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Abstract. We show that the number of rational points of height ≤ H on a
non-rational plane curve of degree d is Od(H2/d−δ), for some δ > 0 depending

only on d. The implicit constant depends only on d. This improves a result

of Heath-Brown, who proved the bound Oε(H2/d+ε). We also show that one
can take δ = 1/450 in the case d = 3.
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1. Introduction

Let P = [x0 : . . . : xk] be a point of Pk(Q), where x0, . . . , xk are integers with
no common factor. The height of P , denoted H(P ), is defined to be max0≤i≤k |xi|.
The aim of this paper is to prove the following upper bound for the number of
points of bounded height on a non-rational projective curve.

Theorem 1. Let C be an irreducible curve in P2 of geometric genus at least 1 and
degree d. Then there are constants δ = δ(d) and c = c(d) such that there are at
most c(d)H2/d−δ points on C(Q) of height ≤ H.

Recall that the geometric genus of C is the genus of its normalization, and so
a birational invariant; in particular, note that there is no requirement that C be
smooth. We remark that, by a projection argument due to Heath-Brown [9], a
similar bound on curves in Pm can be derived from Theorem 1.
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2 J. ELLENBERG AND A. VENKATESH

The constant δ(d) is completely effective but rather tedious to compute. We will
show that when d = 3, one can take δ(3) = 1

450 . 1

For an individual curve, this theorem is of course weaker than the results of
Mordell (in genus 1) and Faltings (for higher genus). The content of the result lies
in its uniformity in families of plane curves.

Theorem 1 improves, for non-rational curves, on a previous uniform result of
Heath-Brown [9], which yields an exponent of 2/d. The methods used in [9] (or the
work of Bombieri-Pila, [4]) are insensitive to the genus of the curve. For instance,
these methods do not distinguish between the curves y2 = xd and y2 = xd + D,
although we expect far fewer rational points on the latter. The bound H2/d of
Heath-Brown, [9] is in fact sharp for rational curves. We improve the exponent by
means of the geometry of higher-genus curves and especially their Jacobians, a tool
not available for rational curves.

Let us briefly compare our result to what the usual methods can obtain. The
bounds obtained by invoking the Mordell-Weil lattice of a Jacobian depend expo-
nentially on that rank, and are also sensitive to the existence of points of small
height; see e.g. [7] where uniform results are obtained under the circumstance that
these two issues can be controlled. The main point of this paper is the observation
that (a refinement of the) techniques of [9], together with a descent argument on
the Mordell-Weil lattice, suffice to control this problem.

A very interesting problem is to give an analogue of Theorem 1 for integral points.
Here one would aim to improve the exponent 1/d obtained by Bombieri-Pila [4].
The method of this paper does not apply directly, as one cannot obtain a sufficiently
strong version of Prop. 1 for integral points, cf. Remark 2.

Finally, Heath-Brown has informed us that he obtained a similar result for
smooth cubic curves. His methods are apparently similar to those of the present
paper.

Acknowledgements: We have benefited from conversations with A. J. de Jong.
We also thank Brian Conrad, Davesh Maulik and Jason Starr, who took the time to
answer a great many of our algebro-geometric questions, and Tim Browning who
made several comments on a draft of this paper. The second author would like
to thank D.R. Heath-Brown and T. Browning for generously discussing their ideas
and methods during his visit to Oxford.

2. Bounds with good dependence on ‖f‖

2.1. Notation. Let m ≥ 1, and endow Rm with the usual inner product in which
the coordinate vectors form an orthonormal basis. Let N ⊂ Zm be a subgroup of
rank p. The inner product on Rm induces an inner product 〈·, ·〉p on ∧pRm; on the
other hand ∧pN is a free Z-module of rank 1. Choose ηp to be a generator. We
define the height of N by the rule ht(N) := 〈ηp, ηp〉p. It is evident that ht(N) is an
integer. It is the square of the volume of the flat torus N ⊗R/N , where the metric
on the torus arises from the restriction of the inner product on Rm.

Put N⊥ = {λ ∈ Zm : 〈λ,N〉 = 0}. Then ht(N⊥)|ht(N), with equality if N is
“saturated,” i.e. RN ∩ Zm = N .

1Although one can probably improve this value considerably (we suggest several methods for
doing so), it seems that δ(d) will decrease very rapidly in d. The limiting factor is giving a good

bound on the rank of the Jacobian.
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Now, for n ≥ 1, set R = Z[x1, . . . , xn+2]. Let B[l] be the set of monomials of
degree l, and let R[l] be the Z-span of B[l]; thus R = ⊕∞l=0R[l]. B[l] is a Z-basis for
R[l]; in particular there is an isomorphism ZB[l] → R[l], and a unique inner product
on R[l] making B[l] an orthonormal basis. This yields an isomorphism ZB[l] → R[l]∗

(the dual of R[l]), and also allows us to speak of the height of a subgroup N ⊂ R[l].
We shall denote the norm and inner product as ‖ · ‖ and 〈·, ·〉, respectively. Thus
for f ∈ R[l] the quantity ‖f‖ can be thought of as a measure of the “size” of f .

2.2. Bounding the number of points. The projective scheme Proj(R) defined
by R is just n+1-dimensional projective space Pn+1. It carries a natural line bundle
O(1), and the global sections Γ(Pn+1,O(M)) are naturally identified with R[M ].

