An example of a Galois group

Problem. Let $f(\lambda) = \lambda^4 - 2 \in \mathbb{Q}[\lambda]$. Let E be the splitting field of $f(\lambda)$ over \mathbb{Q} and let $G = \operatorname{Gal}(E/\mathbb{Q})$.

- (a) Find E and $[E:\mathbb{Q}]$.
- (b) Find G as a group of permutations of the roots of $f(\lambda)$.

Solution.

(a) Let $r = \sqrt[4]{2}$. The roots of $f(\lambda)$ in \mathbb{C} are r, zr, z^2r and z^3r where

$$z = e^{\frac{2\pi i}{4}} = \cos(\frac{2\pi}{4}) + i\sin(\frac{2\pi}{4}) = \cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2}) = 0 + 1i = i.$$

Thus, the roots of $f(\lambda)$ in \mathbb{C} are:

$$r, ir, -r, -ir. \tag{1}$$

So

$$E = \mathbb{Q}(r, ir, -r, -ir) = \mathbb{Q}(r, i).$$

Next r has degree 4 over \mathbb{Q} (its minimum polynomial over \mathbb{Q} is λ^4-2 which is irreducible over \mathbb{Q} by Eisenstein's criterion with p=2). Also, i has degree 2 over \mathbb{Q} (its minimum polynomial over \mathbb{Q} is λ^2+1). Hence, since $E=\mathbb{Q}(r,i)$, it follows (as proved in class) that

$$[E:\mathbb{Q}] \leq 2 \cdot 4 = 8.$$

Also we have

$$E$$
/ \
 $\mathbb{Q}(r) \ \mathbb{Q}(i)$

$$4 \setminus /2$$

$$\mathbb{Q}$$

Thus by mulitiplicativity of degree, we have $4 \mid [E : \mathbb{Q}]$. Hence, $[E : \mathbb{Q}] = 4$ or 8.

Now suppose for contradiction that $[E:\mathbb{Q}]=4$. Then, from (2), it follows that $E=\mathbb{Q}(r)$. But $i\in E$ and so $i\in\mathbb{Q}(r)$. Since $\mathbb{Q}(r)$ consists entirely of real numbers it follows that i is a real number (a contradiction). So $[E:\mathbb{Q}]=8$.

(b) Now since the roots of $f(\lambda)$ are distinct, we know that

$$|G| = |\operatorname{Gal}(E/\mathbb{Q})| = [E : \mathbb{Q}] = 8.$$

To describe the elements of G, we label the roots of $f(\lambda)$ in E as:

$$r_1 = r$$
, $r_2 = ir$, $r_3 = -r$, $r_4 = -ir$.

Then, as we've seen in class we can (and do) identify G as a subgroup of S_4 . So G is a subgroup of S_4 of order 8.

Since $[E:\mathbb{Q}]=8$ it follows from (2) and multiplicativity of degree that we have

$$E$$

$$2/ \setminus 4$$

$$K_1 K_2$$

$$4 \setminus /2$$

$$\mathbb{Q}$$
(3)

where

$$K_1 = \mathbb{Q}(r)$$
 and $K_2 = \mathbb{Q}(i)$.

Let

$$G_1 = \operatorname{Gal}(E/K_1)$$
 and $G_2 = \operatorname{Gal}(E/K_2)$.

Then, G_1 and G_2 are subgroups of G and, by (3), we have

$$|G_1| = [E:K_1] = 2$$
 and $|G_2| = [E:K_2] = 4$.

Also, by problem #1 on assignment #7, we have

$$G=G_1G_2$$
.

So it remains to compute G_1 and G_2 . This we can easily do since E/K_1 and E/K_2 are simple extensions.

 G_1 : Now $E = K_1(i)$. Moreover, i is a root of $\lambda^2 + 1 \in K_1[\lambda]$. Hence, since $[E:K_1] = 2$, it follows that $\lambda^2 + 1$ is the minimum polynomial of i over K_1 . So since i and -i are roots of $\lambda^2 + 1$ in E it follows from the extension theorem for simple extensions that there exists $\tau \in G_1$ so that $\tau(i) = -i$. Of course, since $\tau \in G_1 = \operatorname{Gal}(E/K_1)$, we have $\tau(r) = r$. Thus, since $E = \mathbb{Q}(r, i)$, we may describe τ as:

$$\tau : \begin{array}{c} r \mapsto r \\ i \mapsto -i. \end{array}$$

So

$$au(r_1) = au(r) = r = r_1$$
 $au(r_2) = au(ir) = au(i) au(r) = (-i)r = -ir = r_4$
 $au(r_3) = au(-r) = - au(r) = -r = r_3$
 $au(r_4) = au(-ir) = - au(i) au(r) = -(-i)r = ir = r_2.$

Hence, $\tau = (24)$ as a permutation of the roots of $f(\lambda)$. But $\tau \in G_1$ and G_1 has order 2. So

$$G_1 = \langle \tau \rangle = \{ \varepsilon, \tau \}.$$

 G_2 : Now $E = K_2(r)$. Moreover, r is a root of $\lambda^4 - 2 \in K_2[\lambda]$. Hence, since $[E:K_2] = 4$, it follows that $\lambda^4 - 2$ is the minimum polynomial of r over K_2 . So since r and ir are roots of $\lambda^4 - 2$ in E it follows from the extension theorem for simple extensions that there exists $\sigma \in G_2$ so that $\sigma(r) = ir$. Of course, since $\sigma \in G_2 = \operatorname{Gal}(E/K_2)$, we have $\mathscr{J}(i) = i$. Thus, since $E = \mathbb{Q}(r, i)$, we may describe \mathscr{J} as:

$$\sigma : \begin{array}{c} r \mapsto ir \\ i \mapsto i. \end{array}$$

So

$$\sigma(r_1) = \sigma(r) = ir = r_2$$
 $\sigma(r_2) = \sigma(ir) = \sigma(i)\sigma(r) = i(ir) = -r = r_3$
 $\sigma(r_3) = \sigma(-r) = -\sigma(r) = -ir = r_4$
 $\sigma(r_4) = \sigma(-ir) = -\sigma(i)\sigma(r) = -i(ir) = r = r_1$.

Hence, $\sigma = (1234)$ as a permutation of the roots of $f(\lambda)$. But $\sigma \in G_2$ and G_2 has order 4. So

$$G_2 = \langle \sigma \rangle = \{ \varepsilon, \sigma, \sigma^2, \sigma^3 \}.$$

Finally,

$$G = G_1 G_2 = \{ \tau^j \sigma^k \mid 0 \le j \le 1, \ 0 \le k \le 3 \}$$
$$= \{ \varepsilon, \sigma, \sigma^2, \sigma^3, \tau, \tau \sigma, \tau \sigma^2, \tau \sigma^3 \},$$

where $\tau = (24)$ and $\sigma = (1234)$. \square

Remark. The group G just calculated is the dihedral group D_8 consisting of all symmetries of the square:

(σ is clockwise rotation by 90 degrees and τ is reflection in the diagonal line containing 1 and 3.) In G one has the relations $\sigma^4 = \varepsilon$, $\tau^2 = \varepsilon$ and $\tau \sigma \tau^{-1} = \sigma^3$.