
MA542 Lecture Notes - Galoris Theory

Instructor: Tullia Dymarz Note taken by: Yujia Bao

1 Field Extension

Recall A field E is a commutative ring with 1 s.t. 1 ̸= 0 and every nonzero element of E is a unit.

Example. C,R,Q,Z/pZ

A subfield of E is a subring that contains 1 and is closed under multiplicative inverses. So

1. 0 ∈ F

2. a ∈ F ⇒ −a ∈ F

3. a, b ∈ F ⇒ a+ b, ab ∈ F

4. 1 ∈ F

5. a ∈ F, a ̸= 0⇒ a−1 ∈ F

Note: A subfield is a field.

Definition (Extension). Suppose F is a field. An extension of F is a field E which contains F as a
subfield. We write E/F is an extension. (Let E/F be a field extension)

Example. C/Q is an extension.

Basic problem: Given a field F what are its extensions?

Definition. Suppose E/F is an extension. A subring of E/F is a subring of E which contains F . A
subfield of E/F is a subfield of E that contains F .

Definition (Diagram). If K is a subfield of E/F , we draw

E

K

F
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e.g. C/Q contains R as a subfield. Because C −→ R −→ Q.

Definition. Suppose E/F is an extension, and F [S] = {u1, ..., ur} ⊆ E, then

F [S] = F [u1, ..., ur]

= set of F -linear combinations of elements of the form ui1
1 · · ·uir

r , where ij ≥ 0

F (S) =
{ v

w
| w, v ∈ F [S], w ̸= 0

}
Recall: F [λ]-polynomials with coefficients in F

Clearly F [S] is the smallest subring of E/F that contains S. And F (S) is the smallest subfield
containing S. We say F [S] is the subring of E/F generated by S and F (S) is the subfield generated by
S.

Example. Consider E/F and let u ∈ E. Then

F [u] =
{
a0 + a1u+ a2u

2 + · · ·+ aku
k|ai ∈ F, k ∈ N

}
= {f(u)|f(λ) ∈ F [λ]}

F (u) =

{
f(u)

g(u)
| f, g ∈ F [λ], g(u) ̸= 0

}
Example. Consider C/Q, let u =

√
2.

Q[
√
2] =

{
a0 + a1

√
2 + a2(

√
2)2 + · · ·+ ak(

√
2)k | ai ∈ Q

}
=
{
a′0 + a′1

√
2 | a′0, a′1 ∈ Q

}
Q(
√
2) =

{
a0 + a1

√
2

b0 + b1
√
2
| a0, a1, b0, b1 ∈ Q, b0 + b1

√
2 ̸= 0

}
=
{
c0 + c1

√
2 | c0, c1 ∈ Q

}
= Q[

√
2]

Question: When is F (u) = F [u]?

Definition. Suppose E/F is an extension and f(λ) ∈ F [λ]. A root of f(λ) in E is an element u ∈ E s.t.
f(u) = 0.

Definition. We say that u is algebraic over F if it is the root of some nonzero polynomial in F [λ].
Otherwise we say u is transcendental over F .

Example. Consider C/Q. Let u = 3
√
5, then u is a root of λ3 = 5. So u is algebraic over Q.

Definition (Minimal Polynomial). Suppose E/F is an extension. Let u ∈ E be an element that is
algebraic over F . Let

I = {f(λ) ∈ F [λ] | f(u) = 0}
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Then I is an ideal over the ring of polynomials and I ̸= {0} since u is algebraic over F . So I = (m(λ))

since F [λ] is a PID where m(λ) is a monic polynomial of degree ≥ 1. m(λ) is called the minimal
polynomial of u over F (Note m(u) = 0 by definition)

Note, if f(λ) ∈ F [λ], then f(u) = 0 if and only if m(λ) | f(λ). So m(λ) is the monic polynomial of
smallest degree ≥ 1 over F which has u as a root.

Definition. Suppose E/F is an extension and u ∈ E is algebraic over F . The degree of u over F is
denoted by degF (u), which is the degree of the minimal polynomial m(λ).

Proposition. Suppose E/F is an extension and u ∈ E is algebraic over F . Then the minimal polynomial
of u over F is the unique irreducible polynomial over F which has u as a root.

Proof. Let m(λ) be the minimal polynomial of u over F . Suppose for contradiction

m(λ) = g(λ)h(λ)

where g(λ), h(λ) ∈ F [λ] has smaller degree than m(λ). Plug in u, then we have

0 = m(u) = h(u)g(u)

Since g(u), h(u) ∈ E which is a field. So one of g(u) or h(u) is zero. Without loss of generality,
g(u) = 0. But this contradicts that m(λ) is the smallest degree polynomial with u as a root. Therefore
m(λ) is irreducible.

Now we show the uniqueness of m(λ). Suppose p is another monic irreducible polynomial over F
that has root u. Then we know m(λ) | p(λ) since it has u as a root which implies p(λ) ∈ (m(λ)). Since
p(λ) is irreducible, it follows that either m(λ) = 1 or p(λ). Since the degree of m(λ) is at least 1. So
m(λ) = p(λ).

Example. Consider u = 3
√
5 in C/Q. Then 3

√
5 is root of λ3 − 5 ∈ Q[λ]. Using Eisenstein’s criterion

which is for f(x) = anx
n + an−1x

n−1 + · · ·+ a0, where ai are integers, if

1. p divides each ai for i ̸= n

2. p does not divide an and p2 does not divide a0

then f(x) is irreducible over Q.

