
MATH 542 MODULES

Suggested Review: Basic facts about vector spaces, basis, linear transformations, matri-
ces, 11.1 and 11.2 in Dummit and Foote and well as basic group theory and ring theory.

Groups, subgroups, normal subgroups, quotient groups. Rings, Ideals, left and right ideals,
quotient rings, Integral domain, principal ideals, principal ideal domains (PIDs), Euclidean
domains.

Assumption: R is a ring with identity 1.

1. Basic Theory of Modules

Definition 1.1. Suppose M is a set with operation +. Suppose that there is a map R×M →
M . Denote the image of (r,m) by rm (or r ·m) where r ∈ R and m ∈M .
M is called an R-module (or module over R) if

(1) M is an abelian group under +
(2) (a+ b)x = ax+ bx a, b ∈ R, x ∈M
(3) a(x+ y) = ax+ ay a ∈ R, x, y ∈M
(4) (ab)x = a(bx) a, b ∈ R, x ∈M
(5) 1x = x x ∈M

Notes:

a) The map R×M →M is called the action of R on M .
b) In (1) we are assuming that + is commutative and associative, has identity 0 and

each x ∈M has an additive inverse −x, and that −x is unique.
c) If R = F where F is a field then modules over F are called vector spaces over F .

Example 1.2. Let M be an abelian group with operation +. Let R = Z. We define an
action of Z on M by:

nx =


x+ x+ · · ·+ x︸ ︷︷ ︸

n times

if n > 0

0 if n = 0

(−x) + (−x) + · · ·+ (−x)︸ ︷︷ ︸
n times

if n < 0

for n ∈ Z, x ∈ M . Then M is a Z module. We call this action the natural action. Note
that any abelian group is a Z-module under the natural action.

Example 1.3. Suppose R is a ring with 1 . Let M = R. Define an action of R on M by
ax = product of a and x in R. So M = R is a module over R. In this example M is called
a regular module over R.
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Example 1.4. Suppose R is a ring with 1. Let M = Rn = {(r1, . . . , rn) | r1, . . . rn ∈ R}.
Define (r1, . . . , rn) + (s1, . . . , sn) = (r1 + s1, . . . , rn + sn) and a(r1, . . . , rn) = (ar1, . . . , arn).
Then Rn is an R module.

1.1. Basic Properties. Suppose M is an R-module. Then

a) 0x = 0 for x ∈M
b) a0 = 0 for a ∈ R
c) (−a)x = a(−x) = −(ax)
d) (−1)x = −x for x ∈M

Proof. a)

0x+ 0x = (0 + 0)x - axiom of M

= 0x - axiom of R

= 0x+ 0 - axiom of M

So 0x = 0 by cancellation. b) is proved similarly. c) (−a)x+ ax = ((−a) + a)x = 0x = 0, d)
(−1)x = −(1x) = −x. �

Definition 1.5 (Subtraction). Suppose M is an R-module. Define

x− y = x+ (−y) for x, y ∈M
Then a(x− y) = ax− ay for a ∈ R, x, y ∈M .

1.2. Submodules.

Definition 1.6. Suppose M is an R-module. A submodule of M is a subgroup N of M
which is closed under the action of R. In other words, N is a subset of M such that

(1) 0 ∈ N
(2) x, y ∈ N ⇒ x+ y ∈ N
(3) x ∈ N ⇒ −x ∈ N
(4) x ∈ N, r ∈ R⇒ rx ∈ N

Note:

a) (3) follows from (4)
b) {0} and M are submodules of M
c) We write N ≤M and say N is a submodule of M .

Example 1.7. Let M be an abelian group. We saw that M is a Z module under the natural
action. Any submodule of M is a subgroup of M (by definition). Conversely, any subgroup
of M is a submodule of M .

Example 1.8. Let M = Z2, then M is a Z module. Let N = {(a1, a2) ∈ Z2 | 2a1+3a2 = 0}.
Then N ≤M (exercise).

Question 1.1. Is any submodule of Z2 obtained this way? (other than {0}, Z2) ? Answer
no: consider submodule of all even coefficients. Describe all submodules of Z2.

Example 1.9. Let R be arbitrary. Regard R as an R-module (via the regular action). Then
the submodules of R are left ideals of R. If R is commutative then the submodules of R are
the ideals of R.
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1.3. Quotient Modules.

Definition 1.10 (Quotient groups). Suppose H is a normal subgroup of a group G. Then
G/H = {gH | g ∈ G} is a group under the operation (g1H)(g2H) = g1g2H. Note also that
g1H = g2H ⇔ g−12 g1 ∈ H.

Definition 1.11 (Quotient Module). Suppose N ≤M . Then N is a subgroup of M but M
is abelian and hence any subgroup of M is normal. Thus we can form the quotient group

M/N = {x+N | x ∈M}
and we have

x+N = y +N ⇔ (−y) + x ∈ N
⇔ x+ (−y) ∈ N
⇔ x− y ∈ N

The operation on M/N is

(x+N) + (y +N) = (x+ y) +N.

Since M is abelian, M/N is also an abelian group. We define the action of R on M/N by

a(x+N) = ax+N.

Is this operation well defined? Suppose that x + N = y + N (1) where x, y ∈ M . If a ∈ R,
we must show that ax+N = ay +N (2). By (1) we have x− y ∈ N since N is a subgroup
of M . Thus ax − ay ∈ N since N is a submodule and so ax + N = ay + N . So the action
is well defined. It is easy to check that M/N satisfies axioms (2)− (5) in the definition of a
module . Therefore M/N is a module.

Conclusion. Suppose N ≤ M . Then M/N is a module called the quotient module of M
by N . The zero element is 0 +N . Also −(x+N) = (−x) +N .

Notation. Suppose N ≤M . We write M̄ = M/N . Also write x̄ = x+N . Then

x̄ = ȳ ⇔ x− y ∈ N
x̄+ ȳ = x+ y

ax̄ = ax

−x̄ = −x

Example 1.12. Suppose R is an arbitrary ring. Regard R as an R-module. Suppose L is
a left ideal of R (i.e. a submodule of R). Then L ≤ R so we can form the quotient module
R/L.

1.4. Module homomorphisms.

Definition 1.13. Let M,M ′ be R-modules. A homomorphism from M into M ′ is a map
φ : M →M ′ so that

a) φ(x+ y) = φ(x) + φ(y) x, y ∈M
b) φ(rx) = rφ(x) r ∈ R, x ∈M

Note. If R = F a field then homomorphisms are called linear transformations.
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Example 1.14. Define φ : Z2 → Z by φ(a1, a2) = 2a1 + 3a2. Then φ is a Z-module homo-
morphism.

Definition 1.15. Suppose φ : M → M ′ is an R-module homomorphism. Define the kernel
to be

ker(φ) = {x ∈M | φ(x) = 0}

and the image of φ to be

im(φ) = {φ(x) | x ∈M}

Then ker(φ) ≤M and im(φ) ≤M ′.

Example 1.16. Let φ : Z2 → Z be as above. Then ker(φ) = {(a1, a2) ∈ Z2 | 2a1 + 3a2 = 0}
and im(φ) = Z since gcd(2, 3) = 1.

Definition 1.17. Suppose M,M ′ are R-modules. An isomorphism from M to M ′ is a
bijective homomorphism φ : M → M ′. We say M,M ′ aare isomorphic (written M ' M ′ )
if there is an isomorphism from M to M ′.

Exercise 1.18. Suppose φ : M → M ′ is an isomorphism. Show that φ−1 : M ′ → M is also
an isomorphism. Show that ' is an equivalence relation.

Note. Suppose φ : M →M ′ is a homomorphsim. Then

• φ injective ⇔ ker(φ) = {0}
• φ surjective ⇔ im(φ) = M ′

The Natural Homomorphsim. Suppose N ≤M . Then

M/N = {x+N | x ∈M}

is an R-module. Define π : M → M/N by π(x) = x̄ = x + N . One checks that π is a
homomorphism. Call π the natural (canonical) homomorphism. Note that ker(π) = N and
im(π) = M/N . so that π is a surjective homomorphism with kernel N .

Theorem 1.19 (1st Isomorphism Theorem for Modules). Suppose φ : M →M ′ is a surjec-
tive homomorphsim of R-modules with kernel N . Then

M ′ 'M/N

Proof. Define ψ : M/N →M ′ by

ψ(x+N) = φ(x).

We must check that

• ψ is well-defined
• ψ preserves addition
• ψ preserves the action of R
• ψ is injective
• ψ is surjective
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By the first isomorphism theorem for groups everthing holds except perhaps that ψ pre-
serves the action. To check that note that

ψ(r(x+ n)) = ψ(rx+N) by definition of action onM/N

= φ(rx) by definition of ψ

= rφ(x) φ is R-module homomorphism

= rψ(x+N) by definition of ψ

�

Problem 1.1. Let M = Z2 and N = {(a1, a2) | 2a1 + 3a2 = 0}. Show that M/N ' Z (as
Z-modules)

Proof. Define φ : M → Z by φ(a1, a2) = 2a1 + 3a2. Then ker(φ) = N and φ is surjective.
Therefore by the first isomorphism theorem M/N ' Z. �

Theorem 1.20 (Lattice Isomorphism theorem (4th)). Suppose N ≤M .

a) If K is a submodule of M which contains N then K/N is a submodule of M/N .
b) Any submodule of M/N is equal to K/N for some unique submodule K of M con-

taining N .

Proof. Exercise. �

Definition 1.21. Suppose M1,M2, . . . ,Mk are R-modules. Define

M1 ⊕M2 ⊕ · · · ⊕Mk = {(x1, x2, . . . , xk) | x1 ∈M1, x2 ∈M2, . . . , xk ∈Mk}
Define

(x1, x2, . . . , xk) + (y1, y2, . . . , yk) = (x1 + y1, x2 + y2, . . . , xk + yk)

and
a((x1, x2, . . . , xk) = (ax1, ax2, . . . , axk).

