(x) = 1}

is bounded.
Composing ρd−1 with the map

(x1, . . . , xd) 7→ (log |x1|, . . . , log |xd|)

yields an isomorphism

ψ : (d−1 ⊗Z R)++ → R
d

which induces a homeomorphism between the set of x in (d−1 ⊗Z R)++ with
N(x) = 1 and the hyperplane

H = {(x1, . . . , xd) ∈ Rd :
∑
i

xi = 0}.

If ψ(x) = (y1, . . . , yd), we have

Tr(x) =
∑
i

eyi

ψ(xu) = (y1 + log ρ1(u), . . . , yd + log ρd(u)),∀u ∈ V.

By Dirichlet’s Unit Theorem, the points

{λu = (log ρ1(u), . . . , log ρd(u)) : u ∈ V }

form a lattice in H, which we call ΛV .
Choose a real number M large enough so that the region

{(y1, . . . , yd) ∈ H : max yi ≤M} (2.1.4)

contains a fundamental domain for ΛV . Now suppose ψ(x) = (y1, . . . , yd) lies
outside the bounded region

{(y1, . . . , yd) ∈ H : max yi ≤M + log d}.

Then

Tr(x) > emax yi ≥ deM .

On the other hand, there exists u ∈ V such that h+λu lies inside (2.1.4), whence
Tr(xu) ≤ deM . We conclude that x 6∈ DV , which proves the proposition.
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Note that DV is a fundamental domain for the action of V on (d−1⊗ZR)++.

Corollary 2.5. Let α0 ∈ ab++ and A ∈ R+. There exist only finitely many
α ∈ ab++ such that

• N(α−1
0 α) ≤ A;

• There exists a linear form L satisfying

L(α0) ≤ L(α0u),∀u ∈ V
L(α) ≤ L(αu),∀u ∈ V.

Proof. The second condition says that the intersection

α−1
0 DV ∩ α−1DV ∈ (d−1a−1b−1 ⊗ R)++

is non-empty (by virtue of containing xL), which is to say that

α ∈ α0DV (DV )−1.

Adding the first condition, we have

α−1
0 α ∈ {x ∈ DV (DV )−1 : N(x) ≤ A}.

Let P be the set of all x in DV (DV )−1 with norm at most A. Every element
x ∈ P can be written as ry1y

−1
2 , where r ∈ (0, A] and y1, y2 ∈ D

(1)
V . By

Proposition 2.4, D(1)
V is bounded, whence so is P . Since ab++ is discrete, there

are only finitely many α in ab++ such that α−1
0 α lies in P . The desired result

follows.

Corollary 2.6. Let α0 be an element of (ab⊗ R)++. There exists A ∈ R such
that N(α−1

0 α) ≤ A for all vertices α of S.

Proof. Without loss of generality, assume α0 ∈ S.
By Proposition 2.4, the set

α−1
0 D

(1)
V ∈ d−1a−1b−1 ⊗ R

is bounded, and in particular L(α0) is bounded above by some constant C as L
ranges over α−1

0 D
(1)
V .

Now let α be a vertex of S, minimizing some linear form L. Since DV is a
fundamental domain for the action of V on (d−1 ⊗Z R)++, we can replace L by
Lu, for some u ∈ V , in such a way that xL ∈ α−1

0 DV .
Now, multiplying L by a positive real number, we may suppose xL ∈ α−1

0 (DV )(1).
We replace α with αu−1, so that α is still minimized at L.

Now L(α) ≤ L(α0) ≤ C. But now

C ≥ L(α) = Tr(xLα) ≥ dN(xLα)1/d = dN(α−1
0 α)1/d,

whence the desired result.
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Corollary 2.7. Let α0 be a vertex of S. Then there are only finitely many
edges of S containing α0.

Proof. Let {α0, α} be an edge minimizing a linear form L. Then the second
condition of Corollary 2.5 is met. By Corollary 2.6, the first condition is also
met (for some A depending only on α0.) Therefore, there are only finitely many
possibilities for α.

Corollary 2.8. The actions of V on the vertices and on the edges of S have
only finitely many orbits.