Definition. Suppose E/F is an extension. Then E is a vector space over F . The vector space addition is
the usual addition in E. The scalar multiplication is given by multiplication of elements of E by elements
of F . The degree of E/F is the dimension of E as a vector space. Denote it by [E : F ].

If [E : F ] is infinite, we call the extension E/F infinite and write [E : F ] = ∞. If [E : F ] is finite,
we called E/F finite and write [E : F ] <∞.

Example. C/Q is infinite extensions and R/Q as well. So they have infinity degrees.
For C/R, [C : R] = 2 because C = {a+ bi | a, b ∈ R}. The corresponding diagram is:
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C

R

2

Note: If [E : F ] = 1, then E = F .

Proposition. Suppose that E/F is a field extension and u ∈ E that is algebraic over F . Then

1. F (u) = F [u]

2. {1, u, ..., un−1} is an F-basis (as a vector space over F ) for F (u) where n = degF (u). (The degree
of u in terms of the minimal polynomial.)

3. F (u)/F is a finite extension with [F (u) : F ] = degF (u).

Proof. Let m(λ) be the minimal polynomial of u over F , say m(λ) = λn+an−1λ
n−1+ · · ·+a0, ai ∈ F .

n = degF (u).

1. We must show that ∀x ∈ F [u] \ {0} ⇒ x−1 ∈ F [u]. So x = f(u) ̸= 0 for some f(λ) ∈ F [λ],
m(λ) ∤ f(λ) since f(u) ̸= 0. Also m(λ) is irreducible over F . Hence gcd(f(λ),m(λ)) = 1. So
∃s(λ), t(λ) ∈ F [λ] such that s(λ)m(λ)+t(λ)f(λ) = 1. Plug in u, we get s(u)m(u)+t(u)f(u) = 1.
So we have t(u) = x−1 ∈ F [u].

Note: This shows how to find x−1.

2. Since F (u) = F [u], every element of F (u) is a linear combination of 1, u, u2, .... But m(u) = 0

which implies un + an−1u
n−1 + · · · + a0 = 0. So un is a linear combination of {1, u, ..., un−1}.

Hence by induction, uk is a linear combination of {1, u, ...., un−1} for k ≥ n. Thus {1, u, ..., un−1}
spans F (u). This is an independent set over F since u is not a root of non-zero polynomial over F
of degree less than n− 1.

3. Follows from above. Think of this picture:

E

F (u)

F

degF (u)
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Example. u = 3
√
5 in C/Q. u has minimal polynomial m(λ) = λ3 − 5 ∈ Q[λ]. Thus degQ(

3
√
5) = 3.

Q[ 3
√
5] = Q( 3

√
5) and basis for Q( 3

√
5)/Q is {1, 3

√
5, ( 3
√
5)2}. i.e. every element of Q( 3

√
5) can be written

as a0 + a1
3
√
5 + a2(

3
√
5)2, a0, a1, a2 ∈ Q. Also [Q( 3

√
5) : Q] = 3.

ex: Find (1 + 2 3
√
5 + 7( 3

√
5)2)−1. (Write it in the form of a0 + a1

3
√
5 + a2(

3
√
5)2)

Proposition (Characterization of algebraic elements). Suppose E/F and u ∈ E, then TFAE

1. u is algebraic over F .

2. F (u) = F [u]

3. F (u)/F is finite. (The field extension is finite. No need of F being finite.)

Proof. We have 1)⇒ 2), 1)⇒ 3) from before. Now we proof 2)⇒ 1) and 3)⇒ 1).
’2) ⇒ 1)’: Suppose F (u) = F [u], then F [u] is closed under inverses. Assume u ̸= 0. (If u = 0, the

minimal polynomial for u is m(λ) = λ)
So u−1 = f(u) ∈ F [u]. Then we have u · f(u) = 1. Let g(λ) = λf(λ) − 1. Then g(λ) ∈ F [λ] with

g(u) = u · f(u)− 1 = 0. Hence u is algebraic over F .
’3) ⇒ 1)’: Suppose F (u)/F is finite. Let n = [F (u) : F ], then {1, u, u2, ..., un−1, un} has n + 1

elements and so is dependent. i.e. 0 = a0 + a1u+ · · ·+ anu
n where ai ∈ F not all zero. So u is the root

of the polynomial a0 + a1λ+ · · ·+ anλ
n.

Example. We can show that π is transcendental, so Q(π) ̸= Q[π] and Q(π)/Q is infinite.

Proposition (Multiplicativity of degree). Suppose K/E/F is a tower of extensions. Then

[K : F ] <∞⇐⇒ [K : E] <∞, [E : F ] <∞

Moreover, in this case we have
[K : F ] = [K : E] · [E : F ]

And

K

E

F

[E : F ]

[K : E]

So [K : E] | [K : F ] and [E : F ] | [K : F ].

Proof. ’⇒’: If [K : F ] <∞, so K is a finite dimension vector space over F . But F ⊆ E, so any spanning
set over F for K is also a spanning set over E for K. So [K : E] is finite. Also since E ⊆ K, then E is
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a subspace of K over F and any subspace of a finite dimensional vector space is finite dimensional. So
[E : F ] <∞.

’⇐’: Suppose K/E, E/F are finite extensions. Let {u1, ..., un} be a basis of K/E. Let {v1, ...vs} be
a basis of E/F . We will show that {uivj}, where i = 1, ..., n; j = 1, ..., s, is a basis for K/F . This will
show K/F is finite and [K : F ] = [K : E] · [E : F ] = n · s.