Then M1⊕M2⊕· · ·⊕Mk is an R-module called the external direct sum of M1,M2, . . . ,Mk.

Example 1.22. R⊕R⊕ · · · ⊕R︸ ︷︷ ︸
n times

= Rn

1.5. The building blocks for modules. Suppose R is a commutative ring with 1. Suppose
a ∈ R. Let

(a) = Ra = {ra | r ∈ R}.
Then (a) is an ideal of R. Hence (a) is a submodule of R (regarded as an R-module). Thus
we can form the quotient module R/(a). If a = 0 we get R/(0) ' R. If R is a PID we’ll
prove that any finitely generated module is isomorphic to a direct sum of modules of the
form R/(a).

Example 1.23. Let R = Z. Then

Z/(2) = {0 + (2), 1 + (2)} = {0̄, 1̄}
is a Z-module and so is

Z/(3) = {0̄, 1̄, 2̄}.
Let

M = Z/(2)⊕ Z/(3) = {(0̄, 0̄), (0̄, 1̄), (0̄, 2̄), (1̄, 0̄), (1̄, 1̄), (1̄, 2̄)}
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Example 1.24. Consider the Z-module

M = Z⊕ Z⊕ Z︸ ︷︷ ︸
free part

⊕Z/(2)⊕ Z/(2)⊕ Z/(12)︸ ︷︷ ︸
torsion part

Definition 1.25. Suppose M is an R-module. Suppose M1,M2, . . . ,Mk are submodules of
M . We define

M1 +M2 + · · ·Mk = {m1 +m2 + · · ·+mk | m1 ∈M1,m2 ∈M2, . . . ,mk ∈Mk}.
Then M1 +M2 + · · ·+Mk ≤M .

Note.

M = M1 +M2 + · · ·Mk ⇔ ∀x ∈M, x can be expressed in the above form.

Definition 1.26. Suppose M1,M2, . . . ,Mk ≤M . We say that M is the internal direct sum
if every x ∈M can be expressed uniquely in the form

x = x1 + x2 + · · ·+ xk where x1 ∈M1, x2 ∈M2, . . . xk ∈Mk.

Proposition 1.27. Suppose that M1,M2, . . . ,Mk ≤ M . Then M is the internal direct sum
of M1,M2, · · · ,Mk if and only if

a) M = M1 +M2 + · · ·+Mk

b) x1 + x2 + · · ·+ xk = 0⇒ x1 = x2 = · · · = xk = 0

Also b) can be replaced by the equivalent condition:

b’) (M1 + · · ·+Mi) ∩Mi+1 = {0} for i = 1, . . . , k − 1

Proof. Exercise. �

Example 1.28. Suppsoe M1,M2 ≤M . Then M is the internal direct sum of M1 and M2 if
and only if

a) M = M1 +M2

b’) M1 ∩M2 = {0}
Exercise 1.29. Let M = Z2. Let M1 = {(a1, a2) | 2a1 + 3a2 = 0} and M2 = {(a1, a2) |
a1 + a2 = 0}. Show that M is the internal direct sum of M1 and M2.

The connection between internal and external direct sums.

a) Suppose M1,M2, . . . ,Mk ≤ M and M is the internal direct sum of M1,M2, . . . ,Mk.
Define

φ : M1 ⊕M2 ⊕ · · · ⊕Mk →M

by φ(x1, . . . , xk) = x1 + x2 · · · + xk. Then φ is an R-module homomorphism (check
this) and since M is the internal direct sum of M1, . . . ,Mk then φ is an isomorphism.
Thus

M 'M1 ⊕M2 ⊕ · · · ⊕Mk

b) Suppose M1,M2, . . . ,Mk are modules. Let M = M1 ⊕M2 ⊕ · · · ⊕Mk and let

M ′
1 = {(x1, 0, . . . , 0) | x1 ∈M1}

...

M ′
k = {(0, . . . , 0, xk) | xk ∈Mk}

ThenM ′
1 'M1, . . . ,M

′
k 'Mk. Moreover, M is the internal direct sum ofM ′

1, . . . ,M
′
k.
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Notation. Suppose M1, . . . ,Mk ≤ M . We often write M = M1 ⊕M2 ⊕ · · · ⊕Mk to mean
that M is the internal direct sum of M1, . . . ,Mk. This abuse of notation will not cause any
confusion.

Problem 1.2. Let M = Z/(6) = {0̄, 1̄, 2̄, 3̄, 4̄, 5̄ as a Z module. Let M1 = {0̄, 3̄} and
M2 = {0̄, 2̄, 4̄}. Show that M = M1 ⊕M2 (internal).

Proof. We must show that M = M1 +M2 and M1 ∩M2 = {0̄}. Note that 1̄ = 3̄ + 4̄. Where
3̄ ∈M1 and 4̄ ∈M2. Therefore 1̄ ∈M1 +M2, hence n1̄ ∈M1 +M2 for all n ∈ Z. Therefore
M = M1 +M2. Also clearly M1 ∩M2 = {0}. �

Note. In the above problem, if follows that M ' M1 ⊕M2 but clearly M1 ' Z/(2) and
M2 ' Z/(3). Therefore M ' Z/(2)⊕Z/(3). Therefore Z/(6) ' Z/(2)⊕Z/(3) as Z modules.

Exercise 1.30. Suppse that M = M1 ⊕ M2 ⊕ · · · ⊕ Mk (internal). Suppose that N1 ≤
M1, . . . , Nk ≤Mk. Let N = N1 +N2 + · · ·+Nk. Show that

M/N ' (M1/N1)⊕ · · · ⊕ (Mk/Nk) .

(Hint: use the first isomorphism theorem)

The submodule Rx. Suppose M is a module and x ∈M . Let

Rx = {rx | r ∈ R}
Then Rx is a submodule of M containing x. In fact Rx is the smallest submodule of M
containing x. (i.e. Rx is contained in all modules that contain x). Rx is called the submodule
of M generated by x or the cyclic submodule of M generated by x. The element x is called
a generator of Rx.

Example 1.31. Suppose M is an abelian group regarded as a Z-module. Let x ∈M . Then
Zx = {nx | n ∈ Z} which is the cyclic subgroup generated by x.

Definition 1.32. Suppose M is a module and x1, x2, . . . , xk ∈M . The submodule

Rx1 +Rx2 + · · ·+Rxk = {r1x1 + r2x2 + · · · rkxk | r1, r2, . . . , rk ∈ R}
is called the submodule of M generated by x1, x2, . . . , xk. It is the smallest submodule of M
containing x1, x2, . . . , xk.

Definition 1.33. Let M be a module. M is said to be finitely generated if there exists
x1, x2, . . . , xk ∈M such that M = Rx1 +Rx2 + · · ·+Rxk. In that case {x1, . . . , xk} is called
a generating set for M or a spanning set.

Recall. A left ideal of R is a subgroup L of R under + which is closed under left multipli-
cation by elements of R (i.e. r ∈ R, ` ∈ L ⇒ r` ∈ L). If R is commutative, left ideals are
simply ideals.

Definition 1.34. Suppose M is a module. We define

Ann(M) = {r ∈ R | rx = 0 ∀x ∈M}
Then Ann(M) is an ideal of R (Exercise). Ann(M) is called the annihilator of M .

Definition 1.35. Suppose M is a module and x ∈M . Let

Ann(x) = {r ∈ R | rx = 0}
Then Ann(x) is a left ideal of R (Exercise). Ann(x) is called the annihilator of x.
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Proposition 1.36. Suppose R is commutative. Suppose M = Rx is a cyclic module with
generator x. Then Ann(M) = Ann(x).

Proof. “ ⊆” Let r ∈ Ann(M). Then ry = 0 for all y ∈ M . Therefore rx = 0 and so
r ∈ Ann(x).
“supseteq” Suppose r ∈ Ann(x) then rx = 0. We want to show that ry = 0 for all y ∈ M .
Let y ∈M . Then y = sx for some s ∈ R. So

ry = rsx

= srx since R commutative.

= s0

= 0

So ry = 0 for all r and so r ∈ Ann(M). �

Exercise 1.37. Suppose M1, . . . ,Mk ≤M . Show that

Ann(M1 + · · ·+Mk) = Ann(M1) ∩ Ann(M2) ∩ · · · ∩ Ann(Mn)

Corollary 1.38. Suppose R is commutative and M = Rx1 + · · ·Rxk is a finitely generated
module over R. Then

Ann(M) = Ann(x1) ∩ Ann(x2) ∩ · · · ∩ Ann(xk)

Theorem 1.39 (Structure of cyclic modules). a) Suppose M = Rx is a cyclic module
with generator x. Then M ' R/L where L = Ann(x).

b) Suppose that L is a left ideal of R. Then R/L is a cyclic module with generator
x = 1 + L. Moreover L = Ann(x) in that case.

c) Suppose R is a commutative ring and L1 and L2 are left ideals of R. Then

R/L1 ' R/L2 ⇔ L1 = L2

Proof. a) Suppose M = Rx and let L = Ann(x). We define φ : R → M by φ(r) = rx for
r ∈ R. Then for r1, r2 ∈ R we have

φ(r1 + r2) = (r1 + r2)x = rx1 + rx2 = φ(r1) + φ(r2).