Proof. Fix α0 ∈ ab++, and choose a positive real numberA such that N(α−1
0 α) ≤

A for all vertices α of S. Now let α be a vertex of S. There exists u ∈ V such
that αu ∈ α0DV . But it follows from Proposition 2.4 that the set of x ∈ α0DV

such that N(α−1
0 x) ≤ A is bounded. So the set

T = {x ∈ ab++ ∪ α0DV : N(α−1
0 x) ≤ A}

is finite, and we have shown that every vertex α is in the V -orbit of an element
of T .

Moreover, every edge {α1, α2} is in the orbit of some edge of the form
{α′1, α′2}, with α′1 ∈ T . By Corollary 2.7, there are only finitely many such
edges. The desired statement on the edges of S follows.

Definition 2.9. Let S1, . . . , Sr be subsets of ab++ stable under V . A compati-
ble family for (S1, . . . , Sr) is an r-tuple (φ1, . . . , φr), where φi is either a vertex
or an edge of Si, and there exists a linear form L which is minimized on every
φi.

Proposition 2.10. Let S1, . . . , Sr be subsets of ab++ invariant under V . Then
the set of compatible families for (S1, . . . , Sr) is acted on by V , and this action
has only finitely many orbits.

Proof. The existence of the action is apparent.
By Corollary 2.8, there are only finitely many choices for φ1 up to the action

of V . Fix such a choice. By Corollary 2.6, there exist A2, . . . , Ar such that, if
αi is a vertex of Si, we have N(α−1

1 αi) ≤ Ai. Let α0 be a vertex contained in
φ1 (e. g. α0 = φ1 if φ1 is a vertex.) Similarly, let α be a vertex contained in φi.
It now follows from Corollary 2.5 that there are only finitely many choices for
α, whence only finitely many choices for φi. The proposition follows.

2.2 The main theorem

We maintain the definitions of a, b, c from the previous section. Let f be a c-cusp
form of level N , defined over an integral domain R. Let SpecR1, . . . ,SpecRm
be an open affine cover of SpecR such that each ring Rk admits an isomorphism

jk : a⊗Z Rk
∼→ o⊗Z Rk.
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Let

ε : o/No
∼→ a/Na

be an isomorphism.
Then f has a q-expansion at the cusp (a, b, jk, ε)/Rk of the form

f(Tatea,b(q), λcan, ω(jk), ι(ε)) =
∑

α∈(ab)++

ak;αq
α.

Define a set

Sa,ε(f) = {α ∈ ab++ : ak;α 6= 0}.

This set is evidently independent of the choice of k and jk. By Proposition 1.18,
Sa,ε(f) is invariant under the action of units of the form v2, where v ∈ U is
congruent to 1 mod N and NE

Q
(v) = 1. Such units form a subgroup V of finite

index in U++. Thus, the definitions and results in the previous section may be
applied to Sa,ε(f).

Definition 2.11. Let f,R, ε be as above. We say f has property (U) at (a, ε)
if ak;α ∈ R∗k for all k and all vertices α of Sa,ε(f).

Suppose φ is a vertex or edge of a set S ⊂ ab++, where a and b are defined
as in the previous section. Define

δ(φ) =
{
α φ is a vertex α
α− α′ φ is an edge {α, α′}

The ambiguity in sign in the latter case will not concern us.

Definition 2.12. Suppose (f1, . . . , fr) is an r-tuple of c-cusp forms such that
the following properties hold.

• fm has property (U) at (a, ε), for all m in {1 . . . r}.

• Suppose (φ1, . . . , φr) is a compatible family for (Sa,ε(f1), . . . , Sa,ε(fr)).
Then the values (δ(φ1), . . . , δ(φr)) generate ab⊗Z Q as a Q-vector space.

Then we say {f1, . . . , fr} is a discriminantal set of cusp forms at (a, ε). If
{f1, . . . , fr} is a discriminantal set for every choice of a and ε, we say simply
that {f1, . . . , fr} is a discriminantal set of cusp forms.