Generation: Let x ∈ K then x =
∑n

i=1 eiui, ei ∈ E. Since we can write ei =
∑s

i=1 aijvj , aij ∈ F ,
we have x =

∑n
i=1

∑s
j=1 aij(vjui).

Independence: Suppose
∑n

i=1

∑s
j=1 aij(vjui) = 0. Want to show that aij = 0 for all i, j. Then we

have
∑n

i=1(
∑s

j=1 aijvj)ui = 0. Since ui are basis, so
∑s

j=1 aijvj = 0 for all i. By the independence of
vj , we get aij = 0. Therefore it is independent.

Corollary 1. Suppose K/F is finite. Let u ∈ K. Then u is algebraic over F and degF (u) | [K : F ].

Proof. By theorem from last time, F (u)/F is finite since K/F is finite. So u is algebraic. By the
multiplicativity of degree, we get [K : F ] = [K : F (u)][F (u) : F ] and degF (u) = [F (u) : F ]. So we
have degF (u) | [K : F ].

Note: If [F (u) : F ] = 1, then u ∈ F .

Example. Q( 3
√
5)/Q is an extension of degree 3. Let u = 1 + 3

√
5− ( 3

√
5)2. Then u is algebraic over Q

and degQ(u) is 1 or 3. Since u is not inside Q (u has a unique expression as a0 · 1 + a1 · 3
√
5 + a2(

3
√
5)2),

so degQ(u) can only be 3.

Q( 3
√
5)

Q(u)

Q

3

1

From the diagram, we see Q(u) = Q( 3
√
5).

Proposition. Suppose u1, ..., uk are elements of some extension of F . Suppose ui is algebraic over
F with degree ni, i = 1, ..., k. Then F (u1, ..., uk)/F is finite and [F (u1, ..., uk) : F ] ≤ n1n2 · · ·nk.
Moreover if n1, ..., nk are pairwise relatively prime, then [F (u1, ..., uk) : F ] = n1n2 · · ·nk.

Proof. Case k = 2. (k ≥ 2 follows similarly)
Suppose u1, u2 are algebraic with degF (u1) = n1 and degF (u2) = n2. Then we have the following

diagram
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F (u1, u2)

F (u1)

F

n1

F (u1)

n2

Notice that F (u1, u2) = {v/w | v, w ∈ F (u1), w ̸= 0}. But u2 is a root of a polynomial over F of
degree n2. Thus (using the same polynomial) u2 is a root of a polynomial with coefficients in F (u1) of
deg n2. Hence u2 is algebraic over F (u1) with degF (u1)(u2) ≤ n2. (Minimal polynomial divides this
polynomial!) Thus F (u1, u2)/F (u1) is finite of degree ≤ n2. So F (u1, u2)/F is finite and [F (u1, u2] :

F ] ≤ n1n2

F (u1, u2)

F (u1)

F

n1

≤ n2

F (u1)

n2

≤ n1

Now suppose gcd(n1, n2) = 1. Since n1 | [F (u1, u2) : F ] and n2 | [F (u1, u2) : F ]. So gcd(n1, n2) =

1 implies n1n2 | [F (u1, u2) : F ]. Since [F (u1, u2) : F ] ≤ n1n2, we must have equality.

Exercise. Suppose u1, ..., uk are as in the proposition. Show that the elements of the form ul1
1 · · · u

lk
k with

0 ≤ li ≤ ni − 1 generate F (u1, ..., uk) over F . Hence F [u1, ..., uk] = F (u1, ..., uk).

Definition. Suppose u1, ..., uk are elements of an extension E of F , then F (u1, ..., uk) is called the
subfield of E/F generated by u1, ..., uk. Also we can say the ”extension of F generated by u1, ..., uk”.

Example. Let K = Q( 3
√
5,
√
2) an extension of Q which is generated by 3

√
5,
√
2. Then we have

Q( 3
√
5,
√
2)

Q(
√
2)

Q
2

3

Q( 3
√
5)

3

2

Since 2, 3 are relatively prime, we have [Q( 3
√
5,
√
2) : Q] = 6. The generating set is given by{

1,
3
√
5, (

3
√
5)2,
√
2,

3
√
5
√
2, (

3
√
5)2
√
2
}

This is actually a basis since the degree of the extension is 6.
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Definition. Let p be a prime, Fp = Z/(p) = {0, 1, ..., p− 1} Since p is a prime, Fp is a field. By abuse
of notation, we will drop the bars, Fp = {0, 1, ..., p− 1}.

Example. F3 = {0, 1, 2}. Let f(λ) = λ2 − 2 ∈ F3[λ]. Check that this polynomial has no roots.
f(0) = −2 = 1, f(1) = −1 = 2, f(2) = 2. So f(λ) is irreducible over F3. (Since f is of degree 2 and
has no roots.)

How to build an extension of F3 in which λ2 − 2 ha a root?

In general, suppose f(λ) ∈ F [λ] has degree ≥ 1 over F. Can we construct an extension of F in which
f(λ) has a root? When we do this, we can assume that f is monic and irreducible. The field will be F (r)

where r is this root in some extension of F .

Proposition (Existense & Uniqueness of F (r)). Suppose p(λ) is an irreducible monic polynomial over
F .

1. Suppose E/F is an extension such that E = F (r) where r is a root of p(λ). Then E ≃ F [λ]/(p(λ)).
(Field extesion). In fact, f(r) ∈ E = F (r) cooresponds to f(λ) + (p(λ)) ∈ F [λ]/(p(λ)).

