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We study random torsion-free nilpotent groups generated by a pair of random words of length ` in the standard

generating set of Un(Z). Specifically, we give asymptotic results about the step properties of the group when the lengths

of the generating words are functions of n. We show that the threshold function for asymptotic abelianness is ` = c
√
n,

for which the probability approaches e−2c2 , and also that the threshold function for having full-step, the same step as

Un(Z), is between cn2 and cn3.

1 Introduction

The goal of this paper is to study random finitely-generated torsion-free nilpotent groups (also known as T -groups
[2]). Recall that a nilpotent group N is one for which the lower central series eventually terminates:

N = N0 ≥ N1 ≥ · · · ≥ Nr = {0}

where Ni = [N,Ni−1] is the ith commutator subgroup (i.e. the subgroups generated by commutators of elements
in N and Ni−1). If r is the first index with Nr = {0} then we say that N is nilpotent of step r. For more
background on nilpotent groups see [6].

Our motivation for studying random nilpotent groups comes from Gromov’s study of finitely generated
random groups via random presentations (see [7] for a detailed introduction). Roughly speaking Gromov
considers groups G` given by a presentation G` = 〈S | R`〉, where the generating set S is fixed and finite,
and the relator set R` contains a subset of all possible relators of length at most `. A random group is said to
have a property P if the probability that G` has P goes to one as ` goes to infinity. Generally the size of R`
depends on ` and a chosen density constant d ∈ [0, 1] where R` at density d contains on order of the dth power
of possible relations of size less than `. Changing d changes the properties of the random group. A fundamental
result of Gromov’s shows that when the density is greater than 1/2 the resulting random group is trivial, and
when the density is less than 1/2 then the random group is a so-called hyperbolic group. Unfortunately, nilpotent
groups are not hyperbolic so this model is unsatisfactory for studying random nilpotent groups. For a recent
generalization of Gromov’s idea to quotients of free nilpotent groups see [1].

The model we study is motivated by a well-known theorem [4] which states that any finitely-generated,
torsion-free nilpotent group appears as a subgroup of Un(Z), the group of n× n upper-triangular matrices with
ones on the diagonal and entries in Z.

Let Ei,j be the elementary matrix that differs from the identity matrix In by containing a one at position
(i, j) and set Ai = Ei,i+1. Then the set S = {A±11 , . . . , A±1n−1} of superdiagonal elementary matrices is the
standard generating set for Un(Z). Our random subgroups will be generated by taking two simple random
walks of length ` on the Cayley graph of Un(Z) given by the generating set S. These two random walks define
two words, V,W that generate a subgroup

G`,n := 〈V,W 〉 ≤ Un(Z).

We are interested in the asymptotic properties of G`,n as `→∞. For example, when n is fixed one can show
that the probability that G`,n is abelian goes to zero as `→∞. If ` is a function of n, then the asymptotic
abelianness depends on the rate of growth.

Before giving the precise statement of our results, we recall the Landau notation that we use to describe
the growth rate of `:
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• If f(n) ∈ O(g(n)) then there exist numbers c and N , so that n > N implies f(n) < cg(n).
• If f(n) ∈ o(g(n)) then for all c > 0, there exists an N , so that n > N implies f(n) < cg(n).
• If f(n) ∈ ω(g(n)) then for all c > 0, there exists an N , so that n > N implies f(n) > cg(n).
• We write f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1.

Let P be a property of a group. For a particular length function `(n), we say G`,n is asymptotically almost
surely (a.a.s) P if the probability that G`,n has P approaches 1 as n approaches infinity. In Section 4 we prove
the following theorem:

Theorem 1.1. Let G`,n be a subgroup of Un(Z) generated by two random walks of length ` in the standard
generating set S and suppose ` is a function of n.

1. If ` ∈ o(
√
n) then asymptotically almost surely G`,n is abelian.

2. If ` = c
√
n then the probability that G`,n is abelian approaches e−2c

2

as n→∞.
3. If ` ∈ ω(

√
n), then asymptotically almost surely G`,n is not abelian.

Another property we focus on in this paper is the step of G`,n. Note that Un(Z) is a step n− 1 nilpotent
group. We say that G`,n has full step if it is also of step n− 1. We show that the threshold function for being
full step lies between n2 and n3.

Theorem 1.2. Let G`,n be a subgroup of Un(Z) generated by two random walks of length ` in the standard
generating set S and suppose ` is a function of n.

1. If ` ∈ o(n2) then asymptotically almost surely G`,n does not have full step.
2. If ` ∈ ω(n3) then asymptotically almost surely G`,n has full step.

Theorem 1.2 is proven in Section 5. These theorems are summarized by the following diagram.

step = 1
a.a.s.

1 < step < n− 1
a.a.s.

step = n− 1
a.a.s.

√
n n2 n3

1.1 Outline

As random walks, V,W are given by V = V1V2 · · ·V` and W = W1W2 · · ·W` where Vi,Wi ∈ S. To prove Theorem
1.1, we define a sufficient condition for commuting, called supercommuting.

Definition 1.3. Let V = V1V2 · · ·V` and W = W1W2 · · ·W` where Vi and Wi are elements in the Un generating
set S. The words V and W supercommute if every Vi commutes with every Wj .

We show that when ` ∈ o(n), supercommuting and commuting are asymptotically equivalent, and that the
threshold for supercommuting is at ` = c

√
n. For Theorem 1.2 most of the results are a matter of analyzing the

entries on the superdiagonals of our generators V and W . The (i, i+ 1) superdiagonal entry of V , which we
denote by vi, is the sum over the number of A±1i that occur in the walk, where Ai contributes +1, and its inverse
−1. Therefore the vector of superdiagonal entries is the endpoint of a random walk in Zn−1; while these are well
studied objects, most of the study has been on walks in a fixed dimension n. In our case, both the dimension n,
and the length of the walk are going to ∞. We gather these results in Section 3.

2 Preliminaries

Many of the results in this paper depend on the superdiagonal entries vi,i+1 and wi,i+1 of V and W . For this
reason we adopt the shorthand zi := zi,i+1 for any matrix Z.