Let f ∈ R[d] be irreducible. Let Zf ⊂ Pn+1 be the n-dimensional zero-locus of
f . We shall prove the following refinement of Theorems 3 and 4 of [9]. (It also
implies a corresponding refinement of the results of [4]: see Remark 2.)

Proposition 1. The Q-points on Zf of height ≤ H are contained in at most

(H
n+1
d1/n · ‖f‖−d−1−1/n

+ 1)Hε divisors of degree Oε,d,n(1).

We briefly give the approximate idea of the proof. One might proceed very
naively as follows: if there are enough rational points of Zf of low height, one can
hope to recover f by interpolation. If there were too many points of low height, this
interpolated form would have size smaller than ‖f‖, a contradiction. To implement
this vague idea, one needs one further idea (present in different language in [9]):
it is most efficient to first choose a “cluster” of rational points that are p-adically
close, for some appropriate prime p, and then use these to interpolate f . These
ideas motivate the formal proof below.

Proof. In what follows, it is useful to think of M as “big.” The implicit constants
in the symbols �,� will depend on M , n and and d. The proof follows the ideas
of Heath-Brown [9], the extra ingredient being to keep track of the height of certain
lattices.

Let Zsing ⊂ Zf be the singular locus of f ; this being a divisor, it suffices to show
the claimed result for the points of Zf − Zsing. Let ΛM ⊂ R[M ] be the subgroup
consisting of functions vanishing on Zf . Then ΛM = f ·R[M − d]. Set γ = |B[M ]|
and δ = |B[M ]| − |B[M − d]|. It is easy to check that

(1) γ ∼ Mn+1

(n+ 1)!
, δ ∼ dMn

n!
,

where the symbol ∼ should be understood as meaning that the ratio of the two
quantities approaches 1 as M →∞.

A compactness argument yields

(2) ht(ΛM ) �M,d ‖f‖2|B[M−d]|

(The function f 7→ ht(f.R[M − d]) extends to a continuous function on the real
vector space R[d]⊗R; indeed, ht(f.R[M−d]) is a polynomial, homogeneous of order
2|B[M − d]|, in the coefficients of f . This polynomial is nonvanishing away from
f = 0, because any nonzero f is not a zero-divisor. Therefore, ht(f.R[M − d]) ≥
C‖f‖2|B[M−d]|, where C is defined to be the infimum of ht(f.R[M − d]) taken over
‖f‖ = 1; the continuity of f and compactness of the sphere guarantee that C > 0.)
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We say a subset T ⊂ Zf (C) is in M -general position if any polynomial g ∈
R[M ] ⊗ C that vanishes on T in fact vanishes on Zf . For such T , the set of
polynomials in R[M ] that vanish on all points on T is precisely ΛM .

In the discussion that follows let c1, c2, c3 be constants depending only on d, n
and M . We claim that there is c1 > 0 so that, if X ≥ c1(1 + log ‖f‖ + log(H)),
then one may choose a set P of primes such that

(i) P ⊂ [X, 2X].
(ii) |P| ≤ c1(1 + log ‖f‖+ log(H)).
(iii) For any point x ∈ Zf (Q)−Zsing(Q) of height ≤ H, there exists p ∈ P such

that ∇f(x̃) 6≡ 0 (mod p). Here x̃ is a primitive integral representative for x,
and ∇f := ( ∂f

∂x1
, . . . , ∂f

∂xn+2
).

(iv) Any p ∈ P does not divide ht(ΛM ).

Indeed: first note that there is is a constant c2 so that, for any x as in (iii), all
coordinates of ∇f(x̃) are bounded above by c2‖f‖Hd−1. Next, there is c3 such that
ht(ΛM ) ≤ c3‖f‖2(γ−δ). It is then easy to see that, if Q is a set of primes satisfying

(3)
∏
q∈Q

q ≥ (c2‖f‖Hd−1) · c3‖f‖2(γ−δ),

then taking P to be {q ∈ Q : (q,ht(ΛM )) = 1} will satisfy the conclusions (iii)
and (iv) above. Noting that log(

∏
X≤p≤2X p) � X, we easily deduce the claimed

assertion.
For each (p ∈ P, x ∈ Zf (Fp)) satisfying the conditions of (iii) above, i.e. that

∇f(x) 6= 0, we consider the subset Sp,x of elements in Zf (Q) of height ≤ H that
reduce to x mod p. By (i) above and the well-known bound |Zf (Fp)| �d p

n, there
are at most O(Xn|P|) such subsets and by (iii) above the sets Sp,x cover all points
of Zf − Zsing of height ≤ H.

Choose any such (p, x) and set S ≡ Sp,x. If S is not in M -general position, it
follows that the image of S under the projective embedding of Zf corresponding
to O(M) lies in a proper hyperplane. The irreducibility of Zf guarantees that this
hyperplane section does not contain a component of Zf . It follows that either S is
contained in a proper divisor on Zf of degree ≤Md, or S is in M -general position.

Assume then that we are in the latter case. We will eventually show that if
we choose X large enough (see (6)) this cannot happen. In any case, choosing a
primitive integral representative for each point in S, we observe that each point in
S gives a linear functional (evaluation at the chosen representative) on R[M ], so we
can regard S as a subset of the dual lattice R[M ]∗. Let Z.S be the lattice spanned
by S inside R[M ]∗. In view of the fact that S is a set of points in M -general
position, it follows that

(Z.S)⊥ := {λ ∈ R[M ] : s(λ) = 0 ∀ s ∈ S} = ΛM .