Also for r1, r2 ∈ R we have φ(r1r2) = r1r2x = r1φ(r2). Therefore φ is an R-module homo-
morphism. Since M = Rx, φ is surjective. Also

ker(φ) = {r ∈ R | φ(r) = 0}
= {r ∈ R | rx = 0}
= Ann(x)

= L

By the first isomorphism theorem M ' R/L.
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b) Suppose L is a left ideal of R. Let M = R/L. Let x = 1 + L ∈M . Then

Rx = {rx | r ∈ R}
= {r(1 + L) | r ∈ R}
= {r + L | r ∈ R}
= R/L

= M

Therefore M = Rx and so M is cyclic with generator x. Finally,

Ann(x) = {r ∈ R | rx = 0}
= {r ∈ R | r(1 + L) = 0 + L}
= {r ∈ R | r ∈ L} = L

c) Exercise. �

1.6. Structure of cyclic modules over a PID. Suppose R is an integral domain. This
means that R is commutative with 1, 1 6= 0 and for a, b ∈ R, ab = 0 ⇒ a = 0 or b = 0. If
a, b ∈ R then we say a is an associate of b if a = ub for some unit u ∈ R. We write this as
a ∼ b. Then ∼ is an equivalence relation on R. Recall that if a, b ∈ R then

(a) = (b) ⇔ a | b and b | a
⇔ a ∼ b

Example 1.40. Let R = Z. The units of Z are ±1. So if a, b ∈ Z , (a) = (b) ⇔ a ∼ b ⇔
a = ±b.

Theorem 1.41 (Structure of cyclic modules over a PID). Suppose R is a PID. If M a
cyclic module over R then M ' R/(a) for some a ∈ R and conversely R/(a) is cyclic for
any a ∈ R. Additionally two such modules R/(a) and R/(b) are isomorphic iff a ∼ b.

Proof. Suppose R is a PID. If M is a cyclic module over R then M ' R/L for some
submodule (i.e. ideal) L of R by the previous theorem. Since R is a PID L = (a) for some
a ∈ R. Therefore M ' R/(a) for some a ∈ R . Conversely if a ∈ R then R/(a) is cyclic (by
previous theorem). Finally if a, b ∈ R then R/(a) ' R/(b) ⇔ (a) = (b) by part c) of the
previous theorem. Therefore by the above discussion a ∼ b. �

Example 1.42. Let R = Z. Then any integer is an associate of a unique integer ≥ 0. So
the cyclic Z- modules (i.e. cyclic groups) are the Z modules Z/(0),Z/(1),Z/(2), . . .. Note
that Z/(0) ' Z and Z/(1) = {0}.

1.7. Free modules.

Definition 1.43. Suppose M is an R-module and β = {x1, x2, . . . , xk} is a subset of M .

a) β is called a generating set (or spanning set) for M if every x ∈M can be written as

x =
k∑
i=1

rixi

where ri ∈ R.
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(1) β is said to be independent if(
k∑
i=1

rixi = 0

)
⇒ ri = 0 ∀i

c) β is said to be dependent if β is not independent.
d) β is called a basis for M if β is an independent spanning set for M .

Exercise 1.44. Show that β is a basis for M if every x ∈ M can be expressed uniquely in
the form

∑k
i=1 rixi where ri ∈ R.

Definition 1.45. A module M is said to be free if it has a basis β = {x1, . . . , xk}.

Property 1.1 (Universal Property of Free Modules). Suppose M is a free R-module with
basis β = {x1, x2, . . . , xk}. Suppose M ′ is another R-module and γ = {y1, y2, . . . , yk} is a
subset of M ′. Then there exists a unique homomorphism φ : M →M ′ so that φ(xi) = yi for
i = 1, . . . , k.

Proof. Define φ : M →M ′ by

φ(
k∑
i=1

rixi) =
k∑
i=1

riyi

for ri ∈ R. φ is well-defined since β is a basis. φ is a homomorphism and φ(xi) = yi for
i = 1, . . . , k. Suppose ψ is any homomorphism from M to M ′ so that ψ(xi) = yi. Then

ψ(
k∑
i=1

rixi) =
k∑
i=1

ψ(rixi) =
k∑
i=1

riψ(xi) =
k∑
i=1

riyi

hence φ = ψ. �

Example 1.46. Let M = Rk. Let e1 = (1, 0, . . . , 0), . . . , ek = (0, . . . , 0, 1). Let β =
{e1, . . . , ek} then β is a basis for M called the standard basis.

Proposition 1.47. Suppose M is a free module with basis β = {x1, . . . , xk}. Define φ :
Rn →M by

φ(r1, . . . , rn) =
k∑
i=1

rixi for ri ∈ R

Thus φ is an isomorphism and so

M ' Rn

Proof. φ is a homomorphism. It is surjective since β is a generating set for M . φ is injective
since β is independent. �

Key Question. Let M be a free module over R. Is it true that any two bases contain the
same number of elements?
Notes

a) This is equivalent to Rn ' Rm ⇒ n = m.
b) We will prove this when R is an integral domain. It is in fact true when R is

commutative. In general it is false.
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Lemma 1.48. Suppose R is an integral domain. suppose M is a free module with basis
β = {x1, . . . , xm}. Suppose γ = {y1, . . . , yn} ⊂M and n > m. Then γ is dependent.

Proof. First, each yj =
∑n

i=1 qijxi for j = 1, . . . , n where qij ∈ R and (qij) is an m×n matrix
over R. Consider the equation

(1)
n∑
j=1

rjyj = 0

We want to find r1, . . . , rn not all 0 satisfying 1. Now

LHS =
n∑
j=1

rj

(
m∑
i=1

qijxj

)
=

n∑
j=1

m∑
i=1

rjqijxi

=
m∑
i=1

n∑
j=1

rjqijxi =
m∑
i=1

(
n∑
j=1

rjqij

)
xi

Thus (1) holds iff

(2)
n∑
j=1

qijrj = 0 i = 1, . . . ,m

this is a homogeneous system of m equations in n unknowns where n > m. If R were a field
then from linear algebra we would know that (2) has a nontrivial solution.

Definition 1.49. The quotient field or field of fractions of an integral domain R is the field

F = {[a, b] | a, b ∈ R, b 6= 0, [a, b] = [c, d] if a = ec, b = ed, for some e ∈ R}
with addition [a, b] + [c, d] = [ad+ cb, bd] and multiplication given by [a, b][c, d] = [ac, bd].

Exercise 1.50. Check that the quotient field is actually a field when R is an integral domain.

Let F = quotient field of R. F exists since R is an integral domain. Now (2) can be
regarded as a system of equations with coefficients from F . Then from linear algebra we
have a nontrivial solution for (2) in F . We can write our solution as r1 = a1/b, . . . , rn = an/b
where r1, . . . , rn ∈ R, b ∈ R \ {0}. Thus r1 = a1, . . . , rn = an is a non-trivial solution of (2)
over R. Therefore (1) also has a non-trivial solution over R and γ is dependent. �

Theorem 1.51. Suppose M is a free module over an integral domain R. Then the rank of
M denoted rk(M) is the number of elements in a basis. By the previous theorem this is well
defined.

Exercise 1.52. Suppose R is an integral domain

a) If M is a free module of rank n and M 'M ′. Show that M ′ is a free module of rank
n.

b) Show that Rm ' Rn implies m = n.

Matrice.

(1) Mm×n(R) is the set of all m×n matrices over R.Then Mm×n(R) is an R-module with
component addition and component action.

(2) Rn = Mn×1(R) if we view Rn as the set of column matrices whose ijth entry is aij
11



(3) If A ∈Mm×n(R) and B ∈Mn×p(R) then AB ∈Mm×p(R) is defined as usual.
(4) Mn×n(R) is a ring using matrix addition and multiplication.
(5) If A ∈Mn×n we say that A is invertible if there exists B ∈Mn×n(R) so that

AB = BA = I

In that case B is unique and denoted by A−1.
(6) If R is commutative and A ∈ Mn×n(R) we define detA ∈ R as usual. Then A is

invertible iff detA is a unit.

Example 1.53. Let A =

(
1 2
3 4

)
∈M2×2(Z). Then detA = −2 6= ±1 so A is not invertible

in inM2×2(Z).

Assumption. R is an integral domain so the rank of a free module over R is well defined.

Coordinates. Suppose M is a free module of rank n. Let

β = {x1, x2, . . . , xn}

be a basis for M . If x ∈M then x can be uniquely expressed in teh form

x =
n∑
i=1

rixi where r1, . . . , rn ∈ R

We define

[x]β =


r1
r2
...
rn

 ∈ Rn

[x]β is called teh coordinate vector of x relative to β.

Definition 1.54. An endomorphism of M is an R module homomorphism from M to M . (If
R = F is a field then an endomorphism is called a linear operator.) If φ is an endomorphism
of M then

φ(xj) =
n∑
i=1

aijxi for j = 1, . . . , n

where A = (aij) ∈Mn×n(R). In that case we define

[φ]β = A = (aij)

[φ]β is called the matrix of φ relative to β.

Proposition 1.55. Let B be a basis for a free module M of rank n. Then

a) x→ [x]β is an R-module isomorphism of M onto Rn.
b) If φ is an endomorphism of M then

[φ(x)]β = [φ]β[x]β ∀ x ∈M

Moreover [φ]β is the unique matrix in Mn×n(R) with this property.
12



c) If φ, ψ are endomorphisms of M and r ∈ R then

[φ+ ψ]β = [φ]β + [ψ]β

[rφ]β = r[φ]β

[φψ]β = [φ]β + [ψ]β

Where φ+ ψ, rφ, φψ are defined as usual.

Proof. Same proof as in linear algebra. �

Change of Basis. Suppose M is a free module of rank n with bases β = {x1, . . . , xn} and
γ = {y1, . . . , yn}. Then

yj =
n∑
i=1

qijxi, j = 1, . . . , n

where Q = (qij) ∈Mn×n(R). Q is called the change of basis matrix from γ to β. We denote
Q by change(γ, β).