The following proposition gives a necessary condition for commuting in Un.

Lemma 2.1. Let W = [wi,j ] and V = [vi,j ] be matrices in Un. If W and V commute then wivi+1 = wi+1vi for
all 1 ≤ i ≤ n− 2.
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Proof . This is a straightforward computation. The first superdiagonal of C = VWV −1W−1 vanishes and the
second superdiagonal entries are given by ci,i+2 = wi+1vi − wivi+1.

Corollary 2.2. The elementary superdiagonal matrices A±1i , A±1j commute if and only if |i− j| 6= 1.

Next we study the kth commutator subgroup of G`,n = 〈V,W 〉. Note that in a nilpotent group the kth
commutator subgroup is generated by all m-fold commutators for m ≥ k of the form

[B1[B2 · · · [Bm, Bm+1]]]·]

where the Bi are chosen from a fixed generating set (see for example Lemma 1.7 in [4]). Therefore to test that
G`,n is k-step nilpotent we only need to check that [B1[B2 · · · [Bk, Bk+1]]]·] = I when Bi ∈ {V,W}.

In Lemma 2.1 we noted that taking a commutator resulted in a matrix with zeros along the first
superdiagonal. In the next lemma we show that taking a kth commutator results in zeros on the first k
superdiagonals. We also give a recursive formula for the entries on the (k + 1)st superdiagonal using iterated
two dimensional determinants.

Lemma 2.3. Let Ck = [cki,j ] be a k-fold commutator of two matrices V,W ; then cki,j = 0 when i < j ≤ i+ k
and

cki,k+i+1 = det

[
zi,i+1 ck−1i,k+i

zk+i,k+i+1 ck−1i+1,k+i+1

]
(1)

where Z = [zi,j ] and either Z = V or Z = W .

Proof . We prove this result by induction, where the base case is given in the proof of Lemma 2.1. Assume
Ck−1 is given, and for convenience let K = Ck−1. Since the first k − 1 superdiagonals of K contain all zeros,
computing Ck = ZKZ−1K−1 yields zeros on the first k superdiagonals, and on the (i, i+ k + 1)-diagonal we
have

zi,i+1c
k−1
i+1,k+i+1 − zk+i,k+i+1c

k−1
i,k+i.

To help see this, note that when the first nonzero superdiagonals of Z,Ck−1, Ck are overlayed the resulting
matrix is the following. 

. . .
...

...
...

...
...

1 zi,i+1 · · · ck−1i,k+i cki,i+k+1 · · ·
1 · · · ck−1i+1,k+i+1 · · ·

. . .
...

... · · ·
1 zk+i,k+i+1 · · ·

1 · · ·
. . .



Our first application of Lemma 2.3 is the following lemma, which shows that G`,n cannot be full step if
V,W have a matching pair of zeros on their superdiagonals.

Lemma 2.4. Given G`,n = 〈V,W 〉, if there is some 1 ≤ d ≤ n− 1 such that vd = wd = 0 then the step of G`,n
is bounded by max{d− 1, n− 1− d}.

Proof . Recall that vd = vd,d+1 and similarly wd = wd,d+1. By Lemma 2.3 we have that for C1 = [V,W ]

c1d−1,d+1 = det

[
vd−1,d wd−1,d
vd,d+1 wd,d+1

]
= 0

since the bottom row of this two by two matrix has both entries to zero. Similarly

c1d,d+2 = det

[
vd,d+1 wd,d+1

vd+1,d+2 wd+1,d+2

]
= 0

since the top row of the two by two matrix has entries both equal to zero. Inductively, by Equation 1, we have
that ckd−k,d+1 = ckd,d+k+1 = 0. This is because either the top or bottom row of the matrix in Equation 1 will

have both entries equal to zero. Alternatively, if both ck−1i,k+i and ck−1i+1,k+i+1 are zero then cki,k+i+1 = 0 since

then the righthand column of the matrix in Equation 1 will have both entries zero. In particular, cki,j is zero if
k > max{d− 1, n− 1− d}.
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Lemma 2.3 also leads us to define a modified determinant product which gives us a method to calculate the
entries of the first nonzero superdiagonal of a iterated commutator product of upper triangular matrices given
their first superdiagonal entries.

Definition 2.5. Let ~a = (a1, . . . , as) and ~b = (b1, . . . , bm) be vectors with s ≥ m and set s−m = p; then [~a ~b]
is the m− 1 dimensional vector given by

[~a ~b] :=

(∣∣∣∣ a1 b1
ap+2 b2

∣∣∣∣ , ∣∣∣∣ a2 b2
ap+3 b3

∣∣∣∣ , · · · , ∣∣∣∣am−1 bm−1
ap+m bm

∣∣∣∣) .
Lemma 2.6. Let ~bi be the vector containing the n− 1 main superdiagonal entries of an n× n unipotent matrix
Bi labeled from top left to bottom right. Then the (k + 1)st superdiagonal entries of the k-fold commutator
[B1[B2 · · · [Bk, Bk+1]]] are given by the (n− k) dimensional vector

[~b1[~b2 · · · [~bk ~bk+1] · · · ].

This lemma can be proved by direct computation or by inspecting the proof of Lemma 2.3. To illustrate
this result, consider the following examples, the second of which will be used in Section 5.

Example 2.7. We consider the commutator [D, [C, [A,B]]] where the superdiagonal entries of A are given by
(a1, . . . an−1) and similarly for B,C,D. The first three superdiagonals are all zero while the fourth superdiagonal
has entries given by 

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d1

∣∣∣∣∣∣∣∣∣∣
c1

∣∣∣∣a1 b1
a2 b2

∣∣∣∣
c3

∣∣∣∣a2 b2
a3 b3

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

d4

∣∣∣∣∣∣∣∣∣∣
c2

∣∣∣∣a2 b2
a3 b3

∣∣∣∣
c4

∣∣∣∣a3 b3
a4 b4

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, · · · ,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dn−4

∣∣∣∣∣∣∣∣∣∣
cn−4

∣∣∣∣an−4 bn−4
an−3 bn−3

∣∣∣∣
cn−2

∣∣∣∣an−3 bn−3
an−2 bn−2

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

dn−1

∣∣∣∣∣∣∣∣∣∣
cn−3

∣∣∣∣an−3 bn−3
an−2 bn−2

∣∣∣∣
cn−1

∣∣∣∣an−2 bn−2
an−1 bn−1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


.