Remark 2.13. To check whether a given {f1, . . . , fr} is a discriminantal set is
a finite computation, since by Proposition 2.10 there are only finitely many V -
orbits of compatible families for (Sa,ε(f1), . . . , Sa,ε(fr)). (Here V is chosen so
that multiplication by u ∈ V stabilizes Sa,ε(fi) for all i.)
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We are now ready for our main results.
Let {f1, . . . , fr} be an arbitrary set of modular forms. For each compatible

family φ = (φ1, . . . , φr) for (Sa,ε(f1), . . . , Sa,ε(fr)), we can define

Mφ =
⊕
i

Zδ(φi) ⊂ ab.

Let M∨φ ⊃ d−1a−1b−1 be the Z-dual of Mφ.

Theorem 2.14. Let {f1, . . . , fr} be a set of c-Hilbert modular forms of level N
over an integral domain R. Suppose

• A is a complete dvr with an R-algebra structure and fraction field K;

• (a, b, j, ε) is a cusp over A;

• q : ab→ Gm(K) is a positive homomorphism.

Let X/K be the HBAV

(d−1a−1 ⊗Z Gm)/qa(b),

and let n be a rational integer such that

n|ord(fi(X,λcan, ω(j), ι(ε)))

for all i ∈ 1, . . . , r. Then

ord(q) ∈ nM∨φ

for some compatible family φ for (Sa,ε(f1), . . . , Sa,ε(fr)).

Proof. Choose one of the Rk such that the image of SpecA in SpecR lies in
SpecRk. Without loss of generality, suppose R = Rk.

We have

fi(X,λcan, ω(j), ι(ε)) =
∑

α∈Sa,ε(fi)

aαq(α)

where the Fourier coefficients aα are understood to be base changed from R to
A.

Let L : ab → Z be the positive linear form such that xL = ord(q). Let φi
be a vertex or edge of Sa,ε(fi) minimizing L; then (φ1, . . . , φr) is a compatible
family for (Sa,ε(f1), . . . , Sa,ε(fr)).

Suppose φi is a vertex. Then ord(aφi) = 0, by property (U), and

ord(q(φi)) = L(φi) < L(α) = ord(q(α))

for all α ∈ Sa,ε(fi)− {φi}. So

ord(fi(X,λcan, ω(j), ι(ε))) = L(φi) = L(δ(φi)).
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Now suppose φi is an edge {α, α′}. Then L(α) = L(α′), and we have
L(δ(φi)) = 0.

We have shown that n|L(δ(φi)) for all i. Therefore, n|Tr(α · ord(q)) for all
α ∈Mφ. The proposition follows.

Corollary 2.15. Let {f1, . . . , fr} be a discriminantal set of c-Hilbert modular
forms over level N over an integral domain R. Then there exists an integer
m{fi} such that, for every choice of A,n, q,X as above,

ord(q) ∈ n′d−1a−1b−1

where n′ is the numerator of n/m{fi} expressed in lowest terms.

Proof. Since {f1, . . . , fr} is discriminantal, every Mφ is a finite-index subgroup
of ab. So we can choose m{fi} such that

m{fi}ab ⊂Mφ

for each compatible family φ. The result then follows immediately from Theo-
rem 2.14.

The following corollary is an HBAV analogue of Corollary 1.2.

Corollary 2.16. Let {f1, . . . , fr} be a discriminantal set of c-Hilbert modular
forms of level N over an integral domain R. Suppose

• A is a complete dvr with an R-algebra structure and fraction field K;

• X/K is an HBAV with multiplicative reduction over A, endowed with a c-
polarization λ, a Néron non-vanishing differential ω, and a Néron N -level
structure ι.

Let n be an integer such that

n|ord(fi(X,λ, ω, ι))

for all i ∈ 1, . . . , r, and let n′ be the numerator of n/m{fi}, expressed in lowest
terms. Then the group scheme X[n′]/K extends to a finite flat group scheme
over A.

Proof. First of all, after an etale extension we may assume the reduction to be
split multiplicative.

Now, by Theorem 1.19, we have

X ∼= (d−1a−1 ⊗Z Gm)/qX;a(b),

as c-polarized HBAV’s, for some positive homomorphism qX and some choice of
a, b with b = ac−1. By Proposition 1.23, there is a cusp (a, b, j, ε) over A such
that ι = ι(ε) and ω = ω(j).