Proposition 1.56. Suppose β, γ are bases for a free module M of rank n. Let Q =
change(γ, β). Then

a) [x]β = Q[x]γ for all x ∈ M . Moreover Q is the unique matrix in Mn×n(R) with this
property.

b) Q is invertible. Q−1 = change(β, γ).
c) If φ is an endomorphism of M then

[φ]γ = Q−1[φ]βQ

Proof. a), b) Exercises. To prove c):

[φ(x)]γ = Q−1[φ(x)]β

= Q−1[φ]β[x]β

= Q−1[φ]βQ[x]γ

Therefore Q−1[φ]βQ = [φ]γ. �

Exercise 1.57.
Suppose that M is a free module of rank n with basis β = {x1, . . . , xn}. Suppose Q is an
invertible matrix in Mn×n(R). Define

yj =
n∑
i=1

qijxi j = 1, . . . , n

where Q = (qij). Let γ = {y1, . . . , yn}. Then γ is a basis for M and Q = change(γ, β).

Suppose R is a PID. If M = {0} we regard the empty set as a basis for M . Hence M is
free of rank 0.

Theorem 1.58. Suppose R is a PID. Suppose M is a free module of rank n where n ≥ 0.
Suppose N ≤M . Then N is a free module of rank m ≤ n.

13



Proof. We prove this by induction on n. Suppose n = 0. Therefore M = {0} and so N = {0}.
Therefore N is free of rank 0. Suppose n ≥ 1. Assume that the theorem is true for free
modules of rank n− 1. If M has a basis β = {x1, . . . , , xn} let M2 = Rx2 +Rx3 + · · ·+Rxn.
Then {x2, . . . , xn} is a basis for M2 (why?). Therefore M2 is free of rank n − 1. By the
induction hypothesis any submodule of M2 is free of rank ≤ n − 1. If N is contained in
M2 then N is free of rank ≤ n − 1 and hence of rank ≤ n. Assume N is not contained
in M2. Now N ∩M2 ≤ M2. Thus N ∩M2 is free of rank ≤ n − 1. Thus N ∩M2 has a
basis {y2, . . . , ym} where m − 1 ≤ n − 1. Our strategy is to find a vector y1 ∈ N so that
{y1, y2, . . . , ym} is a basis for N . Now every element of N is also an element of M and hence
expressible in the form

r1x1 + r2x2 + · · ·+ rnxn

where r1, r2, . . . , rn ∈ R. Let I be the set of all elements r ∈ R which occur as the coefficients
of x1 in an expression for some element of N . Then I is an ideal of R. Since R is a PID then
I = (a) for some a ∈ R. Since N is not contained in M2 then I 6= {0}. Therefore a 6= 0.
Now a ∈ I. Thus there exists y1 ∈ N of the form

y1 = ax1 +
n∑
i=2

aixi (#)

where a2, . . . , an ∈ R. We will show that {y1, . . . , ym} is a basis for N . To show {y1, . . . , yn}
generates N let x ∈ N . Since x ∈M we have

x = r1x1 +
n∑
i=2

rixi

where r1, r2, . . . , rn ∈ R. Since x ∈ N then r1 ∈ I so r1 = s1a for some s1 ∈ R. Therefore

x = s1ax1 +
n∑
i=2

rixi

and so

x = s1(y1 −+
n∑
i=2

aixi) + +
n∑
i=2

rixi

= s1y1 +
n∑
i=2

(ri − s1ai)xi︸ ︷︷ ︸
(∗)

From the form of (∗) we can see that (∗) is in M2. Also (∗) = x − s1y1 and so (∗) ∈ N .
Therefore (∗) ∈ N ∩M2. Therefore (∗) is a linear combination of {y2, . . . , ym} . To show
{y1, . . . , ym} is independent consider an equation

m∑
i=1

riyi = 0 (#)

14



where r1, . . . , rm ∈ R. We must show that r1 = r2 = · · · = rm = 0. By substituting in for y1
in (#) we have

r1(ax1 +
n∑
i=2

aixi) +
m∑
i=2

riyi = 0

so that

r1ax1 +
n∑
i=2

r1aixi +
m∑
i=2

riyi = 0︸ ︷︷ ︸
(∗∗)

Now (∗∗) is in N ∩M2 and hence in M2 and hence is a linear combination of x2, . . . , xn. But
{x1, . . . , xn} is independent so r1a = 0 . But a 6= 0 which means r1 = 0. By (#) we have

m∑
i=2

riyi = 0

but {y2, . . . , ym} is independent. Therefore r2 = 0, . . . , rm = 0. Therefore {y1, . . . , ym} is
independent and therefore is a basis for N . Therefore N is free of rank m and m ≤ n.

�

Definition 1.59. Suppose A is an m × n matrix over R. An elementary row operation on
A is one of the following:

a) Add a times row i to row j where a ∈ R and i 6= j. ( ARij(a))
b) Interchange rows i and j where i 6= j. ( IRij)
c) Multiply row i by u where u is a unit in R. (MRij(u))

Similarly we define elementary column operations ACij(a), ICij, MCi(u).

Definition 1.60. A n × n matrix E is called elementary if it can be obtained from I by a
single elementary row or column operation.

Example 1.61. Let R = Z. Then

E =

(
1 0
3 1

)
is elementary by AR12(3) or by AC21(3).

Proposition 1.62. Suppose A is an m× n matrix over R

a) Suppose E is an elementary matrix obtained from I by the elementary row operation
O. Then EA can be obtained from A by O.

b) Suppose E is an elementary matrix obtained from I by the elementary column oper-
ation O. Then AE can be obtained from A by O.

Corollary 1.63. If E is an elementary matrix then E is invertible and E−1 is also elemen-
tary.

Corollary 1.64. If A is the product of elementary matrices then A is invertible.

Definition 1.65. Suppose A,B ∈ Mm×n(R). We say that A is equivalent to B written
A ∼ B if there exists an invertible matrix J ∈ Mm×m(R) and an invertible K ∈ Mm×m(R)
so that

B = JAK.

(Check that ∼ is an equivalence relation.)
15



Corollary 1.66. Suppose that A,B ∈Mm×n(R) and B can be obtained from A by a sequence
of elementary row and column operations. Then A ∼ B.

Definition 1.67. A Smith normal form (SNF) is an m× n matrix over R of the form
d1 0 0 · · · · · · 0
0 d2 0 · · · · · · 0

0 0
. . . · · · · · · 0

0 0 0 0 · · · 0
0 0 0 0 0 0


where d1, d2, . . . , dr are non zero elements of R and d1 | d2 | · · · | dr

Recall Suppose R is a Euclidean domain with norm N . Then N(a) is a non-negative integer
for any a ∈ R with a 6= 0. If a, b ∈ R and b 6= 0 then there exists a, r ∈ R with a = qb + r
and either r = 0 or r 6= 0 and N(r) < N(b)

Lemma 1.68 (The basic step). Suppose A = (aij) is an m× n matrix over R with a11 6= 0.
Suppose R is a Euclidean domain. Then A is equivalent to a matrix B = (bij) so that b11 6= 0
and either

a) N(b11) < N(a11)

b) B =


b11 0 0 · · ·
0 b22 b23 · · ·
0 b32

. . . · · ·
...

...
...

. . .

 and b11 divides bij for i, j > 2.

Proof. (Algorithm)

Case 1) Suppose a11 does not divide some entry directly below. Suppose for simplicity a11
does not divide a21. Then

a21 = qa11 + r

where r 6= 0 and N(r) < N(a11). So

A =

 a11 · · ·
qa11 + r · · ·

...
. . .

 AR12(−q) →

a11 · · ·r · · ·
...

. . .

 IR12 →

 r · · ·
a11 · · ·
...

. . .

 = B

Case 2) Suppose a11 does not divide some entry directly to the right. Do as in Case 1) with
elementary column operations.
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Case 3) Suppose a11 divides all entries directly below and to the right. Add multiples of row
1 to the rows and column 1 to the other columns to get a matrix

a11 0 0 · · ·
0 a′22 a′23 · · ·
0 a′32

. . . · · ·
...

...
...

. . .


If a11 divides a′ij call this matrix B and we are done. Suppose a11 does not divide a′ij
for some i, j ≥ 2. Perform ACj1(1) to get

a11 0 0 · · ·
a′2j a′22 a′23 · · ·
a′3j a′32

. . . · · ·
...

...
...

. . .


and proceed as in Case 1).

�

Theorem 1.69. Suppose R is a PID. Suppose A ∈ Mn×n(R). Then A is equivalent to a
Smith normal form S.

Proof. (Where R is a Euclidean Domain). If A = 0 we can take S = 0. Suppose A 6= 0. By
performing row and column interchanges we can obtain a matrix whose (1, 1) entry is 6= 0. (
In practice, move the non-zero entry o fsmallest norm to (1, 1) positon using interchanges).
Repeat the Basic Step until option b) in the Basic Step Lemma occurs. We get a new matrix
of the form 

b11 0 · · · 0

0
. . . · · · · · ·

...
... X · · ·

0
...

...
. . .


where b11 divides all entries of X. Notice that any matrix which is equivalent to X will have
all entries divisible by b11. Repeat until a Smith Normal Form is obtained. �

Notes.

a) Suppose R is a PID (not necessarily a Euclidean domain). In the proof of the The-
orem one needs a replacement for the Basic Step Lemma using the length function.
(See assignment)

b) The nonzero entries d1, d2 . . . dr appearing in a Smith Normal Form equivalent to A
are uniquely determined up to association.

Problem 1.3. Let A =

3 2 2
2 3 0
3 0 4

 ∈M3×3(Z). Find the Smith Normal Form equivalent to

A.
17



Solution.