2. Let E = F [λ]/(p(λ)) then E/F is an extension such that E = F (r) for some root r of p(λ) in E.

Proof. 1. Suppose E/F is an extension, so that E = F (r) where r is root of p(λ). Since p(λ) is
irreducible, we know it is the minimal polynomial of r. Hence {f(λ) ∈ F [λ] | f(r) = 0} = (p(λ)).
Define φ : F [λ] → E, such that φ(f(λ)) = f(r). Check that this is a ring homomorphism. Note
Ker(φ) = (p(λ)). Note φ is surjective since Im(φ) = F [r] = F (r) = E. (Because r is algebraic)
By the first isomorphic theorem, we have E ≃ F [λ]/(p(λ)) with f(r)←→ f(λ) + (p(λ)).

2. Let E = F [λ]/(p(λ)). Then the elements of E can be written uniquely as

a0 + a1λ+ · · ·+ an−1λ
n−1 + (p(λ))

where n = deg(p(λ)), ai ∈ F . Identify a ∈ F with a+(p(λ)) (Isomorphism). Then F is a subfield
of E so E/F is an extension. Let r = λ+ (p(λ)). We can write the above form as following:

a0 + a1λ+ · · ·+ an−1λ
n−1 + (p(λ))

= (a0 + (p(λ))) + (a1 + (p(λ)))(λ+ (p(λ))) + · · ·+ (an−1 + (p(λ)))(λ+ (p(λ)))n−1

= a0 + a1r + · · ·+ an−1r
n−1

So we have E = F [r] and since E is a field, we have E = F (r).

Claim r is a root of p(λ). p(r) = p(λ + (p(λ))) = p(λ) + (p(λ)) = 0 + (p(λ)) = 0 ∈ F . So r is a
root of p(λ).

Example. F = F3 and p(λ) = λ2 − 2 ∈ F3[λ] (irreducible).
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E = F (λ)/(λ2 − 2) = {a0 + a1λ + (p(λ)) | a0, a1 ∈ F3} = {a0 + a1r | a0, a1 ∈ F3} , where r is a
root of p(λ) in E, i.e. r2 − 2 = 0.
Sample calculation: (1 + 2r)(1 + 2r) = 1 + 4r + 4r2 = 1 + r + r2 = 1 + r + 2 = 3 + r = r

The number of elements of E is 9. The degree of the extension E/F is 2 since deg(p(λ)) = 2.

Example. Let F = F5 and p(λ) = λ3 + λ + 1. Claim that p(λ) is irreducible over F5. Let E = F (r)

where r is root of p(λ). Then elements of E are uniquely written as a0 + a1r + a2r
2. So [E : F ] = 3.

Sample calculation: Use the fact that r3 + r + 1 = 0, r3 = −r − 1 = 4r + 4.
(1 + r2)2 = 1 + 2r2 + r4 = 1 + 2r2 + r(4r + 4) = 1 + 2r2 + 4r2 + 4r = 1 + 4r + r2.

Definition. An extension E/F is said to be simple is E = F (r) for some r ∈ E.

Summary. Element of E are uniquely written as

a0 + a1r + · · ·+ an−1r
n−1

where n is the degree of the minimal polynomial p(λ) and to compute in E, use fact that p(r) = 0.

Definition. Suppose F is a field. The order of F is the number of elements in F and denoted as |F |.

Thus we have |F | <∞ or |F | =∞.

2 Field Automorphism

Definition. Suppose R,R′ are rings with identity. A homomorphism φ : R→ R′ is a map that satisfies

1. φ(a+ b) = φ(a) + φ(b)

2. φ(ab) = φ(a)φ(b)

3. φ(1) = 1

Isomorphism is a bijective homomorphism.

Note. φ : R→ R′ is injective iff Ker(φ) = {0}.

Definition. An automorphism is an isomorphism φ : R→ R.

Example. Let φ : C→ C, s.t. φ(a+ bi) = a− bi. Here φ is an automorphism.

Note. The only automorphism of R is the identity. But there are infinity many automorphism of C.

Lemma. Suppose φ : F → F ′ is a homomorphism of fields, then φ is injective.

Proof. Recall that Ker(φ) is an ideal. Also the only ideals of a field are {0} or F . Since φ(1) = 1 which
is not inside the kernel of φ, this means Ker(φ) cannot be F . So Ker(φ) is zero and this implies φ is
injective.
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Definition. Suppose φ : F → F ′ is a homomorphism of fields. Define φ̃ : F [λ]→ F ′[λ] by

φ̃(a0 + a1λ+ · · ·+ anλ
n) = φ(a0) + φ(a1)λ+ · · ·+ φ(an)λ

n

Claim that φ̃ is a ring homomorphism. We say φ̃ is induced by φ or φ induces φ̃. For f(λ) ∈ F [λ], we
define (φf)(λ) ∈ F ′[λ], where (φf)(λ) = φ̃(f(λ)).

Example. Let φ : C→ C be complex conjugation and f(λ) = (2 + i)λ3 + (1 + i)λ+ 6. So (φf)(λ) =

(2− i)λ3 + (1− i)λ+ 6.

Definition. Suppose E/F and E ′/F ′ are extensions. Suppose φ : F → F ′ and σ : E → E ′ are field
homomorphism. We say that σ extends φ if σ |F= φ. (Restrict σ to F , i.e. σ(a) = φ(a) for a ∈ F )

Lemma. Suppose E/F and E ′/F ′ are extensions and φ : F → F ′ and σ : E → E ′ are field homo-
morphisms and σ extends φ. Suppose f(λ) ∈ F [λ] and r is a root of f(λ) in E. Then σ(r) is a root of
(φf)(λ) ∈ F ′[λ].