Example 2.8. Consider the commutator

[W, [W, . . . [W︸ ︷︷ ︸
n− 2

, V ]]]

where V,W are n× n upper triangular matrices with main superdiagonals given by the vectors (v1, · · · , vn−1) and
(w1, · · · , wn−1) respectively. Using the iterated determinant formula we see that the first nonzero superdiagonal
has only one entry and is given by

K1v1w2w3 · · ·wn−1 +K2w1v2w3 · · ·wn−1 + · · ·+Kn−1w1 · · ·wn−2vn−1

where each Ki =
(
n−1
i

)
with alternating signs.

3 Distribution of the Superdiagonal Entries

In this section we examine the probability of finding zeroes on the superdiagonals of V and W when ` ∈ ω(n).
In order to emphasize the dependence on ` we write V `,W ` instead of V,W and v`k, w

`
k instead of vk, wk for the

superdiagonal entries. If we fix n and k we can model v`k as the endpoint of a lazy random walk in Z:

v`k =
∑̀
j=1

xj
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where xj = ±1 with probability 1/2n each and xj = 0 with probability (n− 1)/n. Likewise for any two k1 6= k2
we have an induced lazy random walk on Z2: (

v`k1
v`k2

)
=
∑̀
j=1

(
xj
yj

)

where (xj , yj) = (±1, 0) or (0,±1) with probability 1/2n each, and (xj , yj) = (0, 0) with probability (n− 2)/n.
Our goal is to estimate P(v`k = 0) and P(v`k1 = v`k2 = 0). The proofs of the following lemmas follow the

standard proofs of the local central limit theorem for lazy random walks on Zd where special attention is paid to
the dependence of the estimates on n. (See for example Section 2.3 in [5]). We reproduce them here because we
were not able to find this exact formulation in the literature. Morally we rewrite everything in terms of λ = `/n
and provide error estimates. We can do this as long as λ→∞—that is, when ` ∈ ω(n). To make the results in
this section more applicable later on, we define a constant K = 1/

√
2π.

Lemma 3.1. Suppose ` ∈ ω(n). Then for a fixed 1 ≤ k ≤ n we have

P(v`k = 0) ∼ K
√
n

`

Proof . We begin by noting that the characteristic function of xj is given by

φ(t) = E(etixj ) = 1− 1

n
+

1

2n
(eit + e−it) = 1− 1

n
(1− cos t)

and the characteristic function of v`k which is

φ(t)` =

(
1− 1

n
(1− cos t)

)`
.

Therefore

P (v`k = 0) =
1

2π

∫ π

−π

(
1− 1

n
(1− cos t)

)`
dt.

The methods used to estimate this integral are identical to the ones used in the more general proof of Lemma
3.3 below so we do not produce them here. The above integral is transformed to

P (v`k = 0) =

√
n
`√

2π

(∫
R
e−s

2/2ds+ o(1)

)

Since v`k and w`k are independent we have the following corollary:

Corollary 3.2. Suppose ` ∈ ω(n). For fixed k, P(vk = wk = 0) ∼ K2n/`.

Next we prove an estimate on the probability of having a pair of zeros in fixed coordinates k1 6= k2.

Lemma 3.3. Suppose ` ∈ ω(n). Then for fixed k1 6= k2,

P (v`k1 = v`k2 = 0) ∼ K2n

`
.

Proof . We begin by computing the characteristic function of (xj , yj) which is given by

φ(t1, t2) = E(ei(t1xj+t2yj)) = 1− 1

n
(1− cos t1)− 1

n
(1− cos t2)
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and the characteristic function of (v`k1 , v
`
k2

) = (
∑`

j=1 xj ,
∑`

j=1 yj) which is

φ(t)` =

(
1− 1

n
(1− cos t1)− 1

n
(1− cos t2)

)`
.

Therefore

P (v`k1 = v`k2 = 0) =
1

(2π)2

∫∫
[−π,π]2

(
1− 1

n
(1− cos t1)− 1

n
(1− cos t2)

)`
dt1dt2.

=
1

(2π)2

∫∫
[−π,π]2

(
1− |θ|

2

2n
+

1

n
h(θ)

)`
dθ

where θ = (t1, t2) and h(θ) =
∑∞

i=2(−1)i
t2i1 +t2i2
(2i)! ∈ O(|θ|4).

We use the Taylor expansion log(1 + x) =
∑∞

i=1
xi

i that is valid for |x| ≤ 1 to write

log(φ(θ)) = log

1−|θ|
2

2n
+

1

n
h(θ)︸ ︷︷ ︸

x

 = −|θ|
2

2n
+

1

n
h(θ) + f(θ, 1/n) (2)

where

f(θ, 1/n) =

∞∑
j=2

1

j

(
1

n

∞∑
i=1

(−1)i
t2i1 + t2i2

(2i)!

)j
= O(|θ|4).

This expansion is valid for ∣∣∣∣−|θ|22n
+

1

n
h(θ)

∣∣∣∣ =
1

n

∣∣∣∣−|θ|22
+ h(θ)

∣∣∣∣ ≤ 1

which holds as long as |θ| < δ where δ does not depend on n. (It holds for n = 1 and so it holds for all n). Let
λ = `/n. Now use a change of variable θ = s/

√
λ = s

√
n
` in Equation 2 and multiply both sides by ` to get

` log
(
φ
(
s/
√
λ
))

= −|s|
2

2
+
`

n
h(s/
√
λ) + f̄(s, 1/`, λ)︸ ︷︷ ︸
gn(`,s)

where f̄ = `f is given by

f̄(s, 1/`, λ) =

∞∑
j=2

1

j`j−1

( ∞∑
i=1

(−1)i
1

λi−1
s2i1 + s2i2

(2i)!