A→IC13

2 2 3
0 3 2
4 0 3

→
2 2 1

0 3 2
4 0 −1

→
 1 2 2

2 3 0
−1 0 4

→
1 2 2

0 −1 −4
0 2 6

→
1 0 0

0 −1 −4
0 2 6


X =

(
−1 −4
2 6

)
→
(
−1 −4
0 −2

)(
−1 0
−2 0

)
So

A ∼

1 0 0
0 −1 0
0 0 −2

 ∼
1 0 0

0 1 0
0 0 2



Definition 1.70. Suppose (aij) = A ∈ Mm×n(R). Let L be a free module of rank m with
basis {x1, . . . , xm}. Let yj =

∑m
i=1 aijxi for j = 1, . . . , n and let K = Ry1 +Ry2 + · · ·+Ryn.

Let
M = L/K = {x+K | x ∈ L} = {x̄ | x ∈ L}

Notice that {x1, . . . , xm} generates L. Therefore {x̄1, . . . , x̄m} generates M . Notice that
yj ∈ K for j = 1, . . . , n. Therefore ȳj = 0 for all j. So

m∑
i=1

aijx̄i = 0

for j = 1, . . . , n.

In summary. {x̄1, . . . , x̄m}isa generating set for M and these generators satisfy the relations
m∑
i=1

aijx̄i = 0 j = 1, . . . , n

A is called the relations matrix for M . M is also called teh module determined by generators
and relations with relations matrix A.
Note. We could have used a different free module L′ with different basis {x′1, . . . , x′m}. The
resulting M ′ is isomorphic to M .

Example 1.71. Let R = Z Let M be the module determined by the generators {x̄1, x̄2, x̄3}
and the relations

3x̄1 + x̄2 + 4x̄3 = 0

4x̄1 + 4x̄2 + 4x̄3 = 0

Formally M = L/K where L is free with basis {x1, x2, x3} and K is the submodule of L
generated by 3x1 + x2 + 4x3 and 4x1 + 4x2 + 4x3. The relations matrix of M is3 4

1 4
4 4


Proposition 1.72. Suppose A,A′ ∈ Mm×n(R) and A ∼ A′. Let M and M ′ be the modules
determined by generators and relations with relations matrices A and A′ respectively. Then
M 'M ′.

18



Proof. We have

A = QAP (1)

where Q,P are invertible. (Qis m×m and P is n× n.) Recall that M = L/K where L is a
free module of rank M with basis {x1, . . . , xm} and K is the submodule of L generated by
{y1, . . . , yn} where

m∑
i=1

aijxi, j = 1, . . . , n (2)

Let A = (aij), A
′ = (a′ij), Q = (qij), Q

−1 = (q̂ij), P = (pij) and let

x′j =
m∑
i=1

q̂ijxi, i− 1, . . . ,m (3)

Since Q−1 is invertible {x′1, . . . , x′m} is a bsis for L. Let

y′j =
n∑
i=1

pijyi j = 1, . . . , n (4)

Since P is invertibel {y′1, . . . , y′n} is a generating set for K (See homework). Then one can
show that

yj =
m∑
i=1

a′ijx
′
i, j = 1, . . . , n

Therefore M is the module determined by generators and relations with relations matrix A′

and so is M ′. Therefore M 'M ′ �

Exercise 1.73. Suppose M is a module and x ∈M where Ann(x) = {0}. Let a ∈ R. Show
that

Rx�Rax '
R�(a)

Convention R0 = {0} by convention. Therefore Rn is a free module of rank n for all n ≥ 0.

Theorem 1.74. Suppose M is a finitely generated module over a PID R which is generated
by a set of m elements. Then

(1) M is isomorphic to the module determined by generators and relations with relations
matrix of the form

S =



1
. . .

1
c1

. . .
cτ

0
. . .


(∗)

where c1, . . . , cτ are non zero, non unitrs and c1 | c2 | · · · | cτ .
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b) In that case

M ' R/(c1)⊕ · · ·R/(cτ )⊕Rρ

where ρ = m−# non zero entries of Smith Normal Form.

Proof. a) Suppose M is generated by {z1, . . . , zm}. Let L be a free module with basis
{x1, . . . , xm}. By the universal property of free modules there exists a homomorphism
φ : L → M so that φ(xi) = zi for i = 1, . . . ,m. Since {z1, . . . , zm} generates M , φ
is surjective. Let K = kerφ. Then by the first isomorphism theorem M ' L/K.
From now on assume that M = L/K where L is free with basis {x1, . . . , xm}, K
is a submodule of a free module L and hence K is free. In particular K is finitely
generated. Let {y1, . . . , yn} be a generating set for K. Then since {x1, . . . , xm} is a
basis for L we can write

yj =
m∑
i=1

aijxi j = 1, . . . , n

where A = (aij) ∈ Mm×n(R). Therefore M is the module determine dby generators
and relations with relations matrix A. Next we know that A ∼ S where S is a
Smith normal form. We can assume S has the form (∗). Hence as we just proved M
is isomorphic to the module determined by generators and relations with relations
matrix S.

b) Suppose M satisfies the conclusion of a). We can assume that M equals the module
determined by S. So M = L/K where L has basis {x1, . . . , xm}, K has generating
set {y1, . . . , yn} and the reations matrix is S. We write

S =



1
. . .

1
c1

. . .
cτ

0
. . .


=



d1
. . .

. . .
. . .

. . .
ds

0
. . .


where di = 1 for i = 1, . . . , k and dk+i = ci for i = 1, . . . , τ . Then

y1 = d1x1

y2 = d2x2
...

ys = dsxs

yj = 0, j > s

Hence

L = Rx1 ⊕ · · · ⊕Rxm
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since {x1, . . . , xm} is a basis for L. Also

K = Ry1 + · · ·+Ryn

= Ry1 + · · ·+Rys

= Rd1x1 + · · ·+Rdsxs

= Rd1x1 + · · ·+Rdsxs +R0xs+1 + · · ·+R0xm

From homework we know

K = Rd1x1 ⊕ · · · ⊕Rdsxs ⊕R0xs+1 ⊕ · · · ⊕R0xm

Therefore M = L/K (from homework) so

M '
(
Rx1�Rd1x1

)
⊕ · · · ⊕

(
Rxs�Rdsxs

)
⊕
(
Rxs+1�R0xs+1

)
⊕ · · ·

' R�(d1)
⊕ · · · ⊕R�(ds)

⊕R�(0)⊕ · · · ⊕
R�(0)︸ ︷︷ ︸

m−s

' R�(1)⊕ · · · ⊕
R�(1)⊕

R�(c1)
⊕ · · · ⊕R�(cτ )

⊕Rm−s

' R�(c1)
⊕ · · · ⊕R�(cτ )

⊕Rm−s

�

Example 1.75. Let M be the module over Z determined by generators and relations with
relations matrix

A =

3 4
1 4
4 4

 ∼
1 0

0 4
0 0

 = S

Then by the theorem part b) we have M ∼ Z/(4)⊕ Z3−2 = Z/(4)⊕ Z.

Note. Taking a closer look at the example and the proof of the theorem we can assume that
M = L/K where M has basis {x1, x2, x3} and K has generating set {y1, y2} where R = Z
and y1 = x1 and y2 = 4x2. Thus L = Rx1⊕Rx2⊕Rx3 and K = Rx1⊕R4x2⊕R0x3. From
homework we know that

M = L/K '
(
Rx1�Rx1

)
⊕
(
Rx2�R4x2

)
⊕
(
Rx3�R0x3

)
' Z/(4)⊕ Z

The uniqueness question. Given finitely generated M are the elements c1, . . . , cτ and the
integer ρ in the theorem uniquely determined (up to associates)?

Exercise 1.76. Suppose that M = M1 ⊕M2. Show that M/M1 'M2.

Definition 1.77. Suppose M is a module. Let

Tor(M) = {x ∈M | ax = 0 for some a 6= 0 ∈ R}
Then Tor(M) ≤M (exercise). Tor(M) is called the torsion submodule of M .

Exercise 1.78.
a) If M = M1 ⊕ · · · ⊕Mn then Tor(M) = Tor(M1)⊕ · · · ⊕ Tor(Mn)
b) If M is free then Tor(M) = {0}.
c) If Ann(M) 6= {0} then Tor(M) = M .

21



Exercise 1.79. Compare and contrast Ann(M), T or(M), aM,Ma.

Proposition 1.80. Suppose that

M ' R�(c1)
⊕ · · · ⊕R�(cτ )

⊕Rρ

where 0 6= c1, . . . , cτ ∈ R and ρ ≥ 0. Then

Tor(M) ' R�(c1)
⊕ · · · ⊕R�(cτ )

and
M�Tor(M) ' Rρ.

Proof. We know that
M = M1 ⊕ · · · ⊕Mτ ⊕ L

where M1, . . . ,Mτ , L ≤M , Mi ' R/(ci) and L ' Rρ. Then

Tor(M) = Tor(M1)⊕ · · · ⊕ Tor(Mτ )⊕ Tor(L)

But Mi ' R/(ci) and so Ann(Mi) = (ci) 6= {0}. Therefore Tor(Mi) = Mi for all i. Also L
is free so Tor(L) = {0}. Therefore

Tor(M) = M1 ⊕ · · · ⊕Mτ

So
M�Tor(M) ' L ' Rρ

and
Tor(M) ' R�(c1)

⊕ · · · ⊕R�(cτ )

�

Corollary 1.81. Suppose that

M ' R�(c1)
⊕ · · · ⊕R�(cτ )

⊕Rρ

and
M ' R�(d1)

⊕ · · · ⊕R�(dj)
⊕Rσ

where c1, . . . , cτ , d1, . . . , dj are nonzero elements of R and ρ, σ ≥ 0. Then

R�(c1)
⊕ · · · ⊕R�(cτ )

' R�(d1)
⊕ · · · ⊕R�(dj)

and ρ = σ.