Thus rank(Z.S) = δ; moreover, it is easy to deduce from the facts about height
stated earlier that ht(ΛM )|ht(Z.S).

It will now be our aim to show that – ifX is large enough – ht((Z.S)⊥) is “small”,
contradicting (Z.S)⊥ = ΛM . The intuition is as follows: to say that ht((Z.S)⊥)
is “small” is to say there are “many” functions that vanish on S. On the other
hand, one expects that it is “easier” for a function to vanish on a set of points if
those points are close together. The points of S are, by choice, p-adically close; it
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is therefore reasonable to expect that ht((Z.S)⊥) is unusually small. What follows
formalizes this vague idea.

We may express ht(Z.S) concretely as follows. Regarding S as a subset of R[M ]∗,
we can pair any element s ∈ S with any e ∈ B[M ]. We thereby obtain a |S| × γ
matrix 〈s, e〉s∈S,e∈B[M ], and we can compute ht(Z.S) in terms of the minors of this
matrix. More specifically, we have:

(4) ht(Z.S) = gcdT⊂S,|T |=δ

 ∑
E⊂B[M ],|E|=δ

det(〈e, s〉e∈E,s∈T )2


From (4), and the fact that all points of Sp,x have height ≤ H, one deduces that

ht(Z.S) is � H2.M.δ.
On the other hand, it is proven in [9] (see esp. equation (3.7) and (3.11); cf. also

Elkies [8]) that there is a positive integer c(M,d), depending only on M and d and
satisfying

c(M,d) ∼ dMn

n!
· d1/nM

(1 + n−1)
(M →∞),

so that each determinant appearing in (4) is divisible by pc(M,d).
(Although we will not repeat Heath-Brown’s computation in this paper, we note

that c(M,d) has an intrinsic interpretation as the order of vanishing of a certain
section of a certain line bundle on Zδ

f along the diagonally embedded Zf . We refer
the reader to Remark 1 for the construction of this section, which also highlights
the connection with traditional methods in Diophantine approximation.)

Since p does not divide ht(ΛM ), and ht(ΛM )|ht(Z.S), the remarks above show
that ht(ΛM ) � H2Mδp−2c(M,d). It now follows from (2) that

p� ‖f‖−
|B[M−d]|

c(M,d) H
Mδ

c(M,d) .

Taking M →∞ and apply (1) to obtain the inequality:

(5) p ≤ c(ε)‖f‖−d−1−1/nn−1+εH(1+n−1)d−1/n+ε,

where ε→ 0 as M →∞, and the constant c(ε) depends on ε, d and n.
Now suppose we choose X such that

(6) X ≥ max(c1(1 + logH + log ‖f‖), c(ε)‖f‖−d−1−1/nn−1+εH(1+n−1)d−1/n+ε),

where c1 is as discussed in the choice of P. (A caution: this c1 depends on M , and
so implicitly on ε also).

With this choice of X, (5) cannot hold; our previous discussion now shows that,
for any admissible pair (p, x), the set Sp,x is contained in a divisor of degree Oε(1).
The number of pairs (p, x) is, as previously remarked, O(|P|Xn). Taking into
account condition (ii) in the choice of P yields that all points on Zf (Q) of height

≤ H are contained in at most (H
n+1
d1/n · ‖f‖−d−1−1/n

+ 1)Hε‖f‖ε divisors.
It remains to remove the factor ‖f‖ε, which follows the idea behind [9, Theorem

4]. Indeed, we may assume that all points of height≤ H lie on a unique hypersurface
of degree d; if not, all the points on Zf (Q) are contained in a single divisor and the
assertion is trivially true. However, in this case, one can recover f by interpolation,
and we see in particular that ‖f‖ � HAdn+2

, for some constant A depending only
on n. Thus the factor ‖f‖ε is subsumed in Hε. �
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The case n = 1 is nontrivial: it gives the bound (H2/d‖f‖−1/d2
+ 1)Hε for the

number of points of height less than H on the plane curve cut out by f . In the
next section, we show that, by treating the cases where ‖f‖ small and large w.r.t
H separately, one can obtain a uniform improvement on 2/d for genus ≥ 1. Let us
remark that such a result (not just uniform in ‖f‖, but improving as ‖f‖ grows) is
by no means surprising. For example the improvements in the bounds of [9] as one
passes to skew-shaped boxes reflect the same general principle.

Remark 1. As remarked above, the quantity c(M,d) is the order of vanishing, along
the diagonally embedded Zf , of a certain section of a line bundle on Zδ

f . Since the
construction of this section is the key part of Heath-Brown’s original approach in [9]
we give it here for completeness. In essence, one can regard the proof of Prop. 1 as
giving an “interpretation” of this section in terms of the height of certain lattices.
(See also [5, Appendix] for another interpretation of c(M,d)).