)j
.

This expansion is valid as long as |s| ≤ δ
√
λ. Note that when n = 1 we have

f̄(s, 1/`, `) =

∞∑
j=2

1

j`j−1

( ∞∑
i=1

(−1)i
1

`i−1
s2i1 + s2i2

(2i)!

)j

and since ` > λ we have that

∞∑
j=2

1

j`j−1

( ∞∑
i=1

1

λi−1
s2i1 + s2i2

(2i)!

)j
≤
∞∑
j=2

1

jλj−1

( ∞∑
i=1

1

λi−1
s2i1 + s2i2

(2i)!

)j
.

Then

|gn(`, s)| ≤ λ|h(s/
√
λ)|+ |f̄(s, 1/`, λ)| ≤ λ|h(s/

√
λ)|+ c|s|4

λ

where c can be chosen independent of n. Note that

λ h(s/
√
λ) = λ

∞∑
i=2

(−1)i
1

λi
s2i1 + s2i2

(2i)!
=

∞∑
i=2

(−1)i
1

λi−1
s2i1 + s2i2

(2i)!
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so λ |h(s/
√
λ)| = o(|s|2) and so we can find 0 < ε ≤ δ such that for |s| ≤ ε

√
λ

|gn(s, `)| ≤ |s|
2

4
.

Let F`,n(s) = egn(`,s) − 1 and let

p̄`(0) =
1

(2π)2λ

∫
R2

e−
|s|2
2 ds =

1

2πλ

be the integral of a two-variable standard normal distribution (see for example Equation 2.2 in [5]). Then

P (v`k1 = v`k2 = 0) =
1

(2π)2

∫∫
[−π,π]2

φ(θ)`dθ

=
1

(2π)2

∫∫
[−π,π]2

(
1− |θ|

2

2n
+

1

n
h(θ)

)`
dθ

=
1

(2π)2λ

∫∫
[−π
√
λ,π
√
λ]2

e−|s|
2/2(F`,n(s) + 1)ds

=
1

(2π)2λ

(
An(ε, `) +

∫∫
|s|≤ε

√
λ

e−|s|
2/2(F`,n(s) + 1)ds

)
= p̄`(0) +Bn(ε, `) +

1

(2π)2λ

(
An(ε, `) +

∫∫
|s|≤ε

√
λ

e−
|s|2
2 F`,n(s)ds

)
where

|An(ε, `)| =
∣∣∣∣∫∫

[−π
√
λ,π
√
λ]2\{|s|≤ε

√
λ}
φ(s/
√
λ)`ds

∣∣∣∣ ≤ Cλe−βλ
where C and β do not depend on n since |φ(θ)| ≤ 1− b

n |θ|
2 ≤ e− b

n |θ|
2

(where b does not depend on n) for all

θ ∈ [−π, π]2 and so for |s| ≥ ε
√
λ we have φ(s/

√
λ) ≤ e−β/n. Likewise

|Bn(ε, `)| =
∣∣∣∣ 1

(2π)2λ

∫∫
|s|>ε

√
λ

e−|s|
2/2ds

∣∣∣∣ ≤ C ′e−β′λ

where β′ and C ′ do not depend on n. Finally as long as |s| ≤ λ 1
8 we have

|F`,n(s)| ≤ |egn(`,s) − 1| ≤ C ′′gn(`, s) ≤ C ′′|s|4

λ

where C ′′ does not depend on n. Therefore we have∣∣∣∣∫∫
|s|≤λ1/8

e−
|s|2
2 F`,n(s)ds

∣∣∣∣ ≤ C ′′

λ

∫
R2

|s|4e−
|s|2
2 ds ≤ C ′′′

λ
.

This leaves us only to estimate the integral for λ1/8 ≤ |s| ≤ ε
√
λ where we have the bound |F`,n(s)| ≤ e−

|s|2
4 + 1.

The integral then can be estimated as follows∣∣∣∣∫∫
λ1/8≤|s|≤ε

√
λ

e−
|s|2
2 F`,n(s)ds

∣∣∣∣ ≤ 2

∫∫
|s|≥λ1/8

e−
|s|2
4 ds ≤ C̄e−ζλ

1/4

.

This gives the desired result.

Corollary 3.4. Suppose ` ∈ ω(n). For fixed k1 6= k2,

P(v`k1 = v`k2 = w`k1 = w`k2 = 0) ∼ K4
(n
`

)2
.

Proof . This follows from Lemma 3.3 and the fact that

P(v`k1 = v`k2 = w`k1 = w`k2 = 0) = P(v`k1 = v`k2 = 0) P(w`k1 = w`k2 = 0).
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Lemma 3.5. Suppose ` ∈ ω(n) and suppose ai = ai(`) for 1 ≤ i ≤ n− 1, with P(a1 6= 0)→ 1 as `→∞. Then
P(a1v1 + a2v2 + · · ·+ an−1vn−1 = 0)→ 0 as `→∞.

Proof .

P(

n∑
i=1

aivi = 0) = P(v1 = −
n∑
i=2

ai
a1
vi = 0 | a1 6= 0) P(a1 6= 0)

+ P(

n∑
i=1

aivi = 0 | a1 = 0) P(a1 = 0)

≤ P(v1 = −
n∑
i=2

ai
a1
vi = 0 | a1 6= 0) + P(a1 = 0)

≤ P(v1 = 0) + P(a1 = 0)

since the most likely value for v1 is 0 and therefore by Lemma 3.1 this limit goes to zero.

4 Asymptotic Abelianess

In this section we prove Theorem 1.1. To check that G`,n is abelian we only need to check that V,W commute.
Most of our analysis involves the notion of supercommuting that we defined in the introduction. Recall that for
two words V = V1V2 · · ·V` and W = W1W2 · · ·W` with Vi,Wi ∈ S to supercommute, every Vi must commute
with every Wj .