We are now in the situation of Corollary 2.15. The desired result follows
from Proposition 1.25.
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Remark 2.17. For any particular O and f1, . . . , fr, one can carry out a finer
analysis. If the compatible family at which the linear form Tr(α · ord(qX)) is
minimized is known, then the ideal ord(qX)O can be calculated exactly in terms
of the values of the ord(fi). Since there are, up to units, only finitely many pos-
sibilities for the compatible family, there are only finitely many possibilities for
ord(qX)O given the values ord(fi). We will give examples of such computations
in section 2.4.

2.3 Existence of discriminantal sets

Since ab⊗ZQ is a Q-vector space of dimension d, a discriminantal set must con-
tain at least d modular forms. In this section we will show that a discriminantal
set of this cardinality actually exists.

We begin by recalling some facts about HBAV’s over C. A lattice L in
E ⊗Q C is a locally free rank 2 O-submodule, and a c-polarization for L is an
isomorphism

Λ : ∧2
OL

∼→ d−1c−1

which is positive in the following sense: there is an A ∈ (E ⊗Q R)++ such that

Λ(u, v) = Im(ūv)/A.

There is a bijective correspondence between c-polarized lattices (L,Λ) ∈
E⊗QC and triples (X/C, λ, ω), where X is an HBAV, λ a c-polarization, and ω a
non-vanishing differential [10, (1.4.6)]. An N -level structure ι on X corresponds
to an injection

I : (1/N)d−1/d−1 ↪→ (1/N)L/L.

Now let f be a modular form in Mk
O(c, 1;C), and let ν be a totally positive

element of O. Suppose (L,Λ, I) is a c-polarized lattice with N -level structure,
ν|N . Choose `′ in the image of I such that ν`′ = 0. Let L′ be the lattice
generated by L and `′; note that L′ is independent of the choice of `′. Then
extending Λ by bilinearity yields a c-polarization Λ′ for L′. Now define a function
Bνf on the space of c-polarized lattices with N -level structure by the rule

Bνf(L,Λ, I) = ν−kf(L′,Λ′).

Then Bνf lies in Mk
O(c, N ;C) by [10, (1.6.3)]. If the q-expansion of f at a cusp

(a, b, j, ε1) is

a0 +
∑

α∈(ab)++

aαq
α,

it follows from [10, (1.7.6)] that the q-expansion of Bνf at (a, b, j, ε) is

a0 +
∑

α∈(ab)++

aαq
να

23



for any choice of ε.
Suppose f is in Mk

O(c, 1;R), where R is a ring with an injection R ↪→ C.
Then we can define Bνf as a modular form over C, which then descends to
Mk
O(c, N ;R) by the q-expansion principle [10, (1.2.16)].
Note that Bνf has property (U) if and only if f does, and Sa,ε(Bνf) =

νSa,ε1(f) for all a, ε.

Theorem 2.18. Let c be a fractional ideal of O. Then there exists an integer
m, a c-cusp form f of level 1, and a d-tuple (ν1, . . . , νd) of elements of O++ such
that (Bν1f, . . . , Bνdf) is a discriminantal set of modular forms over Z[1/m].

Proof. First, there exists a c-cusp form f of level 1 defined over Z. This follows,
for instance, from [23, IV,4.4].

Let {f1, . . . , fr}, r < d, be a set of modular forms such that

(P) for each choice of (a, ε), and for each compatible family (φ1, . . . , φr) for
(Sa,ε(f1), . . . , Sa,ε(fr)), the values (δ(φ1) . . . δ(φr)) are linearly indepen-
dent over Q.

Note that a set of d modular forms with property (P) and property (U) is a
discriminantal set.

Let V be a finite-index subgroup of U++ under which Sa,ε(fi) is invariant
for all a, ε, and i. Let DV ∈ (d−1 ⊗Z R)++ ∼→ (E ⊗Z R)++ be the be the region
defined in Proposition 2.4. We wil show there is some ν in DV ∩O++ such that
(f1, . . . , fr, Bνf1) satifies (P ).