Proof. Let f(λ) = a0+a1λ+ · · ·+anλ
n, where ai ∈ F . Then 0 = f(r) = a0+a1r+ · · ·+anr

n. Apply
σ to both sides. Then we get

0 = φ(a0) + φ(a1)σ(r) + · · ·+ φ(an)(σ(r))
n

Therefore, σ(r) is a root of (φf)(λ) ∈ F ′[λ].

Theorem 1 (Extension Theorem for simple extensions). Suppose E = F (r), where r is algebraic over
F . Let p(λ) be the minimal polynomial of r. Let E ′/F ′ be another extension and φ : F → F ′ is a
homomorphism. Let p′(λ) = (φp)(λ).

1. Suppose r′ is a root of p′(λ) in E ′. Then there exist an unique homomorphism σ : E → E ′ that
extends φ : F → F ′ and maps r to r′.

Moreover, if φ is an isomorphism and E ′ = F ′(r′). Then σ is also an isomorphism.

2. The number of extensions of φ to homomorphisms from E to E ′ is the number of roots of p′(λ) in
E ′.

Proof. Proof of 2) from 1): Since any homomorphism σ : E → E ′ maps r to a root of p′(λ) and by 1),
there is only one that does this for each root r′ of p′(λ).

Proof of 1). Uniqueness: Suppose σ1, σ2 map r to r′ and they extend φ. Then if a ∈ F , σ1(r) =

φ(a) = σ2(r). Also σ1(r) = σ2(r) = r′. Hence, since E = F (r) = F [r], we have σ1(x) = σ2(x) for
any x ∈ E. So σ1 = σ2.

Existence: We can assume φ is surjective. (Else replace F ′ with Im(φ).) So φ is an isomorphism.
Also assume E ′ = F ′(r′). (Else replace E ′ by F ′(r′).) Since E = F (r), E ≃ F [λ]/(p(λ)). Also since
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φ is an isomorphism, p′(λ) is irreducible over F ′. (Think about it.) Now since E ′ = F ′(r′), we have
E ′ ≃ F ′[λ]/(p′(λ)).

Recall we have φ̃ : F [λ]→ F ′[λ]. But φ̃(p(λ)) = p′(λ) by definition of p′(λ). So φ̃ induces:

˜̃φ : F [λ]/(p(λ)) −→ F ′[λ]/(p′(λ))

where f(λ) + (p(λ)) 7−→ f ′(λ) + (p′(λ))

Note, if φ : F → F ′ is an isomorphism, then φ̃ : F [λ] → F ′[λ] is an isomorphism, then ˜̃φ :

F [λ]/(p(λ))→ F ′[λ]/(p′(λ)) is an isomorphism. So we have

E ≃ F [λ]/(p(λ))
˜̃φ−−→ F ′[λ]/(p′(λ)) ≃ E ′

So σ is composition of these isomorphisms.
To see σ extends φ. Let a ∈ F . Then a 7→ a+ (p(λ)) 7→ φ(a) + (p′(λ)) 7→ φ(a). So σ(a) = φ(a).
Next, r 7→ λ+ (p(λ)) 7→ λ+ (p′(λ)) 7→ r′. So σ(r) = r′.

Definition. Suppose F is a field, then let Aut(F ) be the group of automorphisms whith group operation
composition of maps. It is called the automorphism group of F . The identity is

ϵF : F −→ F

a 7−→ a

Example. Aut(R) = {ϵR}. Aut(C) is infinite.

Definition. Any subgroup of Aut(F ) is called an automorphism group.

Definition. Suppose E/F is an extension. An automorphism of E/F is an automorphism σ of E which
extends ϵF , i.e. σ |F= ϵF .

Definition. Let Gal(E/F ) = set of automorphisms of E/F . Then Gal(E/F ) is a subgoup of Aut(E)

and it is called the Galois group of E/F .

Example. Gal(C/R) = {ϵC, σ}, where σ is the complex conjugation automorphism.

Notes on Gal(E/F )

1. Suppose E/F is finite. Suppose σ : E → E is a homomorphism extending ϵ : F → F . Claim that
σ is an isomorphism.

Proof. σ is injective since all homomorphisms of fields are. Also σ is surjective since σ is an
injective linear map from E to E as vector spaces over F . By Rank-Nullity theorem (since E is
finite dimensional over F ), σ is surjective.

So any homomorphism of E to E extending ϵF is an isomorphism of E. So Gal(E/F ) is the set of
all homomorphisms from E to E extending ϵF .
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2. (Roots are permuted) Suppose f(λ) ∈ F [λ] and σ ∈ Gal(E/F ). If r is a root of f(λ), i.e. f(r) = 0,
then σ(r) is also a root of f(λ). This is because σ(r) is a root of (σf)(λ) and (σf)(λ) = f(λ). (Since
σ |F= ϵF which is an identity map of F ) So σ permutes the roots of f .

Proposition. E = F (r) where r is algebraic over F . Let p(λ) be the minimal polynomial of r over F .
Let r1, ..., rl be distinct roots of p(λ) in E.

1. For i = 1, ..., l, there exists unique σi ∈ Gal(E/F ), such that σi(r) = ri. WIOG, assume r1 = r,
then σ1 = ϵE . Also, if x ∈ E = F (r), then x = a0 + a1r + · · · + an−1r

n−1. Then σ1(x) =

a0 + a1ri + · · ·+ an−1r
n−1
i .