Clearly supercommuting is a sufficient (but not necessary) condition for commuting. However, when
` ∈ o(n), the probability of V and W commuting but not supercommuting goes to zero as n→∞. Therefore,
when ` is in this class, these two notions of commuting are asymptotically equivalent. To prove this fact, we
begin by defining the function

σi(Z) :=


1 if Z = Ai

−1 if Z = A−1i
0 otherwise.

Since multiplication in Un is additive on the superdiagonal elements,

vi =
∑̀
j=1

σi(Vj) wi =
∑̀
j=1

σi(Wj).

In other words, the ith superdiagonal entry of V is a count of the number of times one of A±1i appears in the
word V = V1 . . . Vn, where Ai contributes +1, and its inverse −1. Since ` is growing more slowly than the size of
our matrix (and hence more slowly than the size of our generating set S), the probability of seeing a particular
Ai in an `-step walk approaches zero. We make this precise in the following lemma.

Lemma 4.1. Suppose ` ∈ o(n). For fixed 1 ≤ i ≤ n− 1 and Z = Z1Z2 · · ·Z`, where Zi ∈ S = {A±11 , . . . A±1n−1},

P(σi(Zj) 6= 0 for some 1 ≤ j ≤ `)→ 0

as n→∞.

Proof . For fixed j,

P(σi(Zj) = 0) =

(
1− 2

2(n− 1)

)
=

(
1− 1

n− 1

)
.

Since the Zj ’s are independent,

P(σi(Zj) = 0 for all j) =

(
1− 1

n− 1

)`
.

Since ` ∈ o(n), the limit of this probability is 1, and so its negation—the probability that σi(Zj) 6= 0 for some
j—goes to 0.
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Now suppose that Ai appears at least once in our word Z1Z2 · · ·Z`. Lemma 4.1 implies that it, or its inverse,
almost surely does not appear again.

Corollary 4.2. Suppose ` ∈ o(n) and Z = Z1Z2 · · ·Z`. For a fixed 1 ≤ i ≤ n− 1, the ith superdiagonal entry
zi of Z satisfies

P(zi = ±1 | σi(Zj) 6= 0 for some j)→ 1

as n→∞.

Proof . This follows from the fact that P(zi = ±1 | σi(Zj) 6= 0 for some j, and σi(Zk) = 0 for all k 6= j)) = 1
and

P(σi(Zk) = 0 for all k 6= j) =

(
1− 1

n− 1

)`−1
→ 1

as `→∞.

Lemma 4.3. When ` ∈ o(n),

P(V and W commute but do not supercommute)→ 0.

Proof . Note that

P(V and W commute but do not supercommute)

≤P(V and W commute | V and W do not supercommute).

We will call this latter (conditional) event C and show that P(C)→ 0.
Let Ai and Ai+1 be called neighboring elementary matrices. If V and W do not supercommute, then

Corollary 2.2 implies the words V and W must contain neighboring matrices. Without loss of generality, this
implies there must be some 1 < k ≤ n− 1 and some 1 ≤ i, j ≤ ` such that σk−1(Wi) 6= 0 and σk(Vj) 6= 0. We
bound P(C) above by considering the events wk−1 6= ±1, vk 6= ±1 and the joint event wk−1 = ±1, vk = ±1.
While these three events are not mutually exclusive, they do cover all possibilities.

P(C) ≤ P(C | wk−1 6= ±1) P(wk−1 6= ±1) + P(C | vk 6= ±1) P(vk 6= ±1)

+ P(C | wk−1, vk = ±1) P(wk−1, vk = ±1).

By Corollary 4.2 the first two terms go to 0 and the last term goes to just P(C | wk−1, vk = ±1). By Lemma 2.1,
this is at most

P(C | wk−1, vk = ±1) ≤ P (wk−1vk − wkvk−1 = 0 | wk−1, vk = ±1)

≤ P(wkvk−1 6= 0)

≤ P(vk−1 6= 0)

and P(vk−1 6= 0)→ 0 by Lemma 4.1.

4.1 Part 1 of Theorem 1.1: when `(n) ∈ o(
√
n).

In this case, we can use a counting argument to show that V and W supercommute.

Lemma 4.4. Assume that ` ∈ o(
√
n), V = V1V2 · · ·V`, and W = W1W2 · · ·W`. Let F be the number of pairs

i, j for which Vi and Wj fail to commute. Then the expected value E(F )→ 0 as n→∞.

Proof . Let γi,j be an indicator random variable whose value is 1 precisely when ViWj 6= WjVi. By Corollary
2.2, for each k, there are at most 2 values of i such that Vi does not commute with A±1k . Since Wj = A±1k for
some 1 ≤ k ≤ n− 1, when 2 ≤ k ≤ n− 2, the probability that Vi does not commute with Wj is 4

2(n−1) = 2
n−1 ;

when k is equal to 1 or n− 1, the probability is 2
2(n−1) = 1

n−1 . Therefore the probability P (ViWj 6= WjVi) ≤ 2
n−1

for all i and j. Since F counts the number of non-commuting pairs Vi,Wj , we have

F =
∑̀
i=1

∑̀
j=1

γi,j .
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By linearity of expected value,

E(F ) =
∑̀
i=1

∑̀
j=1

E(γi,j).

=
∑̀
i=1

∑̀
j=1

P(ViWj 6= WjVi)

≤
∑̀
i=1

∑̀
j=1

2

n− 1

≤ `2
(

2

n− 1

)
.

Since ` ∈ o(
√
n) then `2 ∈ o(n) and

lim
n→∞

E(F ) ≤ lim
n→∞

2`2

n− 1
= 0.

Corollary 4.5. If ` ∈ o(
√
n) then V and W supercommute asymptotically almost surely.

Proof . The elements V and W supercommute precisely when every Vi commutes with every Wj , that is when
F = 0. Since F is a nonnegative integer random variable, and E(F )→ 0 we have that P(F = 0)→ 1.