Suppose ν is an element of DV ∩O++ such that {f1, . . . , fr, Bνf1} does not
satisfy (P). Then there exists a compatible family {φ1, . . . , φr, ψ} for some

(Sa,ε(f1), . . . , Sa,ε(fr), Sa,ε(Bνf1))

such that the values (δ(φ1), . . . , δ(φr), ψ) are not linearly independent over Q.
Let β be a vertex belonging to ψ, and for each i let αi be a vertex belonging

to φi. Since ψ and φ1 simultaneously minimize some linear form, we know as
in the proof of Corollary 2.5 that

β ∈ α1(DV )−1DV .

We have shown above that Sa,ε(Bνf1) = νSa,ε(f1). In particular, ψ = νφ′1
for some vertex or edge φ′1 of Sa,ε(f1). Let α′1 be the vertex belonging to φ′1
such that β = να′1. Then

α′1 = βν−1 ∈ α1(DV )−1DV (DV )−1.

Now, by assumption, δ(ψ) = νδ(φ′1) lies in the Q-vector space spanned by
{δ(φ1) . . . δ(φr)}. Equivalently, ν lies in theQ-vector spaceW ⊂ O⊗ZQ spanned
by

{δ(φ1)δ(φ′1)−1 . . . δ(φr)δ(φ′1)−1}.
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We have shown in Proposition 2.10 that there are only finitely many choices,
up to the action of V , for (φ1, . . . , φr). Suppose such a choice is fixed. Let
A ∈ R be chosen such that N(α−1

1 α) ≤ A for all vertices α of Sa,ε(f1). By
Proposition 2.4,

{x ∈ (DV )−1DV (DV )−1 : N(α−1x) < A}

is bounded; therefore, there are only finitely many choices for α′1, whence only
finitely many choices for φ′1. There are also only finitely many choices for ε and
the isomorphism class of a. Putting this all together, we have found that the set
of ν for which (f1, . . . , fr, Bνf1) does not have property (P) is the intersection
of DV ∩ O++ with a finite union of subspaces of O ⊗Z Q of dimension i < d.
Thus we can choose ν such that {f1, . . . , fr, Bνf1} satisfies (P), as claimed.

Now proceed by induction. Evidently the set consisting solely of f satisfies
(P), so we can produce a set of d cusp forms satisfying (P), defined over Z.
By passing to some Z[1/m], we can ensure that f1, whence every Bνf1, has
property (U). We have now produced the desired discriminantal set of modular
forms.

2.4 Examples

In this section, we will consider the special cases O = Z[ 1+
√

5
2 ] and O = Z[

√
2].

In each case, we give an explicit discriminantal set of modular forms of level 1.
The following proposition, a more explicit form of Corollary 2.6 in case d = 2,
will be useful in the computations to follow.

Proposition 2.19. Let O be the ring of integers of a real quadratic field. Let
a be a projective rank 1 O-module, c a fractional ideal of O, and let b = ac−1.
Finally, let S ⊂ ab++ be invariant under the action of V , a finite-index subgroup
of U++ generated by v.

Let α0 be an element of S, and let α be a vertex of S. Then

N(α−1
0 α) < (1/4)(2 + Tr(v)).

Proof. Let ρ1, ρ2 be the two embeddings of O into R. Without loss of generality,
suppose

ρ2(v) > 1 > ρ1(v).

Any element β of (ab⊗Z Q)++ can be written uniquely as

β = x1 + x2v
−1,

with x1, x2 ∈ Q. We know that

ρ2(v)/ρ1(v) > 1
ρ2(1)/ρ1(1) = 1

ρ2(v−1)/ρ1(v−1) < 1.
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So ρ2(β)/ρ1(β) < 1 if and only if x2 is positive. Likewise, ρ2(vβ)/ρ1(vβ) > 1
if and only if x1 is positive.

Now let βn = vnα−1
0 α. For large n, we have ρ2(βn)/ρ1(βn) > 1, while for

small n, the opposite is the case. So we may choose n such that

ρ2(βn)/ρ1(βn) < 1 < ρ2(βn+1)/ρ1(βn+1). (2.4.5)

Now write

βn = x1 + x2v
−1;

by (2.4.5), x1 and x2 are positive. Now if x1 + x2 > 1, then α0βn = vnα is
in the interior of the positive half-plane bounded by the line through α0 and
v−1α0, and thus cannot be a vertex.

