Roots and Irreducibility

All of the facts listed below are proved in any abstract algebra book, e.g. Dummit and Foote.

Assumptions. Suppose that F is a field.

Roots

Definition 1. Suppose that $f(\lambda) \in F[\lambda]$. A root of $f(\lambda)$ in F is an element $c \in F$ so that f(c) = 0.

Proposition 2 (The factor theorem). Suppose that $f(\lambda) \in F[\lambda]$ and $c \in F$. Then,

c is a root of
$$f(\lambda) \iff \lambda - c \mid f(\lambda)$$
.

To find the roots of a polynomial $f(\lambda)$ is a polynomial over \mathbb{Q} , one can first multiply the polynomial by the least common multiple of the denominators of the coefficients in order to get a polynomial over \mathbb{Z} which has the same roots. To handle such polynomials, the following proposition is useful.

Proposition 3 (Finding roots in \mathbb{Q}). Suppose that

$$f(\lambda) = a_n \lambda^n + \dots + a_1 \lambda + a_0 \in \mathbb{Z}[\lambda],$$

where $n \ge 1$ and $a_n \ne 0$. Suppose that $c = \frac{r}{s} \in \mathbb{Q}$, where $r, s \in \mathbb{Z}$, s > 0 and gcd(r, s) = 1. If c is a root of $f(\lambda)$, then $r \mid a_0$ and $s \mid a_n$.

Example 4. Suppose that $f(\lambda) = 2\lambda^3 + \lambda + 1 \in \mathbb{Z}[\lambda]$. Suppose that $c = \frac{r}{s} \in \mathbb{Q}$, where $r, s \in \mathbb{Z}$, s > 0 and gcd(r, s) = 1. (Any rational number can be written in this form.) If c is a root of $f(\lambda)$, then by Proposition 3, we have $r \mid 1$ and $s \mid 2$. Thus, $r = \pm 1$ and s = 1 or 2. So $c = \pm 1$ or $\pm \frac{1}{2}$. However, none of these are roots of $f(\lambda)$. Hence, $f(\lambda)$ has no roots in \mathbb{Q} .

Irreducibility

Definition 5. Suppose that $f(\lambda)$ is a polynomial of degree $n \geq 1$ in $F[\lambda]$. We say that $f(\lambda)$ is reducible in $F[\lambda]$ if there exist polynomials $g(\lambda)$ and $h(\lambda)$ of smaller degree than n in $F[\lambda]$ so that

$$f(\lambda) = g(\lambda)h(\lambda).$$

Otherwise, we say that $f(\lambda)$ is *irreducible* over F.

Example 6. Any polynomial of degree 1 over F is irreducible over F. If $F = \mathbb{C}$, degree 1 polynomials are the only irreducible polynomials over F (by the Factor Theorem and the Fundamental Theorem of Algebra).

The following fact follows easily from the Factor Theorem:

)

Proposition 7. Suppose that $f(\lambda)$ is a polynomial of degree 2 or 3 over F. Then,

 $f(\lambda)$ is irreducible over $F \iff f(\lambda)$ has no roots in F.

Example 8. Suppose that $f(\lambda) = 2\lambda^3 + \lambda + 1 \in \mathbb{Z}[\lambda]$. We saw in Example 4 that $f(\lambda)$ has no roots in \mathbb{Q} . Hence, since $f(\lambda)$ has degree 3, it follows from Proposition 7 that $f(\lambda)$ is irreducible over \mathbb{Q} .

To show that a polynomial $f(\lambda)$ over \mathbb{Q} is irreducible, one can first multiply the polynomial by the least common multiple of the denominators of the coefficients in order to get a polynomial over \mathbb{Z} . (This does not change affect irreducibility.) To handle such polynomials, the following proposition is useful.

Proposition 9 (Eisenstein's criterion for polynomials over \mathbb{Z}). Suppose that

$$f(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} \dots + a_1 \lambda + a_0 \in \mathbb{Z}[\lambda],$$

where $n \geq 1$ and $a_n \neq 0$. Suppose that there exists a prime integer p so that

$$p \mid a_i \text{ for } 0 \le i \le n-1,$$

 $p \nmid a_n \text{ and } p^2 \nmid a_0.$

Then, $f(\lambda)$ is irreducible over \mathbb{Q} .

Example 10. Let $f(\lambda) = \lambda^{22} - 28\lambda + 50 \in \mathbb{Z}[\lambda]$. By Eisenstein's criterion with p = 2, $f(\lambda)$ is irreducible over \mathbb{Q} .

Example 11. Let

$$f(\lambda) = M \lambda^{p-1} + \lambda^{p-2} + \dots + \lambda + 1 \in \mathbb{Z}[\lambda],$$

where p is a positive prime. $(f(\lambda))$ is called the *cyclotomic* polynomial of degree p.) Let $g(\lambda) = f(\lambda + 1)$. One can show that $g(\lambda)$ satisfies the hypotheses of Eisenstein's criterion (using the fact that $f(\lambda) = \frac{\lambda^p - 1}{\lambda - 1}$ and hence $g(\lambda) = \frac{(\lambda + 1)^p - 1}{\lambda}$). Thus, $g(\lambda)$ is irreducible over \mathbb{Q} , and so $f(\lambda)$ is irreducible over \mathbb{Q} .

The characteristic of a field

Suppose that F is a field. If $n \in \mathbb{Z}$ and $a \in F$, we define

$$na = \left\{ egin{array}{ll} \dfrac{a + \cdots + a}{n \; ext{factors}} & ext{if} \; n > 0 \ 0 & ext{if} \; n = 0 \ \dfrac{(-a) + \cdots + (-a)}{-n \; ext{factors}} & ext{if} \; n < 0. \end{array}
ight.$$

Then,

$$(m+n)a = ma + na, \quad n(ma) = (nm)a,$$

 $n(a+b) = na + nb \quad \text{and} \quad n(ab) = (na)b = a(nb)$ (1)

for $m, n \in \mathbb{Z}$ and $a, b \in \mathbb{Z}$.

It follows easily from (1) that the set $\{n \in \mathbb{Z} : n1 = 0\}$ is an ideal of \mathbb{Z} . Hence, since \mathbb{Z} is a pid, there exists a unique integer $p \geq 0$ so that

$${n \in \mathbb{Z} : n1 = 0} = (p).$$
 (2)

p is called the *characteristic* of F, and we write char(F) = p.

There are two possibilites:

- (i) p = 0. This means that the only integer n so that n1 = 0 is n = 0.
- (ii) p > 0. This means that there exists a nonzero integer n so that n1 = 0. In that case p is the smallest integer > 1 so that

$$p1 = 0$$

in F. It is easy to show (see problem #6(a) on this assignment) that p is a prime in this case.

Notes: Let p = char(F).

(i) Suppose that p = 0. Then, if $n \in \mathbb{Z}$, we have by (2) that

$$n1 = 0 \iff n = 0$$
.

Moreover, if $a \neq 0$ in F and $n \in \mathbb{Z}$, then $na = 0 \iff n(a1) = 0 \iff a(n1) = 0 \iff n1 = 0$ (since F is a field) $\iff n = 0$. Hence, if $a \neq 0$ in F and $n \in \mathbb{Z}$,

$$na = 0 \iff n = 0.$$

(ii) Suppose that p > 0. Then, if $n \in \mathbb{Z}$, we have by (2) that

$$n1 = 0 \iff p \mid n$$
.

Moreover (arguing as in (i)) if $a \neq 0$ in F and $n \in \mathbb{Z}$,

$$na = 0 \iff p \mid n$$
.