Proof. We know that

Tor(M) ' R�(c1)
⊕ · · · ⊕R�(cτ )

and
Tor(M) ' R�(d1)

⊕ · · · ⊕R�(dj)

Therefore
R�(c1)

⊕ · · · ⊕R�(cτ )
' R�(d1)

⊕ · · · ⊕R�(dj)

Also
M�Tor(M) ' Rρ
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and

M�Tor(M) ' Rσ

Therefore Rρ ' Rσ. By a previous theorem ρ = σ. �

Progress on the uniqueness question: We can assume ρ = 0.

Definition 1.82. Suppose M is a module and a ∈ R. We define

Ma = {x ∈M | ax = 0}

and

aM = {ax | x ∈M}

Then Ma ≤M and aM ≤M .

Lemma 1.83. Suppose M is a module and a ∈ R. If M 'M1 ⊕ · · · ⊕Mn then

Ma ' (M1)a ⊕ · · · ⊕ (Mn)a

and

aM ' (aM1)⊕ · · · ⊕ (aMn)

Proof. Exercise. (First for internal then for external direct sum) �

Lemma 1.84. Suppose that M ' R/(a) where a is a nonzero element of R. Then suppose
that p is an irreducible element of R (i.e. a non unit such that if p = ab then either a or b
is a unit.) Then

a) If p - a then Mp = {0} and pM = M = R/(a)
b) If p | a then Mp ' R/(p) and pM ' R/(a/p)

Proof. a) Suppose p - a. Then since p is irreducible, p and a are relatively prime. Also
aM = {0}. Hence paM = {0}. Thus by the homework we have

aM = Mp and pM = Ma

and

M = Ma ⊕Mp

So

Mp = aM = {0}

Also M = Ma ⊕Mp = Ma ⊕ {0} = Ma and so

pM = Ma = M.

b) Suppose p | a. Then a = pb for some b ∈ F . We can assume M = R/(a). So

M = {r + (a) | r ∈ R} = {r̄ | r ∈ R}
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Then for r ∈ R

r̄ ∈Mp ⇔ pr̄ = 0

⇔ pr = 0

⇔ pr ∈ (a)

⇔ a | pr
⇔ pb | pr
⇔ r ∈ (b)

Therefore

Mp = (b)�(a) = (b)�(pb) '
(1)�(p) (from homework)

' R�(p)

Next

pM = {pr̄ | r ∈ R}
= {pr | r ∈ R}
= (p)/(a)

= (p)/(bp)

= (1)/(b)

= R/(b) = R/(a/p)

�

Lemma 1.85. Suppose that p is an irreducible element of R. If

R�(p)⊕ · · · ⊕
R�(p)︸ ︷︷ ︸

m

' R�(p)⊕ · · · ⊕
R�(p)︸ ︷︷ ︸

n

then m = n.

Proof. Exercise. �

Shorthand. The shorthand for M1 ⊕ · · · ⊕Mn is
⊕n

i=1Mi.

Theorem 1.86. Suppose c1, . . . , cτ and c′1, . . . , c
′
τ ′ are nonzero non units in R so that

c1 | c2 | · · · | cτ
and

c′1 | c′2 | · · · | c′τ ′ .
Suppose

τ⊕
i=1

R�(ci)
'

τ ′⊕
i=1

R�(c′i)

Then τ = τ ′ and ci ∼ c′i for i = 1, . . . , τ
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Proof. (We allow the empty sum on either side which is by definition {0}). let

N =
τ∑
i=1

L(ci)

where L(ci) is the length of ci. We prove the theorem by induction on N . Suppose N = 0.
Then τ = 0 (no ci’s). Therefore the left hand side is {0} and so the right hand side is {0}.
Therefore τ ′ = 0 and therefore τ = τ ′. Therefore vacuously ci ∼ c′i for i = 1, . . . , τ . Assume
N > 0 and assume that the theorem holds for all smaller N . Let

M =
τ⊕
i=1

R�(ci)
'

τ ′⊕
i=1

R�(c′i)

Let p be any irreducible element of R. Let k ≥ 0 be chosen so that c1, . . . , ck are not divisible
by p adn ck+1, . . . , cτ are divisible by p. Similarly introduce k′ ≥ 0 for the elements c′1, . . . , c

′
τ ′ .

Then by the two previous lemmas

Mp '
τ⊕
i=1

(
R�(ci)

)
p

=
τ⊕

i=k+1

R�(p).

Similarly

Mp '
τ ′⊕

i=k′+1

R�(p).

Therefore
τ⊕

i=k+1

R�(p) =
τ ′⊕

i=k′+1

R�(p).

By a previous lemma we have τ − k = τ ′ − k. This holds for any choice of p. Suppose p is
chosen so that p | c1. Therefore p | ci for all i. Then k = 0. Thus τ = τ ′ − k. Therefore
τ ≤ τ ′. Finally, once and for all chose p such that p | c1. Exactly as above we get k = 0 and
so τ − 0 = τ − k′ and so k′ = 0 and we have p | ci and p | c′i for all i = 1, . . . , τ . Recall that

M '
τ⊕
i=1

R/(ci) and
τ⊕
i=1

R/(c′i)

Thus

pM '
τ⊕
i=1

p
(
R�(ci)

)
'

τ⊕
i=1

R�(ci/p)

But ci/p ∼ 1 for i = 1, · · · , `. Therefore

pM '
τ⊕

i=`+1

R�(ci/p)

Similarly

pM '
τ⊕

i=`′+1

R�(c′i/p)
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Thus
τ⊕

i=`+1

R�(ci/p)
'

τ⊕
i=`′+1

R�(c′i/p)

By the induction hypothesis τ − ` = τ − `′ and so ` = `′ and ci/p ∼ c′i/p for i = `+ 1, . . . , τ
and therefore ci ∼ c′i for i = ` + 1, . . . , τ . Also ci ∼ p ∼ c′i for i = 1, . . . , `. Thus ci ∼ c′i for
i = 1, . . . , τ �

Theorem 1.87 (Fundamental Theorem for finitely generated modules over a PID). Suppose
M is a finitely generated module over a PID R. Then there exists nonzero nonunit elements
c1, . . . , cτ such that c1 | c2 | · · · | cτ and an integer ρ ≥ 0 such that

M ' R�(c1)
⊕ · · · ⊕R�(cτ )

⊕Rρ

Moreover the elements c1, . . . , cτ are uniquely determined in order up to association and ρ is
unique.

Proof. We have proved the first statement. For uniqueness suppose

M =
τ⊕
i=1

R�(ci)
⊕Rρ '

τ ′⊕
i=1

R�(c′i)
⊕Rρ′

where ci, ρ, c
′
i, ρ
′ are as above. We proved

τ⊕
i=1

R�(ci)
'

τ ′⊕
i=1

R�(c′i)

and ρ = ρ′. By the uniqueness theorem τ = τ ′ and ci ∼ c′i for i = 1, . . . , τ �

Definition 1.88. Let M, c1, . . . , cτ , ρ be as in the fundamental theorem. The elements
c1, . . . , cτ in order are called the invariant factors of M . The integer ρ is called the free
rank of M .

Note. If M is a finitely generated Z module (i.e. a finitely generated abelian group) then
the invariant factors c1, . . . , cτ are always chosen positive, in which case they are unique.

Problem 1.4. Let M be the Z module determined by generators and relations with relations
matrix

A =

 2 4 6
6 24 24
12 18 30


Find the invariant factors and the free rank of M .

Solution.

A ∼

2 0 0
0 6 0
0 0 6

 hence M ' Z�(2)⊕
Z�(6)⊕

Z�(6)⊕Z
3−3 ' Z�(2)⊕

Z�(6)⊕
Z�(6). Thus

the invariant factors are 2, 2, 6 and the free rank is 0.

Definition 1.89. Suppose M is a module. We say that M is a torsion module is Tor(M) =
M .
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Proposition 1.90. Suppose M is a finitely generated R module. Then the following are
equivalent:

a) M is a torsion module.
b) Free rank of M is 0.
c) Ann(M) 6= {0}

Moreover if M is a torsion module then

M ' R�(c1)
⊕ · · · ⊕R�(cτ )

where c1, . . . , cτ are the invariant factors of M and Ann(M) = (cτ ).

Proof. By the fundamental theorem we have

M ' R�(c1)
⊕ · · · ⊕R�(cτ )

⊕Rρ

where c1, . . . , cτ are the invariant factors of M and ρ is the free rank of M .
“a) ⇒ b)” Suppose Tor(M) = M . We saw that M/Tor(M) ' Rρ so Rρ = {0} and so

ρ = 0.

“b) ⇒ c)” Suppose M has free rank 0, i.e. ρ = 0. Then M ' R�(c1)
⊕ · · · ⊕R�(cτ )

thus

Ann(M) =
τ⋂
i=1

Ann(R/(ci)) =
τ⋂
i=1

(ci) = (cτ )

since c1 | c2 | · · · | cτ .

“ c)⇒ a)” Suppose Ann(M) 6= {0}. Then we may chose a ∈ Ann(M)\{0}. Then ax = 0
for all x ∈M . Hence Tor(M) = M .

�

Example 1.91. For R = Z, finitely generated torsion Z-modules are precisely the finite

abelian groups. Any such group is isomorphic to Z�(c1)
⊕ · · · ⊕ Z�(cτ )

where ci ≥ 2 and

c1 | c2 | · · · | cτ .

Proposition 1.92. Suppose a, b are nonzero relatively prime elements of R (i.e. gcd(a, b) =
1). Then

R�(ab) '
R�(a)⊕

R�(b).

Proof. Define

φ : R→ R�(a)⊕
R�(b)

by r 7→ (r̄, r̄). Check that φ is a homomorphism and is surjective (using gcd(a, b) = 1) and
kerφ = (ab). �

Corollary 1.93. Suppose b1, . . . , bk 6= 0 are pairwise coprime elements of R. Then

R�(b1b2 · · · bk) '
R�(b1)

⊕ · · · ⊕R�(bk)
.