For 1 ≤ i ≤ δ let πi : (Pn+1)δ → Pn+1 be projection onto the ith factor. Then
⊕δ

i=1π
∗
i O(M) defines a vector bundle of rank δ on (Pn+1)δ. Any subset E ⊂ B[M ]

with |E| = δ gives rise to a certain section of the line bundle ∧δ (⊕iπ
∗
i O(M)) on

(Pn+1)δ. Namely, fix an ordering e1, . . . , eδ for E, and take the section defined in
local coordinates by the rule

(7) (P1, . . . , Pδ) 7→ det(ei(Pj))1≤i,j≤δ, Pj ∈ Pn+1.

Let us make some very crude comments which might suggest the intuition behind
the construction of this section. Intrinsically, one aims to construct, by analogy
with arguments from Diophantine approximation, a section vanishing to high order
along the diagonal Zf ↪→ Zδ

f → (Pn+1)δ; the existence of such a section turns out to
present an obstacle to the clustering of rational points on Zf . Now, an appropriate
choice of E will define an embedding ιE : Zf → Pδ−1 by the rule

ιP (E) = (e1(P ) : . . . : eδ(P )).

The value of the section defined above on (P1, . . . , Pδ) should be (crudely)
thought of as measuring the “volume” of the simplex (ιE(P1), . . . , ιE(Pδ)). This
description suggests that if P1, . . . , Pδ are “close” in a real or p-adic topology, then
the corresponding simplex would be “small”, and therefore one expects that the
value of this section to be “small” in the real or p-adic valuation. If this effect
is strong enough compared to the height of the value of the section, we can show
that the value of the section is actually equal to 0. (The protoypical example: if a
rational number x of height H reduces mod p to 0, and p > H, then x = 0.)

Remark 2. The result also implies a result for integral points. Let f ∈ Z[x1, . . . , xn+1]
be an irreducible polynomial of degree d, and let fk be the degree k component of
f . Define F ∈ Z[x1, . . . , xn+1, xn+2] by the rule F =

∑d
i=0H

ixd−i
n+2fi. Then F is

homogeneous of degree d and irreducible, and it is clear that ‖F‖ � Hd‖fd‖.
Now each integral solution (x1, x2, . . . , xn+1) gives rise to a point (x1, . . . , xn+1, xn+2 =

H) on the projective n-fold defined by F = 0. It follows from Prop. 1 that for each
ε > 0, there exists a constant c = c(n, ε) such that the set of integral solutions to
f(x1, . . . , xn, xn+1) = 0 with |xi| ≤ H can be covered by H

n

d1/n
+ε‖fd‖−d−1−1/n

+Hε

proper subvarieties, each of degree Oε,d,n(1).
Taking n = 1, this shows that the number of integral points on an irreducible

plane curve f(x, y) = 0 is �ε H
1/d+ε‖fd‖−1/d2

+Hε. This represents a very slight
refinement of a result of Bombieri and Pila [4].
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In connection with obtaining uniform improvements of [4] in genus ≥ 1, it would
be desirable to obtain better dependence on f ; in particular, it would be nice to
replace ‖fd‖ by a different norm that would also take into account the size of lower
degree terms of f . However, as the example y = (x−N)2 shows, such a result must
take a different form to the rational case. Indeed, the curve fN (x, y) = y−(x−N)2

has its largest coefficient of size N2. On the other hand, the number of solutions
to fN = 0 in the box {|x|, |y| ≤ 2N} is � N1/2. Thus one cannot naively replace
‖fd‖ by ‖f‖ in the foregoing remarks.

Remark 3. The proof may be applied without essential modification to subvarieties
Z ⊂ Pm of arbitrary codimension. In this context ‖f‖ should be replaced by a
subvariety height of Z (in the sense of Bost-Gillet-Soulé [2]). Indeed, ‖f‖ enters
the argument only through the computation of the height of the lattice ΛM . In the
general setting, the computation of the height of the (analogous) lattice is given by
the arithmetic Hilbert-Samuel formula [16], [2, 3.2.5]. We have not written it in this
generality largely because of the following technical difficulty: the Hilbert-Samuel
formula as stated in the literature is not a priori sufficiently uniform in Z. It is
seems extremely likely that a uniform version should exist, but we do not know of
a reference.

This generalization should also encompass the situation of counting points in
“non-square boxes”, by altering the archimedean metric on O(1) appropriately.

We remark that such a result and its variants should be useful in bounding the
number of rational points on higher-dimensional varieties. (The idea will be to keep
track at all stages not only of the number of points of bounded height, but also of
the number of cycles – of all intermediate dimensions – of bounded height.)

3. Uniform improvement on 2/d for non-rational curves.

Throughout this section we will use capital letters H,H0 to denote exponential
heights, and lower-case h, h0 for logarithmic heights.

3.1. Introduction. We now turn to the proof of Theorem 1. Suppose we want to
prove a bound better than H

2/d
0 for the number of Q-points of height ≤ H0 on a

plane curve given by a single equation f(x, y, z) = 0.
The idea is that one may restrict (by Prop. 1) to the case where ‖f‖ is very

small compared to H0, i.e. ‖f‖ � Hδ
0 for some δ small. In this range we can hope

to profitably pass to the Jacobian and make the proof of Néron’s bound Oε(Hε
0)

effective. While this fairly accurately describes the plan of attack, there are some
technicalities involved in carrying it out. We shall proceed in the following steps.

(1) Reduction to a problem about smooth curves, allowing us to talk about
Jacobians more easily. We carry out this part in Section 3.2, essentially by
normalization.