We conclude that

βn = x1 + x2v
−1, x1, x2 ∈ Q>0, x1 + x2 ≤ 1;

the maximal norm on this region is (1/4)(2 + Tr(v)), attained when x1 = x2 =
1/2.

Now let O = Z[ 1+
√

5
2 ], and let c = d. Recall from Example 1.11 the cusp

forms χ6 and χ12, defined over Z, of level 1.

Proposition 2.20. {χ6, χ12} is a discriminantal set of Hilbert modular forms
over Z, with m{χ6,χ12} = 2.

Proof. Since the class group of O is trivial, we may set a = o and b = d−1.
Since the level of both forms is 1, we may set ε = ε1. We therefore suppress
subscripts and write S(χi) for Sa,ε(χi). Finally, take j to be the identity map
on o. The q-expansions of χ6 and χ12 can be

The computation of the q-expansions of χ6 and χ12 at (o, d−1, j, ε1) is s-
traightforward. First of all, it suffices to compute the Fourier expansions of χ6

and χ12 as holomorphic Hilbert modular forms [10, (1.7.6)]. Then one can use
either the well-known expressions of χ6 and χ12 in terms of Eisenstein series or
the method of Resnikoff [19] to compute these Fourier coefficients. One finds
that

χ6 = q
1
2−
√

5
10 + q

1
2 +
√

5
10 + q1− 2

√
5

5 + 20q1−
√

5
5

−90q + 20q1+
√

5
5 + q1+ 2

√
5

5 + . . .

and

χ12 = q + . . . ,

where in each case the terms aαqα) with Tr(α) > 2 are omitted.
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Since both forms have even weight, S(fi) is invariant under all of U2 = U++

by Proposition 1.18. This group is generated by u = 3+
√

5
2 .

It follows from Proposition 2.19 that every vertex of S(χ6) is an element
of (1/2 −

√
5/10)U++. Similarly, every vertex of S(χ12) lies in U++. From

there, it is a simple matter to verify that the compatible families (φ1, φ2) for
(S(χ6), S(χ12)) split into the following four orbits under U++:

(1/2−
√

5/10, 1)
(1/2−

√
5/10, 3/2−

√
5/2)

(1/2−
√

5/10, {1, 3/2−
√

5/2})
({1/2−

√
5/10, 1/2 +

√
5/10}, 1)

Each of these families constitutes a Q-basis for Q[
√

5]. By inspection of the q-
expansions above, χ6 and χ12 have property (U). So {χ6, χ12} is a discriminantal
set. Since the Z-span of δ(φ1) and δ(φ2) contains 2d−1 for each family above,
we have mχ6,χ12 = 2.

Corollary 2.21. Let X/K be a c-polarized HBAV with real multiplication by
O = Z[1+

√
5

2 ] and multiplicative reduction, λ its polarization, and ω a Néron
non-vanishing differential. Let n be an integer such that

n | ord(χ6(X,λ, ω, ι1))
n | ord(χ12(X,λ, ω, ι1)).

Then the group scheme X[n′]/K extends to a finite flat group scheme over A,
where n′ is the numerator of n/2 expressed in lowest terms.

Proof. Immediate from Proposition 2.20 and Corollary 2.16.

Proposition 2.22. Let X,λ, ω be as in Corollary 2.21, and set

• n6 = ord(χ6(X,λ, ω, ι1));

• n12 = ord(χ12(X,λ, ω, ι1)).

Suppose furthermore that X has split multiplicative reduction, so that X is uni-
formized as

X ∼= (d−1 ⊗Z Gm)/qX;o(d−1).

Then ord(qX) is one of the values

−
√

5n6 + [(1 +
√

5)/2]n12,√
5n6 + [(1−

√
5)/2]n12,[

(5 +
√

5)/4
]
n6,

(1/2)n12

up to multiplication by a totally positive unit.
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Proof. We divide the proposition into three cases. Let L : d−1 → Z be the
linear form such that L(α) = Tr(ord(qX)α).

Case 1: ord(qX) is a rational integer, up to multiplication by a totally positive
unit.