Example 1.94. Let R = Z.

R�(60) = Z�(60) '
Z�(22)⊕

R�(3)⊕
Z�(5).
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Theorem 1.95 (Primary Decomposition Theorem). Suppose M is a finitely generated tor-
sion module over a PID R. Then there exists irreducible elements p1, . . . , pk ∈ R (not
necessarily distinct) and positive integers e1, . . . , ek such that

M ' R�(pe11 )⊕ · · · ⊕
R�(pekk ) (#)

Moreover the irreducible elements and the positive integers are uniquely determined up to
order of summands.

Proof. Standard. �

Terminology. (#) is called the primary decomposition of M . The sequence pe11 , . . . , p
ek
k is

called the sequence of elementary divisors of M .

Example 1.96. Consider the finite abelian group with invariant factors 10, 60, 300. So
M ' Z/(10)⊕ Z/(60)⊕ Z/(300). Now 10 = 2 · 5, 60 = 22 · 3 · 5, 300 = 22 · 3 · 52 so

Z�(10) '
Z�(2)⊕

Z�(5),

Z�(60) '
Z�(22)⊕

Z�(3)⊕
Z�(5),

Z�(300) '
Z�(22)⊕

Z�(3)⊕
Z�(52)

Hence

M ' Z�(2)⊕
Z�(22)⊕

Z�(22)⊕
Z�(3)⊕

Z�(3)⊕
Z�(5)⊕

Z�(5)⊕
Z�(52)

The elementary divisors of M are

2, 22, 22, 3, 3, 5, 5, 52

Note. The invariant factors of a finitely generated torsion module can be recovered from
the elementary divisors (and vice-versa). If M is a finite abelian group the order of M equals
the product of the invariant factors which equals the product of elementary divisors.

Example 1.97. Suppose M is the finite abelian group with elementary divisors

3, 3, 32, 52, 53, 7, 72, 73

The invariant factors are (in reverse order)

32 · 53 · 73, 3 · 52 · 72, 3 · 7

Recall. The order of a finite abelian group is the product of its elementary divisors.

Problem 1.5. Classify all abelian groups of order 400 up to isomorphism.

Solution. 400 = 24 · 52. 52 decomposes as 52 or 5, 5. The sequence of powers of 2 whose
product is 24 is given in the following list

24 4

23, 2 3 1

22, 22 2 2 partitions of 4

22, 2, 2 2 1 1

2, 2, 2, 2 1 1 1 1
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Thus the abelian groups of over 400 up to isomorphism are given by P ⊕Q where

P ' Z�(16) or Z�(8)⊕
Z�(2) or Z�(4)⊕

Z�(4) or Z�(4)⊕
Z�(2)⊕

Z�(2),

or Z�(2)⊕
Z�(2)⊕

Z�(2)⊕
Z�(2)

and
Q ' Z�(25) or Z�(5)⊕

Z�(5).

Therefore there are 10 abelian groups of order 400 up to isomorphism.

Example 1.98. By considering the partitions of 5 we see there are 7 abelian groups of order
p5 up to isomorphism for any prime p. There are 51 groups of order 32, 11 abelian groups
of order 64.

Assume.

a) F is a field and R = F [λ] the ring of polynomials over R in the indeterminant λ. R is
a Euclidean domain with norm N defined by N(a(λ)) = deg(a(λ)) for 0 6= a(λ) ∈ R
hence R is a PID.

b) Assume T is a linear operator on V a finite dimensional vector space over R. This
means T : V → V is a homomorphism of vector spaces over F . We use T to give V
the structure of an R module by defining

f(λ)v = f(T )v

for f(λ) ∈ R and v ∈ V . The R module V is called the R module associated to T .

Proposition 1.99. V is a finitely generated torsion R-module.

Proof. Any finite generating set for V over F is also a finite generating set for V over R.
Hence V is finitely generated over R. To show that V is a torsion R module we must show
that Tor(V ) = V . Let x ∈ V . Let dimF (V ) = n. Consider

{x, λx, λ2x, . . . , λnx}
This set has n+1 elements and therefore is dependent over F . Hence there exist a0, a1, . . . , an ∈
F not all 0 such that

a0x+ a1λx+ · · ·+ anλ
nx = 0

Therefore
(a0 + a1λ+ · · ·+ anλ

n)x = 0

But a0+a1λ+· · ·+anλn is a nonzero element of R. Therefore x ∈ Tor(V ) and so Tor(V ) = V
and so V is a torsion R module. �

Theorem 1.100. Suppose V is the module associated with a linear operator T . Thus

V ' R�(f1(λ))⊕ · · · ⊕
R�(fτ (λ))

where f1(λ), . . . , fτ (λ) are monic polynomials over F of degree ≥ 1 so that f1(λ) | f2(λ) |
· · · | fτ (λ) Moreover the polynomials f1(λ), . . . , fτ (λ) are uniquely determined. Hence

V = V1 ⊕ · · · ⊕ Vτ
where V1, . . . , Vτ are R submodules of V so that Vi is cyclic with annihilator (fi(λ)) for
i = 1, . . . , τ .
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Notes.

a) The polynomials f1(λ), . . . , fτ (λ) are called the invariant factors of T .
b) Vi is a submodule of V . We saw on a homework assignment that this means that

the Vi is a T -invariant subspace of V . Hence we may restrict T to a linear operator
Ti on Vi defined by Tix = Tx. for x ∈ Vi. Then the R module Vi is the R module
associated to Ti.

Conclusion. We are reduced to analyzing the case when the R module associated to T is
cyclic with nonzero annihilator.

Note. The theorem follows from the proposition and the fundamental theorem.

Definition 1.101. Suppose f(λ) = λn + an−1λ
n−1 + · · · + a1λ + a0 is a monic polynomial

over F of degree n ≥ 1. We define the companion matrix of f(λ) to be the n× n matrix

Cf(λ) =



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

. . . . . . . . . 0
...

0 0 · · · 1 0 −an−1
0 0 · · · 0 1 −an


Recall. If A ∈ Mn×n(F ), the characteristic polynomial of A is χA(λ) = det(λI − A). If
T : V → V is a linear operator and T has matrix A relative to some basis β for V , we define
the characteristic polynomial of T to be

χT (λ) = χA(λ)

Exercise 1.102. Let C = Cf(λ). Show that χC(λ) = f(λ).

Proposition 1.103. Suppose that T is a linear operator on V so that the associated R
module V is cyclic with annihilator (f(λ)) where f(λ) is a monic polynomial of degree ≥ 1.
then V has a basis β so that

[T ]β = Cf(λ)

Proof. By assumption there exists x ∈ V so that V = Rx and Ann(x) = Ann(V ) = (f(λ)).
Let n = deg(f(λ)) so

f(λ) = λn + an−1λ
n−1 + · · ·+ a1λ+ a0

Since Ann(x) = (f(λ)) it follows that f(λ) is the monic polynomial of smallest degree so
that f(λ)x = 0. Hence

(λn + an−1λ
n−1 + · · ·+ a1λ+ a0)x = 0 (1)

and no polynomial of smaller degree does this. Thus the set

β = {x, λx, . . . , λn−1x}

is independent over F . We next see that β spans V over F since V = Rx, every vector in V
is a linear combination of vectors of the form λnx where m ≥ 0. But

λmx = F − linear combination of β
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for m ≥ n (Exercise: use (1) and induction on m). Therefore every x in V is an F -linear
combination of β. So β is a basis for V . Let x1 = x, x2 = λx, . . .. We must calculate [T ]β.
Now

T (x1) = λx1 = λx = x2

T (x2) = x3
...

T (xn−1) = xn

T (xn) = λxn = λnx = −a0x1 − a1x2 · · · − an−1xn
So

[T ]β =



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
...

. . . . . . . . . 0
...

0 0 · · · 1 0 −an−1
0 0 · · · 0 1 −an

 = Cf(λ)

�

Definition 1.104. Suppose f1(λ), . . . , fτ (λ) are monic polynomials of degree ≥ 1 over F so
that

f1(λ) | f2(λ) | · · · | fτ (λ)

The matrix

C =


Cf1(λ) 0 · · · 0

0 Cf2(λ) 0
...

. . .
...

0 · · · 0 Cfτ (λ)


is the rational canonical form (RCF) determined by f1(λ), f2(λ), . . . , fτ (λ).

Note. If C is as above then χC(λ) = f1(λ), . . . , fτ (λ)

Theorem 1.105 (RCF theorem). If T isa linear operator on V with invariant factors
f1(λ), · · · , fτ (λ) then there exists a basis β for V so that [T ]β is the RCF determined by
f1(λ), . . . , fτ (λ). Conversely if V has a basis β so that [T ]β is the RCF determined by
f1(λ), . . . , fτ (λ) then T has invariant factors f1(λ), . . . , fτ (λ).

Proof. The first statement follows from the last theorem and the last proposition. The
converse is an exercise. �

Corollary 1.106. Let T be as in the theorem. Then

χT (λ) = f1(λ) · · · fτ (λ)

where f1(λ), . . . , fτ (λ) are the invariant factors of T .

Corollary 1.107. If A ∈Mn×n(F ) then A is similar to a unique RCF .
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Example 1.108. Suppose F = Q. Suppose that T has invariant factors

f1(λ) = (λ− 1)(λ2 + 1), f2(λ) = (λ− 1)2(λ+ 1)(λ2 + 1)

Note that f1(λ) = λ3 − λ2 + λ− 1 and f2(λ) = λ5 − λ4 − λ+ 1. Then

[T ]β =

(
A 0
0 B

)
where

A =

0 0 1
1 0 −1
0 1 1

 and B =


0 0 0 0 −1
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1


and

χT (λ) = (λ− 1)3(λ2 + 1)2(λ+ 1)

Definition 1.109. Suppose T is a linear operator on V . Let f1(λ), . . . , fk(λ) be the invariant
factors of T . Define the minimal polynomial of T to be fk(λ). It is denoted by µT (λ).