(2) To control points on the curve of low height (say ≤ Hα
0 for some α much

less than 1) it will suffice to apply trivial bounds.
(3) To control points on the curve of intermediate height (between Hα

0 and H0)
we use descent. If there were many points of this intermediate height, one
could construct (by an appropriate version of descent; there is more than
one way to proceed!) yet more points of small height (≤ Hα

0 ). Then again
the trivial bounds yield the desired conclusion. This is carried out in Sec.
3.3.
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Let us remark that a naive approach to the third step would be as follows:
bound the rank of the Mordell-Weil lattice by descent, and then use trivial bounds
for the number of points in a lattice inside a large ball. Unfortunately, when one
implements this most directly, the resulting bound is not even polynomial in H0.
This gives rise to the need for the slightly more elaborate approach used in the
third step.

There are various alternate ways of dealing unconditionally with the “intermedi-
ate case” of height between Hα

0 and H0, and it seems likely that these might lead to
better bounds. We have only sketched them here, in Sec. 4.2.1 and Sec. 4.2.2. One
is based on Vojta’s work and works only in genus ≥ 2. The other uses Mumford’s
orthogonality relation together with an interesting feature of the geometry of RN :
one cannot pack too many vectors at mutual angles near π/2. This idea was used
in [11] to bound 3-torsion in class groups. A striking feature of this method is that
the exponent 2/d emerges naturally from the geometry of the Mordell-Weil lattice
and the Picard group!

3.2. Bounds for rational points on families of non-rational curves. In this
section we state a theorem about upper bounds for the density of rational points
on smooth genus g curves which are uniform as the curves vary in families; this
theorem, in combination with a normalization argument, will prove Theorem 1.

We denote by HPm , hPm the usual exponential and logarithmic heights on Pm(Q):
in particular, for (x1, . . . , xm+1) ∈ Zm+1 we have hPm([x1 : x2 : · · · : xm+1]) =
log(maxi |xi|). Let B = P

(d+1)(d+2)
2 −1 be the projective space parametrizing plane

curves of degree d, and let P → P2
B be the universal flat family of plane curves.

Proposition 2. Let W ⊂ B be an irreducible subvariety. Let C → W be a mor-
phism whose generic fiber is geometrically connected and smooth of genus at least
1. Suppose given a finite morphism C → P over W .

For each point p ∈ C(Q), we write HP2(p) for the height of the image of p in
P2(Q) (under the map C → P → P2.)

Then there exists a nonempty Zariski open set U ⊂ W , and constants c, δ > 0
depending only on C →W , such that for any u ∈ U(Q) and any H0 ≥ 1,

|{p ∈ Cu(Q) : HP2(p) ≤ H0}| ≤ cH
2/d−δ
0 .

Proposition 2 will be proven in Sec. 3.3. We now explain how to deduce Theo-
rem 1 from Proposition 2.

Let V ↪→ B be a locally closed irreducible subvariety of B and let PV ↪→ P2
V be

the universal plane curve over V ; we suppose that the generic fiber of PV → V is
a geometrically reduced and irreducible plane curve of geometric genus at least 1.
Now let P̃V → PV be the normalization of P . By Serre’s criterion, the singular locus
of P̃V has codimension at least 2. Since normalization commutes with localization,
the generic fiber of P̃V → V is in fact a smooth geometrically connected curve of
genus at least 1. The map P̃V → PV is an isomorphism away from some proper
closed subscheme Z ⊂ PV ; let V1 be an open dense subset of V such that, for all
v ∈ V1, the fiber Pv is not contained in Z. Then the size of Pv ∩Z(Q) is uniformly
bounded above for all v ∈ V1(Q).

Now we can apply Prop. 2 with C = P̃V × V1,W = V1 and conclude that there
is an open dense subset V2 ⊂ V1 and a constant cV such that, for every v ∈ V2(Q)
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and every H0 ≥ 1,

|{p ∈ P̃v(Q) : HP2(p) ≤ H0}| ≤ cV H
2/d−δ
0 .

Moreover, for every v ∈ V2(Q) the map P̃v → Pv is an isomorphism on the comple-
ment of the proper closed subset Z ∩ Pv. It follows that all the rational points of
Pv of height at most H0 lift to rational points of P̃v, with the possible exception of
those points in (Z ∩Pv)(Q). The cardinality of (Z ∩Pv)(Q) is bounded as v varies
over V2(Q). So there exists a constant c′V such that

(8) |{p ∈ Pv(Q) : HP2(p) ≤ H0}| ≤ c′V H
2/d−δ
0

for all v ∈ V2(Q) and every H0 ≥ 1.
Let B′ ⊂ B be the constructible subset of B consisting of all b ∈ B such that Pb

is geometrically reduced and irreducible. (See [3, (9.7.7)] for the constructibility.)
We may write B′ as a finite union ∪iVi of locally closed irreducible subvarieties.
For each i there is an open dense subset Vi,2 ⊂ Vi such that (8) holds for all
v ∈ Vi,2(Q), for some constant c′Vi

. Let B1 be the complement of ∪iVi,2 in B′; then
the dimension of B1 (the largest dimension of any Zariski point of B1) is strictly
less than that of B′. Proceeding by induction, we obtain a decomposition of B′

into a finite union of locally closed subvarieties Wj such that (8) holds for all j and
all v ∈ Wj(Q), for some constants c′Wj

. In particular, (8) holds for all v ∈ B′(Q),
taking the constant c′B′ to be the maximum of all constants c′Wj

. This is precisely
the conclusion of Theorem 1.