2. Gal(E/F ) = {σ1, ..., σl}

3. |Gal(E/F )| = l ≤ [E : F ]

Proof. 1. Use part 1 of the extension theorem for simple extensions with E = E ′ and F = F ′ and
φ = ϵF .

2. Use part 2 of the extension theorem for simple extensions. The number of extensions of ϵF is the
number of distinct roots of p(λ).

3. Let n = deg(p(λ). Then [E : F ] = n. Since p(λ) has at most n distinct roots, so l ≤ n. (in any
extension!)

Example. Suppose E = Q(
√
2). The minimal polynomial of

√
2 is p(λ) = λ2 − 2 and it has

√
2,−
√
2

as roots. Thus Gal(E/Q) = {σ1, σ2}, where σ1 = ϵE and σ2(
√
2) = −

√
2.

In this case, [E : Q] = |Gal(E/Q)| = 2.

2.1 nth roots of unity

Suppose G = {x ∈ C | xn = 1}. This is a cyclic group of order n with generator

e
2πi
n = cos(

2π

n
) + i sin(

2π

n
)

Note. If zn = 1, then z is a root of λn − 1. However

λn − 1 = (λ− 1)(λ− z2) · · · (λ− λzn)

Example. Let E = Q( 3
√
5). Then the minimal polynomial is p(λ) = λ3 − 5 over Q. Let z = e

2πi
3 =

cos(2π
3
) + i sin(2π

3
) = −1

2
+

√
3
2
i. Then z̄ = z2 = −1

2
−

√
3
2
i. Now 3

√
5, z 3
√
5, z2 3

√
5 are roots of p(λ) in

C. Note z 3
√
5, z2 3

√
5 /∈ E = Q( 3

√
5). So 3

√
5 is the only root of p(λ) in E. So Gal(E/Q) = {ϵE} since

there is only one distinct root to p(λ) in E.
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In this case, we have |Gal(E/Q)| = 1 while [E : Q] = 3. We didn’t include enough roots of p(λ) to
make E. We should have studied Q( 3

√
5, z 3
√
5, z2 3

√
5) instead.

Definition (splitting field). Suppose f(λ) ∈ F [λ]. f(λ) is monic of degree ≥ 1 and suppose E/F is an
extension. We say E is a splitting field for f(λ) over F if

1. f(λ) = (λ− r1) · · · (λ− rn), where ri ∈ E, i = 1, ..., n.

2. E = F (r1, ..., rn).

Also say E/F is splitting field for f(λ).

Note. Suppose f(λ) ∈ F [λ] monic, degree ≥ 1.

1. If E is a splitting field for f(λ), then E/F is finite.

2. Suppose E/K/F and E is a splitting field for f(λ) over F , then E is a splitting field for f(λ) over
K.

3. To find a splitting field for f(λ) over F , first find some field L (an extension of F ) such that

f(λ) = (λ− r1) · · · (λ− rn)

where ri ∈ L and let E = F (r1, .., rn).

Example. Suppose f(λ) = λ2 − 2 ∈ Q[λ]. Then f(λ) = (λ −
√
2)(λ +

√
2), where

√
2,−
√
2 ∈ R.

E = Q(
√
2,−
√
2) = Q(

√
2) is a splitting field for λ2 − 2 over Q.

Example. Let f(λ) = λ3 − 5 ∈ Q[λ]. Then f(λ) = (λ− 3
√
5)(λ− z 3

√
5)(λ− z2 3

√
5), where z = e2πi/3.

(Here we let L = C.) So E = Q( 3
√
5, z 3
√
5, z2 3

√
5) = Q( 3

√
5, z) is a splitting field for f(λ) over Q.

Theorem 2 (Existence of splitting fields). Suppose f(λ) ∈ F [λ] is monic and degree ≥ 1. Then there
exists a splitting field of f(λ) over F .

Proof. It is sufficient to show that there exists an extension L of F s.t. f(λ) = (λ − r1) · · · (λ − rn)

where ri ∈ L. We know that there exists an extension K1 of F in which f(λ) has a root. (We know
it for irreducible polynomials of degree ≥ 1, so just apply our constructor to an irreducible factor of
f(λ). A root of irreducible factor is also a root of f(λ).) Then f(λ) = (λ − r1)g(λ), where r1 ∈ K1,
g(λ) ∈ K1[λ]. If the degree of f(λ) = 1, then we are done. Otherwise, we can find a root of r2 of g(λ)
in some extension K2 of K1. Repeat this process.

Definition (Root terminology). Suppose f(λ) is monic with degree ≥ 1 over F . Suppose f(λ) =

(λ− r1) · · · (λ− rn), where ri are elements of some extension L of F . If ri are distinct, then we say f(λ)

has distinct roots in L. If we list only distinct roots r1, ..., rl, they are called the distinct roots of f(λ) in
L.

Challenge: Find irreducible polynomials with multiple distinct roots.
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Theorem 3 (Extension theorm for splitting fields). Suppose φ : F → F ′ is an isomorphism. Let f(λ) be
a monic polynomial of degree n ≥ 1 over F . Let f ′(λ) = (φf)(λ). (Apply φ to coefficients of f .) Let E
be a splitting field for f(λ) over F . Let E ′ be a splitting field for f ′(λ) over F ′.

