Roots and Irreducibility

All of the facts listed below are proved in any abstract algebra book, e.g. Dummit and
Foote.

Assumptions. Suppose that F' is a field.

Roots

Definition 1. Suppose that f(A) € F[A]. A root of f()) in F is an element ¢ € F so that
f(e) = 0.
Proposition 2 (The factor theorem). Suppose that f(\) € F[)\ and ¢ € F. Then,

cis a root of f(A) <= XA—c| f(A).

To find the roots of a polynomial f()) is a polynomial over @, one can first multiply
the polynomial by the least common multiple of the denominators of the coefficients in
order to get a polynomial over Z which has the same roots. To handle such polynomials,

the following proposition is useful.

Proposition 3 (Finding roots in Q). Suppose that
FA) = an X"+ a1 +ag € Z[N,
where n > 1 and ay, # 0. Suppose that ¢ = £ € ), where r,s € Z, s > 0 and ged(r, s) = 1.

Ifc is a root of f(X), then r | ap and 3| ay.

Example 4. Suppose that f(A) = 2A3 + A+ 1 € Z[)\]. Suppose that ¢ = L € Q, where
7,8 € Z, 8 > 0 and ged(r, s) = 1. (Any rational number can be written in this form.) If ¢
is a root of f(\}), then by Proposition 3, we have r | 1 and s | 2. Thus, r = 4+1 and s = 1
or 2. So ¢ = +1 or 4. However, none of these are roots of f(\). Hence, f(\) has no

roots in Q.

Irreducibility
Definition 5. Suppose that f()) is a polynomial of degree n > 1 in F[)]. We say that
f(A) is reducible in F'[A] if there exist polynomials g(A) and A()) of smaller degree than n
in FA} so that

FA) = g(Ah(N).
Otherwise, we say that f(A) is drreducible over F.

Example 6. Any polynomial of degree 1 over F' is irreducible over F. If F = C, degree 1
polynomials are the only irreducible polynomials over ' (by the Factor Theorem and the
I'undamental Theorem of Algebra).

The following fact follows easily from the Factor Theorem:
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Proposition 7. Suppose that f(A) is a polynomial of degree 2 or 3 over F. Then,

f(A) is irreducible over ' <= f()\) has no roots in F.

Example 8. Suppose that f(A) = 2A° + X +1 € Z[\]. We saw in Example 4 that f())
has no roots in Q. Hence, since f(A) has degree 3, it follows from Proposition 7 that f())
is irreducible over Q).

To show that a polynomial f(A)} over Q is irreducible, one can first multiply the poly-
nomial by the least common multiple of the denominators of the coeflicients in order to
get a polynomial over Z. (This does not change affect irreducibility.) To handle such
polynomials, the following proposition is useful.

Proposition 9 (Eisenstein’s criterion for polynomials over Z). Suppose that
FO) =anX + an 1 A" 1 ard +ag € Z[N],

where n > 1 and a,, # 0. Suppose that there exists a prime integer p so that

pla; for0<i<n 1,
pta, and p®fa,.

Then, f(A) is irreducible over Q.

Example 10. Let f(X) = A?? — 28X + 50 € Z|)]. By Eisenstein’s criterion with p = 2,
f(X) is irreducible over Q.

Example 11. Let
FOY=APMaxe L 0P 2 b A1 e 2N,

where p is a positive prime. (f()) is called the cyclotomic polynomial of degree p.) Let
g(A) = f{A+1). One can show that g()\) satisfies the hypotheses of Eisenstein’s criterion

(using the fact that f(A) = 3= and hence g()) = %) Thus, g(A) is irreducible

over €, and so f{}) is irreducible over Q.




The characteristic of a field

Suppose that I is a field.
IfneZand a € F, we define

(a+-+a ifn >0
R —
n factors

(—a)—l-'--—l—(ma)J if n <0,

S

'

\ —n factors

Then,
(m-+n)a=ma+na n(ma)=/(nm)a,

nla+b) =na-+nb and n(ab) = (na)b = a(nb) (1)

for m,n € Z and a,b € Z.
It follows easily from (1) that the set {n € Z : n1 = 0} is an ideal of Z. Hence, since Z
is a pid, there exists a unique integer p > 0 so that

{neZ:nl=0}=(p). (2)

p is called the characteristic of F, and we write char(F') = p.
There are two possibilites:

(i) p = 0. This means that the only integer n so that n1 =0isn = 0.
(ii) p > 0. This means that there exists a nonzero integer n so that nl = 0. In that
case p is the smallest integer > 1 go that

pl=0

in F. It is easy to show (see problem #6(a) on this assignment) that p is a prime
in this case.

Notes: Let p = char(F').
(i) Suppose that p = 0. Then, if n € Z, we have by (2) that

nl=0 <= n=0.

Moreover, if ¢ £ 0 in F and n € Z, then na = 0 <= n(al) =0 < a(nl) =
0 <= nl =0 (since £ is a field) <= n=20. Hence, if ¢ # 0 in £ and n € Z,

ne=0 < n=>0
(i) Suppose that p > 0. Then, if n € Z, we have by (2) that
nl=0 < p|n
Moreover (arguing as in (i)} if ¢ £ 0 in F and n € Z,

nae=0 <= p|n.