3.3. Proof of Prop. 2.

Proof. (of Prop. 2). Let C andW be as in the statement of Prop. 2. We may assume
W is defined over Q. Let T be the closure of W in B, and let hT : T (Q) → R be a
(logarithmic) Weil height function associated to the natural projective embedding
T ↪→ B; by translating if necessary, we may assume that hT takes only non-negative
values.

ReplacingW with an open dense subset if necessary, we may assume that C →W
has smooth connected fibers, and that the Jacobian J /W of C/W is an abelian
scheme projective over W . Fix a projective embedding J

ι→ PM
W . We choose this

embedding to be symmetric; that is, for each fiber Jw the divisor class of ι∗w(O(1))
is invariant under P 7→ −P .

For each w ∈ W and P,Q ∈ Cw the expression (P ) − (Q) defines a divisor of
degree 0; this yields a morphism of W -schemes φ : C × C → J .

We shall need the following standard results. All constants are understood to
depend on C,W , and the choice of projective embeddings of W and J .

(i) Let w ∈ W (Q). On each fiber Jw of the Jacobian, the height function
hPM ◦ ι, differs from the canonical height ĥw by a bounded amount. Indeed,
for w ∈ W (Q), there exists a constant a1 such that |hPm ◦ ι − ĥw| ≤
a1(1+hT (w)) on Xw(Q). (See [14, Thm. A]. The assumption of symmetry
enters to assure that ĥw is genuinely quadratic, i.e. ĥw(−P ) = ĥw(P ).)

(ii) There are constants a2, a3 such that for w ∈W (Q), P,Q ∈ Cw(Q) we have:

(9) ĥw(φ(P,Q)) ≤ a2

2
(hP2(P ) + hP2(Q)) + a3(1 + hT (w)).
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By (i) it suffices to prove the claim when the left-hand side is replaced by
hPM ◦ ι(φ(P,Q)). The argument is routine; we shall just state the point in
words. For w ∈W (Q) and P,Q ∈ Cw(Q), the coordinates of ι ◦φ(P,Q) are
algebraic over the coordinates of P,Q considered in P2, and the coefficients
of this algebraic relation are some algebraic functions of w. (9) immediately
follows.

(iii) There exists a constant a4 such that, for all w ∈W (Q), we have rankJw(Q) ≤
a4(1 + hT (w)). This follows by descent (implicitly using the trivial upper
bound on class numbers), cf. [13].

(iv) There is a constant a5 such that the unit ball in Rn can be covered by
exp(a5n) balls of radius 1/2.

Now choose w ∈ W (Q), and set h0 = log(H0). Let Nw(h0) be the number of
points P ∈ Cw(Q) with hP2(P ) ≤ h0. In view of Claim (ii) there are at least Nw(h0)
points J ∈ Jw(Q) with canonical height ĥw(J) ≤ R = a2h0 + a3(1 + hT (w)).
(Indeed, fix Q with hP2(Q) < h0 and consider points of the form φ(P,Q). These
are mutually inequivalent since the genus of Cw is nonzero.)

Let j ∈ N. We can cover any
√
R-ball in the Mordell-Weil lattice of Jw(Q)

by exp(ja5rank(Jw)) balls of radius
√
R/2j . The idea of the argument is now

as follows: if Nw(h0) is very big, at least one of these balls must contain “many”
points by the pigeonhole principle; then the

√
R.21−j ball around the origin also

contains many points, i.e. there are many points with canonical height ≤ 41−jR.
In fact, using Claims (iii) and (iv) we see that there exist at least

(10) exp(−ja4a5(1 + hT (w)))Nw(h0)

points of Jw(Q) with canonical height ≤ 41−j(a2h0 +a3(1+hT (w)). By Claim (i),
all these points are sent by ι to points in PM of height at most 41−j(a2h0 + a3(1 +
hT (w)) + a1(1 + hT (w)).

Now the number of points P ∈ PM (Q) of height htPM (P ) ≤ h′ is � exp((M +
1)h′). Applying this trivial bound to (10), we deduce:

(11) Nw(h0) ≤ exp(C(1 + hT (w))) ·H41−ja2(M+1)
0

where C is a constant depending on a1, . . . , a5,M and j. Taking j → ∞, we have
shown that one may obtain bounds for Nw(h0) involving an arbitrarily small power
of H0, at the price of a large, but in principle explicit, power of hT (w).

On the other hand, the image of Cw in P2
w is a curve Zfw

, for some fw ∈
Q[x0, x1, x2]. By definition of the height hT , we have ‖f‖ � exp(1 + hT (w)).
Moreover, the map Cw → Zfw is finite, with degree bounded as w varies. It now
follows from Proposition 1 that there is a constant C ′ > 0 so that

(12) Nw(h0) ≤ Cε,d

(
exp(−C ′(1 + hT (w)))H2/d+ε

0 +Hε
0

)
.