Without loss of generality, we may take ord(qX) to be a rational integer
m. It follows that L is minimized at the vertex α = 1 of S(χ12). So

n12 = ord(χ12(X,λ, ω, ι1)) = Tr(ord(qX)) = 2m.

Case 2: ord(qX) = (5
2 +

√
5

2 )mu, where m is a rational integer and u is a totally
positive unit.

Again, we may assume ord(qX) = ( 5
2 +

√
5

2 )m. Then L is minimized at
the vertex 1

2 −
√

5
10 of S(χ6). So

n6 = ord(χ6(X,λ, ω, ι1)) = Tr

((
1
2
−
√

5
10

)(
5
2

+
√

5
2

)
m

)
= 2m.

Case 3: Neither Case 1 nor Case 2 obtains.

One then checks that L is not minimized on any edge of S(χ6) or S(χ12).
Thus, L is minimized on some vertex α6 of S(χ6) and on some vertex α12 of
S(χ12). By the list of compatible families for (S(χ6), S(χ12)) given in the
proof of Proposition 2.20, this implies that, after modification by a totally
positive unit, (α6, α12) is either (1/2 −

√
5/10, 1) or (1/2 −

√
5/10, 3/2 −√

5/2). Suppose (α6, α12) = (1/2−
√

5/10, 1). We then have

n6 = ord(χ6(X,λ, ω, ι1)) = Tr

((
1
2
−
√

5
10

)
· ord(qX)

)
n12 = ord(χ12(X,λ, ω, ι1)) = Tr(ord(qX)).

It follows that

ord(qX) = −
√

5n6 + [(1 +
√

5)/2]n12.

Observe that (1/2−
√

5/10, 3/2−
√

5/2) differs by a totally positive unit
from (1/2 +

√
5/10, 1). Assuming that (α6, α12) = (1/2 +

√
5/10, 1) then

yields

ord(qX) =
√

5n6 + [(1−
√

5)/2]n12.

The desired result is now proven.

Example 2.23. Let X/Q be the Jacobian of the genus 2 curve

C : y2 = f(x) = (x3 − 4x2 − 3x− 1)(x3 + x+ 3).
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Then X is an HBAV with real multiplication by Z[1+
√

5
2 ], since it is the special-

ization to b = −4, c = −2, d = −1 of Brumer’s family (1.2.2). The only primes
dividing the discriminant of f are 2, 13 and 19, so X has good reduction away
from these primes.

The reduction of the given model of C at 13 is the stable curve

y2 = (x− 2)2(x− 4)2(x− 9)2,

so X has semistable reduction at 13. We can compute the values of the Hilbert
modular forms χ6 and χ12 at X as follows. First, we use Igusa’s formulas in
[9] to compute the values of Siegel modular functions in terms of the projective
invariants of the sextic f . Then, we use Resnikoff’s calculations in [19] to
compute the values of Hilbert modular functions of weight 0. (Note that in the
weight 0 case, we need not specify a choice of ω.) We find

χ6φ
−3
2 (X,λ) = 5 · 132 · 19 · 79−3

χ12φ
−6
2 (X,λ) = 2 · 135 · 192 · 79−6

where φ2 is the modular form over Z described in Example 1.11, and λ is the
unique polarization (up to isomorphism) on X. One can compute that every
q-expansion of φ2 has nonzero constant coefficient [19]; thus,

ord13(φ2(X,λ, ω, ι1)) = 0

for every Néron non-vanishing differential on X. So

ord13(χ6(X,λ, ω, ι1)) = 2
ord13(χ12(X,λ, ω, ι1)) = 5.

Let qX be the Tate parameter of X/Z13. It follows from Proposition 2.22
that

ord13(qX) = (5 +
√

5)/2. (2.4.6)

The model

C ′ : y2 + y(x3 + x+ 1) = −x5 − x4 − x3 − 4x2 − 3x− 1

for C is smooth over Z2, so X has good reduction at 2. Also, one observes that
X is semistable at 19.

Suppose the Galois representation on X[
√

5]

ρ : Gal(Q̄/Q)→ GL2(F5)

is irreducible. Then, by [21, Th. 4.2], X is modular. There is a unique modular
form f of weight 2 and level 13 · 19 = 247 whose Fourier coefficients are defined
overQ[

√
5]1; therefore, X is isogenous to the corresponding factorXf of J0(247).

