An example of a Galois group

Problem. Let f(A\) = X —2 e Q[)]. Let E be the splitting field of f(\) over Q and let
G = Gal(E/Q).

(a) Find F and |E : Q).

(b) Find G as a group of permutations of the roots of f(X\).

Solution.
(a) Let 7 = /2. The roots of f(A) in C are r, zr, 2%r and z3r where

2mi 2m .. 2w T .. T . .
z=€+ = cos(z) + zsm(z—) = cos(é—) +%sm(§) =0+ 1i=1i.
Thus, the roots of f(A) in C are:
r, ir, —r, —ir. (1)

S0
E = Q(r,ir,—r,—ir) = Q(r,1).

Next r has degree 4 over Q (its minimum polynomial over @ is A* —2 which is irreducible
over ( by Eisenstein’s criterion with p = 2). Also, ¢ has degree 2 over @ (its minimum
polynomial over Q is A? +1). Hence, since & = Q(r, 1), it follows (as proved in class) that

(E.Q <2 4=8.

Also we have

E

7\
Q(r) Q(z) (2)
4\ /2

Q

Thus by mulitiplicativity of degree, we have 4 | [E : Q. Hence, [E': Q] =4 or 8.

Now suppose for contradiction that [ @ Q] = 4. Then, from (2}, it follows that
E =@Qr). But i € F and so i € Q(r). Since Q(r) consists entirely of real numbers it
follows that 7 is a real number (a contradiction). So [E: (] = 8.

{b) Now since the roots of f{\) are distinct, we know that

|Gl = [Gal(E/Q)| = [F: Q] = 8.
To describe the elements of G, we label the roots of f(\} in F as: R

Ty=T, Tg =47, Ty = —T, T4 = —ir.
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Then, as we've seen in class we can (and do) identify G as a subgroup of Ss. So G is a
subgroup of Sy of order 8.
Since (£ : Q] = 8 it follows from (2) and multiplicativity of degree that we have

E

2/ \4
Ky K (3)
4\ /2

Q

where

K1 =Q(r) and Ky=Q().
Let
Gy = Gal(F/K;) and Gy = Gal(E/K,).
Then, GG1 and Gy are subgroups of G and, by (3), we have
|G1!2[EK1]:2 and |G2|:[EK2]:4
Also, by pfoblem #1 on assignment #7, we have
G = GG,

So it remains to compute G and G3. This we can easily do since E/K; and E/K, are
simple extensions.

Gy : Now E = K1(i). Moreover, i is a root of A2 +1 € K1[A]. Hence, since [E : K] = 2,
it follows that A? -+ 1 is the minimum polynomial of 7 over K. So since ¢ and —i are roots
of A2 +11in E it follows from the extension theorem for simple extensions that there exists
7 € G so that 7(4) = —i. Of course, since 7 € (1 = Gal(E/K1), we have 7(r) = r. Thus,
since £ = Q(r,1), we may describe 7 as:

TS
T e i
So
T(r)=7(r)=r=mr
7(ra) = 7(ir) = r(i)7(r) = (—i)r = —ir =14
T(r3)=71(-r)=—7(r) = —r=ry
7(ra) = 7(—ir) = —7(i)r{r) = —(—i)r =ir =19

Hence, 7 = (24) as a permutation of the roots of f(A). But v € G1 and G; has order 2.

So
Gy = {r) ={e, 7}
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Gy : Now E = Kj(r). Moreover, r is aroot of A —2 € K,[)\]. Hence, since [E : K| = 4,
it follows that A* - 2 is the minimum polynomial of r over Ks. So since r and ir are roots
of A*—2in E it follows from the extension theorem for simple extensions that there exists
o € Gy so that o(r) = ir. Of course, since ¢ € G = Gal(E/K>), we have #(i) = i. Thus,
since F = Q(r, 1), we may describe ff as: 2

0~
7
1Yt

So

Hence, o = (1234) as a permutation of the roots of f(A). But o € Gy and G» has order 4.

So
Gy = (o) = {¢,0,0%, 5%},

Finally,

G=0C1G,={rc" |0<j<1,0<k<3}

2
= {g,0,0%, o 7, To, 70, o},

where 7 = (24) and o = (1234). O

Remark. The group G just calculated is the dihedral group Dg consisting of all symmetries

of the square:
4 —1

|
3 —2

(o is clockwise rotation by 90 degrees and 7 is reflection in the diagonal line containing 1

and 3.) In G one has the relations 0! = ¢, 72 = ¢ and o7t = o3,




