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direct sum hypothesis is needed — cf. the next exercise. |
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(Imod7) ® (» mod J).
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(rmod 1) & (*'mod J) to 1+ mod I+ .

T Let 7 = (2, x) be the ideal generated by 2 and x in the 1ing R = Z|x]. The ring Z/27. =
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(a) Show that the map ¢ : 7 x J — Z/27. defined by

/{1 ®r R/J can be written as a simple tensor of the form
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(2, x) be the ideal generated by 2 and x in the ring R = Z[x] as in Exercise 17.
nonzero r € R. ow: that the nonzero element 20x —x®2in 7 ®pg I is a torsion element. Show in
at2 ® x — x @2 is annihilated by both 2 and x and that the submodule of 7 @p 7
erated by 2@ x — x ® 2 is isomorphic to R/7.
“(2, x) be the ideal generated by 2 and x in the ring R = Z[x].
2@24x®@xinl Qg Iisnota simple tensor, i.e., cannot be writt
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group (i.e., every element of A has finite order).

Show that the
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ap in (a) need not be injective (cf. Exercise 7.

Is a left and a right R-module such that rm o= mr for all » € R and

| it the elements £1r2 and 171 act the same on M for every ry, 1) € R,

ins'why: the assumption that R is commutative in the definition of an R-algebra
one.)

i 11 the m; are 0
j 1y independent then it is not necessarily tr;e that a i are.
ljznearZy :Ln— Fl) M = 7./27Z, and the element 1 ® 2.1

= 'th'_'eit 'fhe multiplicationin P roposition 19 makes A®p B into an R-algebra.
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