Proposition 1.110 (About the minimal polynomial). Suppose T is a a linear operator on
V .

a) If f(λ) ∈ F [λ] then f(T ) = 0 ⇔ µT (λ) | f(λ). So µT (λ) is the monic polynomial
over F of smallest degree ≥ 1 so that µT (T ) = 0.

b) µT (λ) | χT (λ). Moreover µT (λ) and χT (λ) have the same irreducible factors over F .
c) (Cayley-Hamilton Theorem) χT (T ) = 0

Proof. Let f1(λ), . . . , fk(λ) be the invariant factors of T . Then

µT (λ) = fk(λ) (1)

and

χT (λ) = f1(λ) · · · fk(λ) (2)

a) We know that (fk(λ)) is the annihilator of the R module V . Therefore µT (λ) is the
annihilator of the R module V . Hence if f(λ) ∈ F [λ] we have

µT (λ) | f(λ) ⇔ f(λ) ∈ (µT (λ))

⇔ f(λ) ∈ Ann(V )

⇔ f(λ)v = 0 ∀ v ∈ V
⇔ f(T )v = 0 ∀ v ∈ V
⇔ f(T ) = 0

b) By (1) and (2) we have µT (λ) | χT (λ) Therefore any irreducible factor of µT (λ) is
an irreducible factor of χT (λ). Conversely, suppose that p(λ) is an irreducible factor
of χT (λ). Therefore by (2) we have p(λ) | fi(λ) for some i but fi(λ) | fk(λ) so
p(λ) | fk(λ) so p(λ) | µT (λ).

c) By (b) µT (λ) | χT (λ). By (a) χT (T ) = 0

�
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Definition 1.111. Suppose A ∈ Mn×n(F ). Choose any linear operator T so that A repre-
sents T relative to some basis. The invariant factors of A are defined to be the invariant
factors of T . (Exercise. This notion is well defined.) We define the minimal polynomial of
A to be the minimal polynomial of T . We denote it µA(λ) so by definition µA(λ) = µT (λ).
Also by definition of χT (λ) we have χT (λ) = χA(λ)

Note. Suppose that A ∈ Mn×n(F ) with invariant factors f1(λ), . . . , fk(λ) then µA(λ) =
fk(λ) and χA(λ) = f1(λ) · · · fk(λ). AlsoA is similar to the RCF determined by f1(λ), . . . , fk(λ).

Cf1(λ) 0 · · · 0
0 Cf2(λ) 0
...

. . .
...

0 · · · 0 Cfτ (λ)


Conversely if A is similar to this RCF then f1(λ), . . . , fk(λ) are the invariant factors of A.
Finally the proposition about the minimal polynomial holds for A.

Problem 1.6. Let A =

 1 0 0
0 2 1
−1 0 2

 ∈M3×3(Q).

a) Find the invariant factors, the minimal polynomial and the characteristic polynomial
of A

b) Find the rational canonical form RCF which is similar to A

Solution.

χA(λ) = det(λI − A) = det

λ− 1 0 0
0 λ− 2 −1
1 0 λ− 2

 = (λ− 1)(λ− 2)2

So the irreducible factors of χA(λ) are (λ − 1), (λ − 2). So the irreducible factors of µA(λ)
are (λ− 1), (λ− 2). Also µA(λ) | χA(λ). So the possibilities for µA(λ) are (λ− 1)(λ− 2) or

(λ− 1)(λ− 2)2 (i.e λ2− 3λ+ 2 or λ3− 5λ2 + 8λ− 4. Now A2− 3A+ 2I =

 0 0 0
−1 0 8
−6 0 8

 6= 0

which means µA(λ) = λ3 − 5λ2 + 8λ − 4 and there is only one invariant factor, namely
(λ− 1)(λ− 2)2 . Therefore A is similar to

Cλ3−5λ2+8λ−4 =

0 0 4
1 0 −8
0 1 5



Note. Suppose in this problem we had found A2 − 3A + 2I = 0. Then we would have
µA(λ) = (λ− 1)(λ− 2) and so the invariant factors would have been (λ− 2), (λ− 1)(λ− 2)
and A would have been similar to(

cλ−2 0
0 c(λ−1)(λ−2)

)
=

2 0 0
0 0 −2
0 1 3


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Proposition 1.112. Suppose T is a linear operator. Suppose that A = [T ]β for some basis
β of V over F . Then V ' R-module determined by generators and relations with relations
matrix (λI − A)

Proof. Exercise. (Handout) �

Finding the invariant factors. Suppose T is a linear operator with A = [T ]β for some β.
We can do the following

(λI − A)→



1
. . .

1
f1(λ)

. . .
fk(λ)


where f1(λ), . . . , fk(λ) are monic polynomials of degree ≥ 1 so that f1(λ) | · · · | fk(λ).
(There are no zeros on the diagonal since V is a torsion R-module. i.e. free rank of V is 0).
Therefore

V ' R�(f1(λ))⊕ · · · ⊕
R�(fk(λ))

Hence f1(λ), . . . , fk(λ) are the invariant factors of T (or A).

Example 1.113. Let A =

 1 0 0
0 2 1
−1 0 2

 then

λI − A =

λ− 1 0 0
0 λ− 2 −1
1 0 λ− 2

 sim

1 0 0
0 1 0
0 0 (λ− 1)(λ− 2)2


A has invariant factors (λ− 1)(λ− 2)2

Definition 1.114. Suppose α ∈ F . The n× n Jordan blockwith eigenvalue α is the matrix

J = Jn(α) =


α 0 0 · · · 0
1 α 0 · · · 0

. . . . . . · · · ...
1 α 0

1 α


Note that χJ(λ) = (λ− α)n

Example 1.115. Let F = C, α = 7, n = 3. Then J3(7) =

7 0 0
1 7 0
0 1 7

.

Proposition 1.116. Suppose T is a linear operator on V so that the corresponding R module
V is cyclic with annihilator ((λ − α)n). Then there exists a basis β for V such that [T ]β =
Jn(α).
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Proof. We are given that V = Rx for some x ∈ V and Ann(x) = ((λ− α)n). We saw when
proving RCF that then x, λx, λ2x, . . . , λn−1x is a basis for V over F . It follows that

x, (λ− α)x, (λ− α)2x, . . . , (λ− α)n−1x

is also a basis for V over F . (Exercise. Show that it is independent over F ). Let x1 =
x, x2 = (λ− α)x, . . .. Let β = {x1, . . . , xn} a basis for V over F . Notice that

(λ− α)x1 = x2

(λ− α)x2 = x3
...

(λ− α)xn = 0 since Ann(x) = ((λ− α)n)

Hence

λx1 = αx1 + x2

λx2 = αx2 + x3
...

λxn = αxn

Therefore

Tx1 = αx1 + x2

Tx2 = αx2 + x3
...

Txn = αxn

So

[T ]β =


α 0 0 · · · 0
1 α 0 · · · 0

. . . . . . · · · ...
1 α 0

1 α

 = Jn(α)

�

Assume. F = C. Any monic irreducible polynomial over C has the form (λ − α) where
α ∈ C by the Fundamental Theorem of Algebra.

Definition 1.117. Suppose T is a linear operator on V over F = C. Regard V as an R
module. The elementary divisors of this R module have the form (λ− α1)

n1 , . . . , (λ− α`)n`
where α1, . . . , α` ∈ F , n1, . . . , n` ≥ 1. These polynomials are called the elementary divisors
of T . If A = [T ]β for some β these polynomials are called the elementary divisors of A. Note
that the product of these polynomials is χT (λ) or χA(λ).
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Theorem 1.118 (Jordan Canonical Form Theorem). Suppose T is a linear operator on a
vector space V over F = C. If

(λ− α1)
n1 , . . . , (λ− α`)n` (1)

are the elementary divisors of T then there exists a basis β for V such that

[T ]β =

Jn1(α1)
. . .

Jn`(α`)

 (2)

Conversely if there is a basis β so that (2) holds then the elementary divisors of T are given
by (1).

Proof. The first statement follows from the primary decomposition theorem and the previous
proposition. The second proposition is an exercise. �

Definition 1.119. A matrix of the form (2) is called the Jordan canonical form (JCF).

Corollary 1.120. Suppose A ∈ Mn×n(C). Then A is similar to a JCF matrix which is
unique up to the order of the Jordan blocks. In fact if the elementary divisors of A are given
by (1) then A is similar to the JCF in (2).

Problem 1.7. Let

A =



26 23 17 −10 −26 −6 9 15 −2
−51 −39 −33 14 47 9 −21 −24 2
84 67 57 −25 −79 −16 37 41 −4
37 29 25 −10 −34 −7 17 17 −2
9 11 7 −6 −10 −3 3 7 −2
−126 −103 −85 40 120 26 −53 −63 6
−34 −29 −23 12 34 8 −13 −19 2
−67 −53 −45 20 64 13 −29 −33 2
−71 −56 −48 21 66 13 −30 −35 44


a) Find the invariant factors of A.
b) Find the elementary divisors of A
c) Find the JCF which is similar to A

Solution. Use a computer program to do this. The invariant factors are λ − 2, λ3 −
2λ2, λ5− 4λ4 + 4λ3. The elementary divisors are (λ− 2), (λ− 2), (λ− 2)2, λ2, λ3. The JCF is

2
2

2 0
1 2

0 0
1 0

0 0 0
1 0 0
0 1 0


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Exercise 1.121. Suppose A is an n× n matrix. Show that A is diagonalizable (i.e. similar
to a diagonal matrix) ⇔ µA(λ) = (λ−α1) · · · (λ−αn) where α1, . . . , αn are distinct complex
numbers.
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