1This can be seen from the tables of Fourier coefficients recently produced by William
Stein, available at http://www.math.berkeley.edu/~was.
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Moreover, it follows from (2.4.6) that ρ is unramified at 13; thus, ρ has conductor
19. So ρ must be the Galois representation associated to g, where g is the unique
cuspform of weight 2 and level 19. But one observes by comparing Fourier
coefficients that f and g are not congruent mod 5. Therefore, ρ is reducible,
which is to say that X[

√
5] possesses a rational cyclic subgroup of order 5. By

counting points over finite fields we can verify that the semisimplification of
ρ is the direct product of the trivial character with the cyclotomic character;
in other words, either X or an HBAV

√
5-isogenous to X contains a rational√

5-torsion point.

Now suppose O = Z[
√

2]. Once again, the narrow class group is trivial, so
we may set c = d. There are d-cusp forms over C of level 1 and weights 4 and 6
([8]), which were shown by Nagaoka [15] to descend to forms χ4 and χ6 over Z.

Proposition 2.24. {χ4, χ6} is a discriminantal set of modular forms over Z,
with m{χ4,χ6} = 2.

Proof. As in the proof of Proposition 2.20, we may set a = o, b = d−1, j = id,
and ε = ε1, and refer simply to S(χ4) and S(χ6). Müller [13] gave expressions for
χ4 and χ6 in terms of theta functions, from which we can derive the q-expansions
at (a, b, j, ε)

χ4 = q1/2−
√

2/4 − 2q1/2 + q1/2−
√

2/4

− 4q1−
√

2/2 − 8q1−
√

2/4 + 24q − 8q1+
√

2/4 − 4q1+
√

2/2 + . . .

χ6 = q1/2 + 2q1−
√

2/2 − 176q1−
√

2/4 − 684q − 176q1+
√

2/4 + 2q1+
√

2/2 + . . .

The omitted terms are of the form aαq
α with Tr(α) > 2.

Both S(χ4) and S(χ6) are invariant under the action of U++, by Proposi-
tion 1.18. It follows from Proposition 2.19 that the vertices and edge-elements of
S(χ4) are the elements of (1/2−

√
2/4)U++, and the vertices and edge-elements

of S(χ6) the elements of (1/2)U++. It is then immediate that χ4 and χ6 have
property (U). The compatible families (φ1, φ2) for (S(χ4), S(χ6)) split into the
following four orbits under the action of U++;

(1/2−
√

2/4, 1/2)
(1/2−

√
2/4, 3/2−

√
2)

(1/2−
√

2/4, {3/2−
√

2, 1/2})
({1/2−

√
2/4, 1/2 +

√
2/4}, 1/2)

In each case, (δ(φ1), δ(φ2)) is a Q-basis for d−1⊗ZQ, and the Z-span of δ(φ1)
and δ(φ2) contains 2d−1.

Corollary 2.25. Let X/K be a c-polarized HBAV with real multiplication by
O and multiplicative reduction, λ its polarization, and ω a Néron non-vanishing
differential. Let n be an integer such that

n | ord(χ4(X,λ, ω, ι1))
n | ord(χ6(X,λ, ω, ι1)).
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Then the group scheme X[n′]/K extends to a finite flat group scheme over A,
where n′ is the numerator of n/2 expressed in lowest terms.

Proof. Immediate from Proposition 2.24 and Corollary 2.16.

From our description of the compatible families for {χ4, χ6}, we produce an
analogue of Proposition 2.22.

Proposition 2.26. Let X,K, λ, ω′ be as above, and let

• n4|ord(χ4(X,λ, ω′, ι1))

• n6|ord(χ6(X,λ, ω′, ι1)).

Then ord(qX) is one of the values

−
√

2n4 + (1 +
√

2)n6,

(4 + 3
√

2)n4 + (−1−
√

2)n6,

(2 +
√

2)n4,
n6

up to multiplication by a totally positive unit.

Proof. The proof is a computation exactly analogous to that in Proposition 2.22.
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