1. There exists an extension of φ to an isomorphism E → E ′.

2. The number of extension of φ to an isomorphism E → E ′ is ≤ [E : F ].

3. If f ′(λ) has distinct roots in E ′, then equality holds.

Proof. By induction on k = [E : F ]. Base case, k = 1. Then E = F . Therefore, f(λ) is a product of
degree one factors over F . Thus, the image polynomial f ′(λ) is a product of degree one factors over F ′.
Then E ′ = F ′ and 1. holds. (Since φ : E → E ′ is the extension.) Then 2. 3. holds as well.

Suppose now k > 1 and Theorem holds for smaller k. Then E ̸= F . Hence there exists a root r of
f(λ) in E not in F . So there exists an irreducible factor p(λ) of f(λ) which has r as a root in E not in F

with deg(p(λ)) ≥ 2. (Since r is not in F .)
Now we have f(λ) = g(λ)p(λ) and p(r) = 0, g(λ) ∈ F [λ]. Consider the induce polynomial. Since φ

is an isomorphism, f ′(λ) = p′(λ)g′(λ) and p′(φ(r)) = 0. Also deg(p′(λ)) = deg(p(λ)) ≥ 2, and p′(λ)

is irreducible over F ′ as well.
Suppose s1, ..., sl are distinct roots of p′(λ) in E ′. Note l ≤ m, where m = deg(p′(λ)). Then we have

the following relationship.

𝐸 𝐸′

𝐹(𝑟) 𝐹′(𝑠()

𝐹 𝐹′

𝑘/𝑚

𝑚

𝑘/𝑚

𝑚
𝜑

σ

𝜎 /
0 1

By extension theorem for simple extensions, there exists an unique extension σi of φ to a homomor-
phism of F (r) into E ′ so that σi(r) = si. Then σi restricted on F (si) is an isomorphism of F (r) onto
F ′(si). By multiplicativity of degree, we get the degrees in the picture. But m ≥ 2, so k/m < k. By
induction, σi extendes to an Isomorphism of E to E ′. This proves 1.

To prove 2, define e(φ) as the number of extensions of φ to an isomorphism E to E ′. Define e(σi) as
the number of extensions of σi to an isomorphism E to E ′.

Now any extension of φ to an isomorphism of E to E ′ must map r to some si. Hence it must extend
some σi. So we have

e(φ) =
l∑

i=1

e(σi)
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By induction, e(σi) ≤ [E : F (r)] = k/m. Plug this into the formula, we have

e(φ) ≤
l∑

i=1

k

m
= l · k

m
≤ m · k

m
= k

This proves 2.
If the roots are distinct, then l = m. Again by induction, we have e(σi) = k/m. So

e(φ) =
m∑
i=1

k

m
= k

Corollary 2 (Uniqueness of splitting fields). Suppose f(λ) is monic polynomial of deg ≥ 1 over F .
Suppose E/F and E ′/F are splitting extensions of f(λ). Then there exists an isomorphism from E to
E ′ which extends ϵF : F → F . And thus we have E = E ′.

Corollary 3. Suppose f(λ) monic of deg ≥ 1 over F . Let E/F be the splitting extension of f(λ). Then

|Gal(E/F )| ≤ [E : F ]

also if f(λ) has distinct roots in E, then |Gal(E/F )| = [E : F ].

Definition (Notation for elements of Gal(E/F )).

1. Suppose E/F is an extension E = F (u1, ..., uk). Then an element σ ∈ Gal(E/F ) is denoted by
σ(ui) = vi.

σ :

u1 −→ v1

u2 −→ v2

· · · · · · · · ·
uk −→ vk

2. Suppose E/F is a splitting field of f(λ) ∈ F [λ]. Let r1, ..., rl are distinct roots of f(λ) in E.
E = F (r1, ..., rl). Then each σ ∈ Gal(E/F ) has form

σ :

r1 −→ rπ(1)

r2 −→ rπ(2)

· · · · · · · · ·
rl −→ rπ(l)

where π is a permutation. (π ∈ Sl, Sl is the permutation group on l objects.) Thus we have a map
Gal(E/F ) → Sl that is an injective homomorphism. (It might not be surjective.) It is injective
since only the identity in Gal(E/F ) is the identity permutation on roots. i.e. Think of Gal(E/F )

as a subgroup of Sl. Write σ = π. (Since each σ maps to a unique permutation.)
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Example. Suppose E is a splitting field of f(λ) = λ3 − 5 over Q. Then E = Q( 3
√
5, z 3
√
5, z2 3
√
5) =

Q( 3
√
5, z), where z = e2πi/3.

Now 3
√
5 has degree 3 over Q. And z has degree 2 over Q. (It is (λ+ 1

2
)2 + 3

4
) Since 2, 3 are reletively

prime, we have [E : Q] = 6.
Q(z, 3

√
5)

3−−→ Q(z)
2−−→ Q

Q(z, 3
√
5)

2−−→ Q( 3
√
5)

3−−→ Q

So |Gal(E/Q)| = 6. Label the roots r1 = 3
√
5, r2 = z 3

√
5, r3 = z2 3

√
5. So Gal(E/Q) ≤ S3. So

Gal(E/Q) = S3, since both have order 6.
For example, σ = (123) ∈ Gal(E/Q) = S3. So

σ :

r1 −→ r2

r2 −→ r3

r3 −→ r1

,

3
√
5 −→ z 3

√
5

z 3
√
5 −→ z2 3

√
5

z2 3
√
5 −→ 3

√
5

What about σ(z)?