4.2 Part 2 of Theorem 1.1: when ` = c
√
n.

We start with a heuristic argument. For V andW to supercommute, Vi must commute withWj for all 1 ≤ i, j ≤ `.
The probability that a given Vi and Wj commute is 1− 2/(n− 1) for most cases. Since there are `2 such pairs,
the probability that they all commute is(

1− 2

n− 1

)`2
=

(
1− 2

n− 1

)c2n
→ 1

e2c2
.

This argument assumes independence of each Vi,Wj pair commuting, which does not in general hold. However,

we are able to show that limiting probability for abeilianess is nonetheless 1/e2c
2

, as predicted.
If we fix the Vi’s, there is a specific set of k’s for which A±1k fails to commute with at least one Vi. Let B be

the number of such k’s; then since the Wj ’s are chosen independently, the probability that all of them commute
with V is given by

P(V and W supercommute) =

(
1− B

n− 1

)`
. (3)

Now we have to say something about the distribution of B. Imagine a row of n− 1 bins. For each Vi = A±1k ,
we put a ball in bin k − 1 and a ball in bin k + 1. Then B is the number of non-empty bins. Since there are 2`
balls, two∗ for each Vi, we have 2 ≤ B ≤ 2`. Let D be the difference 2`−B. We will show that the expected
value of D approaches a constant.

Lemma 4.6. If ` = c
√
n then E(D)→ 2c2 as n→∞.

Proof . Let V = V1V2 · · ·V`. First, we count the number X of “empty bins”. We write X =
∑
Xi, where

Xi =

{
0 if Ai+1 or Ai−1 appears in the word V

1 otherwise.

Note that the behaviors for the end bins (when i = 1 or i = n− 1) are slightly different than the other bins but
asymptotically this difference will not be important. Since each element Vi is chosen independently, we have,

E(Xi) = P(Xi = 1) =

(
1− 2

n− 1

)`
.

∗When Vi = A±1
1 or A±1

n−1 only one ball is added; but this almost never happens as n → ∞.
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Therefore, E(X) = (n− 1)
(
1− 2

n−1
)`

. Since B is the number of nonempty bins, B +X = n− 1, and we have,

E(B) = (n− 1)− (n− 1)

(
1− 2

n− 1

)`
= (n− 1)

(
1−

(
1− 2

n− 1

)`)
.

Finally, since D is the difference 2`−B, the expected value of D is E(D) = 2`− E(B). Taking the limit as n
goes to infinity gives the result.

In order to evaluate the limit of Equation (3) as `→∞ we need to control the size of B = 2`−D. For this
we consider two cases: when D ≥ log ` and when D ≤ log `.

Lemma 4.7. If ` = c
√
n then P(D ≥ log `)→ 0 as n→∞.

Proof . Markov’s inequality tells us that P(D ≥ log `) ≤ E(D)/ log `. Since E(D) converges to a constant by
Lemma 4.6 but log ` grows without bound, this probability goes to 0.

Lemma 4.8. If ` = c
√
n then P(G`,n is abelian | D < log `)→ 1/e2c

2

as n→∞.

Proof . Recall (by Lemma 4.3 and Equation 3) that

lim
n→∞

P(G`,n is abelian) = lim
n→∞

P(W and V supercommute)

= lim
n→∞

(
1− B

n− 1

)`
and that by definition of D, B = 2`−D. Since 0 < D < log `, we have(

1− 2`

n− 1

)`
≤
(

1− 2`−D
n− 1

)`
≤
(

1− 2`− log `

n− 1

)`
.

Using standard techniques (taking the logarithm and using L’Hôpital’s rule) one can show that as n→∞ both

the extreme functions limit to 1/e2c
2

, and the result follows.

Lemma 4.9. If ` = c
√
n then P(G`,n is abelian)→ 1/e2c

2

as n→∞.

Proof . We have

lim
n→∞

P(G`,n is abelian) = lim
n→∞

P(G`,n is abelian | D < log `) P(D < log `)

+ lim
n→∞

P(G`,n is abelian | D ≥ log `) P(D ≥ log `).

By Lemma 4.7 the second term goes to zero and the second factor of the first term goes to one, leaving just

= lim
n→∞

P(G`,n is abelian | D < log `)

=
1

e2c2

by Lemma 4.8.

4.3 Part 3 of Theorem 1.1: when ` ∈ ω(
√
n) and ` ∈ o(n).

By Lemma 4.3 we know that when ` ∈ o(n) supercommuting is asymptotically the same as commuting. Therefore
to show that asymptotically G`,n is almost never abelian we only need to show that V and W almost never
supercommute. To show this, we consider n− 1 “bins”, one for each Ai. We think of each element Vi as a ball
of a particular type, say red. Similarly each of the elements Wi correspond to a blue ball. We throw the `
red balls, and ` blue balls into the n− 1 bins, and look for a particular collision that implies V and W don’t
supercommute. To prove this, we will use the following Lemma which is a generalized (to 2 colors) version of
the probabilistic pigeonhole principle. A statement for q-colors appears in [3].
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Fact 4.10 (Lemma 5 in [3]). Let µ be any probability measure on a set of size n. Let z1, . . . , z2` be chosen
randomly and independently using µ. Then

P(∃ i, j with i ≤ ` < j, zi = zj) ≥ 1− 2e−c`/
√
n

for some universal constant c.

In particular, when ` ∈ ω(
√
n), this probability approaches 1 as n→∞.

Lemma 4.11. When ` ∈ ω(
√
n) as n→∞ the probability that V,W supercommute goes to zero.

Proof . Let f be the function that takes A±1k to k, and define 2` random variables {zi} as follows: when i ≤ `,

zi = f(Vi)

and when i > `,

zi =

{
n− 1 if f(Wi−`) = 1

f(Wi−`)− 1 otherwise

Then the conditions of Fact 4.10 apply to the zi’s, and so asymptotically almost surely there exist an i and
j so that i ≤ ` < j and zi = zj . This means that either zi = f(Vi) = f(Wj−`)− 1 = zj or f(Vi) = n− 1 and
f(Wj−`) = 1. The latter case has probability 1/(n− 1), and so as n→∞ we are almost surely in the former case.
Thus Vi = A±1k and Wj−` = A±1k+1. Then Vi and Wj do not commute, and so V and W do not supercommute.