Choosing j sufficiently large, and combining (11) and (12), we obtain the con-
clusion of Prop. 2. �

4. Complements.

4.1. Explicit constants for cubics – l-adic descent. We shall now give an
explicit version of Thm. 1 for smooth cubic curves, justifying the assertion δ(3) >
1

450 stated in the introduction.
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Although the constants involved in the proof just presented of Prop. 2 may be
easily found in the literature, we shall use a slightly different approach, mainly for
illustrative purposes. Indeed, the proof of Prop. 2 partitions the real vector space
J(Q) ⊗Z R, where J is the Mordell-Weil lattice of the Jacobian of the curve, into
small archimedean regions. Similarly, the argument below operates by partitioning
J(Q)⊗Z Z` into small `-adic regions, for suitably chosen `.

Let C/Q be a smooth cubic curve in P2 with equation f = 0, where f is an
irreducible cubic polynomial with integral coefficients:

(13) f(x, y, z)

= a1x
3 +a2y

3 +a3z
3 +a4x

2y+a5xy
2 +a6x

2z+a7xz
2 +a8y

2z+a9y
2z+a10xyz.

Put |C| = log(maxi |ai|). Let NC(h) be the number of rational points P ∈ C(Q)
whose logarithmic height hP2(P ) is at most h.

Proposition 3. For every positive integer m and every ε > 0, we have:

(14) logNC(h) ≤ (1 + ε)
(

32
3m2

h+ (
160
9m2

+
6

log 2
logm+ 4)|C|

)
+B(m, ε)

for some constant B(m, ε) depending only on m and ε.

Proof. The computations in [1] give equations for a degree 9 map ψ : C → E, where
E is the Jacobian of C placed in Weierstrass form Y 2Z = X3 +SXZ2 +TZ3. Here,
S and T are polynomials in the ai of degree 4 and 6. One has

ψ(x : y : z) = (Θ(x, y, z)H(x, y, z) : J(x, y, z) : H(x, y, z)3)

where H,Θ, J are forms in x, y, z of degree 3, 6, 9 respectively. The coefficients of
x, y, z in H (resp. Θ, J) are polynomials in the ai of degree 3 (resp. 8, 12). It
follows that for each P ∈ C(Q), one has hP2(ψ(P )) ≤ 9hP2(P ) + 12|C| + O(1).
(Every O(1) in this discussion refers to an absolute constant.)

Let ĥ be the canonical height on E. We know (see, e.g. [17]) there are constants
a,A such that

(15) −a|C|+O(1) < ĥ(ψ(P ))− hP2(ψ(P )) < A|C|+O(1)

So we obtain ĥ(ψ(P )) < 9hP2(P ) + (12 +A)|C|+O(1).
Next, we note that the image of ψ(C(Q)) in E(Q) is a coset of 3E(Q). Fix

some point P0 ∈ C(Q) of height at most h. Then for each P ∈ C(Q) satisfying
hP2(P ) ≤ h, we have that ĥ(ψ(P ) − ψ(P0)) < 36h + (48 + 4A)|C| + O(1). Since
ψ(P )− ψ(P0) = 3(P − P0), we obtain

(16) ĥ(P − P0) < 4h+
4
9
(12 +A)|C|+O(1).

We have now reduced our problem to bounding the number of points of bounded
canonical height on an elliptic curve in Weierstrass form. Write N̂E(h) for the
number of points on E of canonical height at most h.

Now let m > 1 be an integer; we are going to count the points in E(Q) by
counting each coset of mE(Q) separately. First of all, the number of points in
mE(Q) with canonical height at most h is just N̂E(h/m2). On the other hand,
if mE(Q) + Q is a coset of mE(Q), and there are N points in mE(Q) + Q of
canonical height at most h, then by taking differences we see that there are N
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points in mE(Q) of canonical height at most 4h. (Note the similarity with the
proof of Prop. 2!)

We conclude that N̂E(h) ≤ |E(Q)/mE(Q)|N̂E(4h/m2). Clearly log |E(Q)/mE(Q)|
is bounded above by (r + 2) logm, so

(17) log N̂E(h) ≤ (r + 2) logm+ log N̂E(4h/m2).

Let NE(h) be the number of points on E(Q) with hP2 ≤ h. By the theorem of
Heath-Brown [9], NE(h) ≤ exp((2

3 + ε)h+Oε(1)). So by (15) we find that

log N̂E(
4h
m2

) < logNE(
4h
m2

+ a|C|+O(1)) < (1 + ε)
2
3
(
4h
m2

+ a|C|) +Oε(1).

which in combination with (17) shows that

log N̂E(h) < (1 + ε)
2
3
(
4h
m2

+ a|C|) + (r + 2) logm+Oε(1).

By executing a 2-descent we see, as in [6], that for any c greater than 1
2 log(2) we

have the rank bound r < c log(|∆E |) + Oε(1), where ∆E is the discriminant of
the Weierstrass cubic defining E. Moreover, from [1, eq. (3.8)] one deduces that
log(|∆E |) ≤ 12|C|+O(1).

It follows that r + 2 < ( 6
log 2 + ε)|C|+Oε(1). We conclude that

(18) log N̂E(h) < (1 + ε)
(

8h
3m2

+
2
3
a|C|+ 6

log 2
|C| logm

)
+Om,ε(1).