Corollary 4.12. If ` = ω(
√
n) and ` = o(n) then G`,n is asymptotically almost surely nonabelian.

Proof . By Lemma 4.11 the probability that V,W supercommute goes to zero and therefore by Lemma 4.3,
G`,n is asymptotically almost surely nonabelian.

4.4 Part 3 of Theorem 1.1: when ` ∈ ω(n)

In this case we need results from Section 3 on the distribution of superdiagonal entries.

Lemma 4.13. When ` ∈ ω(n) then G`,n is a.a.s. not abelian.

Proof . By Lemma 2.1, if v1w2 6= v2w1 then G`,n is not abelian. By Lemma 3.1, P(w2 = 0) ∼ K
√
n/`→ 0.

Then by Lemma 3.6, P(v1w2 = v2w1) = P(v1w2 − v2w1 = 0)→ 0, and so a.a.s. v1w2 6= v2w1.

4.5 Part 3 of Theorem 1.1: when k ≤ `/n ≤M

To complete the proof of Theorem 1.1 part 3, we need to consider functions ` which lie in the complement of
o(n), and ω(n); we therefore consider functions ` such that for large enough n, there exists constants k and M
so that

k ≤ `

n
≤M.

To show that G`,n is not abelian, it is sufficient to find 1 ≤ i ≤ n− 2 for which the condition of Lemma 2.1 fails;
that is, there exists an i so that viwi+1 6= vi+1wi. To do this, we count a subset of pairs of words V and W
which have this property, and show that these pairs occur with high probability.

Lemma 4.14. Suppose there exist constants k and M so that for large enough n, k ≤ `/n ≤M . Then a.a.s.
there is some 1 ≤ i ≤ n− 2 for which vi = ±1, vi+1 = 0, wi = ±1, and wi+1 = ±1.

Proof . We will look specifically for cases in which Vj = A±1i for precisely one j, Vj 6= A±1i+1 for all j, Wj = A±1i
for precisely one j, and Wj = A±1i+1 for precisely one j. Note that words V and W of this form have vi = ±1,
vi+1 = 0, wi = ±1, and wi+1 = ±1. Hence, by Lemma 2.1, V and W will not commute. It’ll be useful to have
a name for this sort of failure to commute, so we’ll say this particular sort of pair (V,W ) has a “type i”
configuration. Out strategy for this proof is to define a random variable X which counts the expected number of
type i configurations for a pair of words (V,W ). We then show E[X2]/E[X]2 → 1. It will be sufficient to consider
only odd values of i, and as this makes some of the counting arguments simpler, we make this assumption.
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Fix i. Let Si be the set of words V of length ` which have Vj = A±1i for precisely one j and Vj 6= A±1i+1 for all

j. There are ` indices to choose for the location of A±1i , two choices for the exponent on Ai, and after subtracting
out the elements A±1i and A±1i+1, we have 2(n− 3) remaining generators to choose from for the remaining `− 1

elements in the word V . Since the total number of words of length ` is (2(n− 1))`, we have

P (Si) =
`(n− 3)`−1

(n− 1)`
=

`

n− 1

(n− 3)`−1

(n− 1)`−1
=

`

n− 1

(
1− 2

n− 1

)`−1
.

Let Ti be the set of words W for which Wj = A±1i and exactly one j′ for which Wj′ = A±1i+1. Then we have

P (Ti) =
`(`− 1)(n− 3)`−2

(n− 1)`
=
`(`− 1)

(n− 1)2

(
1− 2

n− 1

)`−2
.

Since V and W are chosen independently, we have

P (Si, Ti) =
`2(`− 1)

(n− 1)3

(
1− 2

n− 1

)2`−3

. (4)

Now we compute the probability of Si ∩ Si′ , for distinct i and i′. Counting words of this sort is where we use
the convenience of only considering odd indices, so that |i− i′| ≥ 2.

P (Si ∩ Si′) =
`(`− 1)(n− 5)`−2

(n− 1)`
=
`(`− 1)

(n− 1)2

(
1− 4

n− 1

)`−2
.

Similarly, we compute the probability of Ti ∩ Ti′ .

P (Ti ∩ Ti′) =
`(`− 1)(`− 2)(`− 3)(n− 5)`−4

(n− 1)`
=
`(`− 1)(`− 2)(`− 3)

(n− 1)4

(
1− 4

n− 1

)`−4
.

Let n′ be the number of odd integers in [1, n− 2], and let X be the number of odd values of i for which a type
i configuration occurs in the pair (V,W ). Define the random variable Xi

Xi =

{
1 if V is in Si and W in Ti

0 otherwise

Then X =
∑n′

i=1X2i−1 and
E(X) = n′P (Si, Ti).

Note that when ` is in the complement of o(n), we have E(X)→∞ as n→∞. (Also, when ` is in ω(n), the
expected value E(x)→ 0 as n→∞, hence this proof is not valid when ` is in this range.)

When i 6= i′, XiXi′ = 1 if and only if V is in Si ∩ Si′ and W is in Ti ∩ Ti′ . Therefore,

E(X2) = n′P (Si, Ti) + n′(n′ − 1)P (Si ∩ Si′ , Ti ∩ Ti′).
We now argue that E(X2)/E(X)2 → 1 as n→∞.

E(X2)

E(X)2
=
n′P (Si, Ti) + n′(n′ − 1)P (Si ∩ Si′ , Ti ∩ Ti′)

(n′)2P (Si, Ti)2

=
1

n′P (Si, Ti)
+

(
n′ − 1

n′

)
P (Si ∩ Si′ , Ti ∩ Ti′)

P (Si, Ti)2
.

When ` is bounded above by Mn, the first term goes to zero as n→∞. After simplifying a bit, we have,

P (Si ∩ Si′ , Ti ∩ Ti′)
P (Si, Ti)2

=
(`− 2)(`− 3)

`2

(
n− 5

n− 3

)2`−6(
n− 3

n− 1

)−2`
When ` = cn, the product of the later two functions limits to 1. When can therefore conclude that
E[X2]/E[X]2 → 1 whenever ` is (eventually) bounded below by kn and above by Mn. Since E[X]→∞,
asymptotically almost surely X > 0, meaning that there is some odd i for which a type i configuration occurs.

Corollary 4.15. Suppose there exits constants k and M so that for large enough n, k ≤ `/n ≤M ; then a.a.s.
G`,n is not abelian.
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5 Full Step

To analyze whether our group G`,n has full step we rely heavily on the results from Section 3. Define two families
of indicator random variables δ and γ as follows:

δv,i =

{
1 if vi = 0

0 if vi 6= 0
δw,i =

{
1 if wi = 0

0 if wi 6= 0
γi =

{
1 if vi = wi = 0

0 if vi 6= 0 or wi 6= 0

Note that γi = δv,iδw,i.

5.1 Part 1 of Theorem 1.2: when ` ∈ o(n2)

In this case we show that G`,n is a.a.s never full step but we separate the proofs into two subcases. In Corollary
5.2 we consider the case when ` ∈ O(n) while in Lemma 5.3 we consider the case when ` ∈ ω(n) ∩ o(n2). The
following lemma is standard but is the basis for Corollary 5.2 so we include the proof.

Lemma 5.1. If cn balls are thrown uniformly and independently into n bins, there is a.a.s. at least one empty
bin.

Proof . Let X be the number of empty bins. Then X =
∑

iXi where

Xi =

{
1 if bin i is empty

0 otherwise.

Then

E(X) = nE(Xi)

= nP(Bin i is empty)

= n

(
1− 1

n

)cn
and

E(X2) = E(X) + 2
∑
i 6=j

E(XiXj)

= n

(
1− 1

n

)cn
+ 2

n(n− 1)

2
P(Bins i and j are both empty)

= n

(
1− 1

n

)cn
+ n(n− 1)

(
1− 2

n

)cn
.

Thus E(X)→∞ and

E(X2)

E(X)2
=
n
(
1− 1

n

)cn
+ n(n− 1)

(
1− 2

n

)cn
n2
(
1− 1

n

)2cn
∼
(
1− 2

n

)cn(
1− 1

n

)2cn
→ 1,

And so P(X = 0)→ 0. Thus a.a.s. X > 0, and so there is at least one empty bin.

Corollary 5.2. If ` ∈ O(n), a.a.s. G`,n is not full-step.

Proof . Let V = V1 · · ·V` and W = W1 · · ·W`. Set up n− 1 bins and put a ball in bin i whenever some Vj = A±1i
or Wj = A±1i . Note that this process effectively throws in 2` balls uniformly and independently into the n− 1
bins. Since ` ∈ O(n), there is some c > 0 for which 2` < c(n− 1) for large enough n, and thus by Lemma 5.1
there is an empty bin. This empty bin corresponds to some i for which vi = wi = 0, and so by Lemma 2.4 G`,n
is not full-step.
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Lemma 5.3. If ` ∈ o(n2) and ` ∈ ω(n), a.a.s. G`,n is not full-step.

Proof . Let X be the number of positions on the superdiagonal for which V and W both have a 0. That is

X =
∑
i

γi

E(X) =
∑
i

E(γi)

= nP(vi = wi = 0).

By Corollary 3.2,

∼ nK2n

`

∼ K2n
2

`
→∞

when ` ∈ o(n2).

Also,

E(X2) = E

(∑
i

γi

)2


=
∑
i

E(γi) + 2
∑
i6=j

E(γiγj)

=
∑
i

P(vi = wi = 0) + 2
∑
i 6=j

P(vi = vj = wi = wj = 0).

By Corollaries 3.2 and 3.5,

∼ nK2n

`
+ n2K4n

2

`2

= K2n
2

`
+K4n

4

`2
.

Then

E(X2)

E(X)2
∼
K2 n2

` +K4 n4

`2

K4 n4

`2

and since ` ∈ o(n2) the second term dominates in the numerator to give us

∼
K4 n4

`2

K4 n4

`2

∼ 1.

Since E(X)→∞ and E(X2)/E(X)2 → 1 then P (X > 0)→ 1. So there is at least one i for which γi = 1, that
is vi = wi = 0. Then by Lemma 2.4 we have that G`,n is not full-step.

5.2 Part 2 of Theorem 1.2: when ` ∈ ω(n3)

Lemma 5.4. If ` ∈ ω(n3), a.a.s. G`,n is full-step.
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Proof . Let X be the number of zeroes on the superdiagonal of W . That is

X =
∑
i

δw,i.

Then

E(X) =
∑
i

E(δw,i).

Since the δ are identically distributed,

= nP(wi = 0).

By Lemma 3.1,

∼ nK
√
n

`

∼ K
√
n3

`

→ 0

when ` ∈ ω(n3). This means that P(X = 0)→ 1, and so a.a.s. none of the wi are 0.
Now, for G`,n to be full-step (that is, step n− 1), the (n− 2)-commutator subgroup must have a nontrivial

element. In particular, consider the commutator

Cn−2 = [W, [W, . . . [W︸ ︷︷ ︸
n− 2

, V ]]].

As we saw in Example 2.8 in Section 2 the upper-right corner entry of Cn−2 is given by

cn−2n,n = K1v1w2w3 · · ·wn−1 +K2w1v2w3 · · ·wn−1 + · · ·+Kn−1w1 · · ·wn−2vn−1

where each Ki =
(
n−1
i

)
with alternating signs. Since the wi and Ki are a.a.s. nonzero and ` ∈ ω(n), Lemma 3.6

says that P(cn−2n,n = 0)→ 0 and thus a.a.s. cn−2n,n 6= 0, making Cn−2 nontrivial.
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