Now, by (16), we note that NC(h) ≤ N̂E(4h + 4
9 (12 + A)|C|). The constant

ν appearing in Zimmer [17] evaluates to max((1/2) logS, (1/3) log T ) in this case,
which is bounded above by 2|C|; it thus follows from the main theorem of [17] that
we may take a = 6 and A = 3. (We refrained from plugging these values in at the
beginning in case one has sharper bounds on a and A for some curve of particular
interest.) Now (18) yields (14). �

We have already shown in Proposition 1 that

logNC(h) < max((2/3)h− (1/9)|C|, 0) + εh+Oε(1).

Combining this inequality with Proposition 3 yields an upper bound on NC(h)
which is uniform in |C|; we observe that our two upper bounds on logNC(h) are
equal when (up to a constant factor between 1− ε and 1 + ε)

(
2
3
− 32

3m2
)h = (

160
9m2

+
6

log 2
logm+ 4 + 1/9)|C|,

so we have in general that

(19) logNC(h) <
(

2
3

+ ε− 1
9

2/3− 32/3m2

160/9m2 + (6/ log 2) logm+ 37/9

)
h+Om,ε(1).

Now we choose m so as to minimize the coefficient of h in (19). An easy calculation
shows this is minimized at m = 11. We obtain logNC(h) < (2/3 − δ)h + O(1),
where δ can be taken to be, for instance, 1/450, and the implicit constant in O(1)
is absolute.

4.2. Two alternate proofs of Prop. 2.
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4.2.1. Approach via Vojta orthogonality. Using results of de Diego [7], which give
uniform versions of Vojta’s orthogonality results, we now sketch a proof of Prop.
2 when the genus of the curve C → W is ≥ 2. The idea is that de Diego’s results
show that, on any fiber Cw, there are very few points of large height, and to count
points of low height is easy using Prop. 1.

Let notations be as in the statement of Prop. 2. Let T be the closure of W in B,
as above, and let T ′ ⊂W be a nonempty open subset on which C → T ′ is smooth.

The following Lemma is a consequence of the main result of [7].

Lemma 1. There exist constants A,B such that, for any w ∈ T ′(Q), there exists
at most exp(A(1 + hT (w)) points p ∈ Cw(Q) satisfying hP2(p) ≥ B(1 + hT (w)).

We now sketch a second proof of Prop. 2 in the case where relative genus ≥ 2. Set
h0 = log(H0), where H0 is as in the statement of Prop. 2. Fix a very small α > 0.
We are interested in bounding the number of points P ∈ Cw(Q) with hP2(P ) ≤ h0;
divide into two cases according to whether hT (w) ≤ αh0 or hT (w) ≥ αh0.

In the first case, apply Lem. 1 to count points P ∈ Cw(Q) with height ≥
B(1 + hT (w)), and apply the trivial bound to count points P ∈ Cw(Q) with height
≤ B(1 + hT (w)). In the latter case, apply Prop. 1 directly to count points on the
image of Cw in P2

w, and use the fact that C maps to this image with bounded finite
degree.

Choosing α sufficiently small proves Prop. 2. This proof is shorter than the one
we give in Section 3.3, but has the disadvantage that it does not apply to the genus
1 case, and it uses much more difficult machinery.

4.2.2. Approach via sphere packing bounds. Vojta’s techniques show that, in genus
≥ 2, the points of a curve repel each other when embedded in its Jacobian. Evi-
dently such a phenomenon does not occur in genus 1, so the technique of Section
4.2.1 fails. We may use a technique from [11] instead which “creates” repulsion
by partitioning the points on a curve according to their reductions mod p. This
method in fact works for curves of all genera ≥ 1. However, we expect that this
method may allow the best estimate for δ. The article [11] deals primarily with
integral points on elliptic curves, and in the final section of that paper it is indicated
how the results extend to rational points and to curves of genus ≥ 1. We will just
reprise the main idea, referring to [11] for a further discussion of the manner in
which the exponent 2/d arises “naturally” in the method.

Again, take T and hT as in Sec. 3.3.
Let w ∈ W (Q). We wish to count points P ∈ Cw(Q) with hP2(P ) ≤ h0. Fix a

very small α. As in Sec. 4.2.1, we split into the two cases where hT (w) ≤ αh0 and
hT (w) ≥ αh0. As in that section, one may deal with the latter case directly by
applying Prop. 1.

The crucial case is where hT (w) ≤ αh0. Here the key idea is now to choose an
auxiliary prime p and partition Cw(Q) into the fibers of the reduction map mod p,
i.e. the fibers of Cw(Q) → Cw(Fp).

Let Jw be the Jacobian of Cw, ĥw a canonical height on Jw(Q). Let jw : Cw →
Jw the morphism that associates to P ∈ Cw the divisor class dP −Dw, where Dw

is the pullback of O(1) under Cw → Pw → P2 and d = deg(Dw).
Let ∆ ⊂ Cw × Cw be the diagonal. The point is that if P,Q belong to the

same part of the partition defined above, the theory of local heights forces the
Weil height h∆(P,Q) to be unusually large; Mumford’s gap principle now shows
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that that ĥ(jw(P ) − jw(Q)) is large. Thus jw(P ), jw(Q) are well-separated in the
Mordell-Weil lattice of Jw. It turns out that by optimizing p the gains from this
“well-separatedness” can overwhelm the losses from the further partitioning.

We now apply the Kabatiansky-Levenshtein sphere packings bounds (and op-
timize p) to control the size of each part of the partition. Piecing together the
resulting bounds yields (eventually) another proof of Prop. 2.
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