σ(z) = σ

(
z 3
√
5

3
√
5

)
=

σ(z 3
√
5)

σ( 3
√
5)

=
z2 3
√
5

z 3
√
5

= z

Definition. Suppose f(λ) ∈ F [λ].

f(λ) = anλ
n + an−1λ

n−1 + · · ·+ a1λ+ a0

Define the derivative of f(λ) to be

f ′(λ) = nanλ
n−1 + · · ·+ a1

where nan = an + an + · · ·+ an. Note: roduct rule, sum rule works too.

Example. f(λ) = λ3 + 2λ2 + λ+ 1 ∈ F3[λ]. Then f ′(λ) = 3λ2 + 4λ+ 1 = 0 + 1λ+ 1 = λ+ 1.

Example. f(λ) = 2λ9 + λ3 + 2 ∈ F3[λ]. Then f ′(λ) = 18λ8 + 3λ2 = 0.

Proposition. Suppose f(λ) is monic of deg ≥ 1 over F . Suppose f(λ) and f ′(λ) are relatively prime in
F [λ]. Let E be the splitting field of f(λ) over F . Then f(λ) has distinct roots in E.

Proof. Since f(λ) and f ′(λ) are relatively prime, we have gcd(f(λ), f ′(λ)) = 1. Then we prove by
contradiction.

Now f(λ) = (λ−r1)(λ−r2) · · · (λ−rn) where ri ∈ E. Suppose for contradiction, r1 = r2. (i.e. f(λ)
does not have distinct roots.) So f(λ) = (λ−r1)2g(λ). However, f ′(λ) = 2(λ−r1)g(λ)+(λ−r1)2g′(λ).
Since f(λ) and f ′(λ) has r1 as a root, then both of them can be divided by the minimal polynomial of r1.
Contradiction!
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Note. The converse is also true. If f(λ) has distinct roots in E, then f(λ) and f ′(λ) are relatviely prime.

Example. Suppose f(λ) = λpn − λ ∈ Fp[λ], where n ≥ 1. Then f ′(λ) = pnλpn−1 − 1 = −1. So
gcd(f(λ), f ′(λ)) = 1. So f(λ) has distinct roots in the splitting field.

3 Finite Fields

Proposition. Suppose E is a finite field.

1. Then E is a finite extension of Fp ≜ Z/p for some prime p.

2. Hence |E| = pn where n = [E : Fp].

Proof. 1. Define φ : Z → E, s.t. φ(m) = m · 1E for m ∈ Z. So φ is a homomorphism of rings. Let
F = {m · 1E | m ∈ Z} = Im(φ). Then F is a subring of E. Now Ker(φ) is an ideal of Z. Since Z
is infinite and E is finite. Then Ker(φ) ̸= (0). Hence Ker(φ) = (p) (ideal in a PID), where p is a
positive integer. By definition, p is the characteristic of E. By a previous homework, p is a prime.

Recap that φ is a homomorphism of Z onto F with kernel (p). So F ≃ Z/(p) = Fp as a ring.

Then identify F with Fp. Therefore E contains Fp as a subring but Fp is a field. So E contains Fp as
subfield. Therefore E is an extension of Fp by definition. Since E is finite, E is a finite dimensional
vector space over Fp. So E/Fp is finite.

2. Part 2 follows from part 1. Since E is a finite extension of Fp, this means there is a basis u1, ..., un

with all elements in E written uniquely as

a1u1 + a2u2 + · · ·+ anun

where ai ∈ Fp. So there are pn choices for the ais. (p choices for each ai.)

Proposition. Suppose E is a finite field of order pn for p a prime and n ≥ 1. Then upn = u, ∀u ∈ E.

Proof. Let E× = {u ∈ E | u ̸= 0}. Then E× is a group under multiplication. Also |E×| = pn − 1.
Hence by Langrange’s Theorem, we know upn−1 = 1. So u · upn−1 = u. So upn = u. This also trivially
holds for zero since 0p

n
= 0.

Corollary 4 (Fermat’s Little Theorem). If u ∈ Fp, then up = u.

Corollary 5 (Freshman’s Dream). Suppose that E is a field of characteristic p where p is a prime. Then
for v, u ∈ E, we have

(u+ v)p = up + vp

And hence
(u+ v)p

n

= upn + vp
n
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for n ≥ 1.

Exercise. Suppose char(E) = 3 and u, v ∈ E. Then (u+ v)3 = u3 + 3u2v + 3uv2 + v3 = u3 + v3.

Theorem 4 (Classification of finite fields). Suppose that p is prime and n ≥ 1. Then ∃ a unique field of
order pn up to isomorphism, namely the splitting field of λpn − λ over Fp.

Proof. Uniqueness: Suppose E is a field of order pn. By the first proposition, E is an extension of Fp of
degree n. Let f(λ) = λpn − λ. We want to show that E is the splitting field of f(λ) over Fp. By the
second proposition, every element of E is a root of f(λ). But |E| = pn and deg(f(λ)) = pn. Hence
f(λ) =

∏
u∈E(λ−u) in E[λ]. Certainly E is generated over Fp by the roots of f(λ). So E is the splitting

field of f(λ) over Fp.
Existence: Suppose E is the splitting field of f(λ) over Fp where f(λ) = λpn − λ. We want to show

that |E| = pn. Let K = {u ∈ E | upn = u} = set of all roots of f(λ) in E. We’ll show that K = E

and |K| = pn. By Fermat’s Little theorem, ap = a for all a ∈ Fp. Therefore ap
n
= a, ∀a ∈ Fp. So

a ∈ K and so Fp ⊆ K. Use Freshman’s Dream to get that K is a subfield of E. (E/K/Fp.) Since K

contains the roots of f(λ) and E is generated by the roots, therefore K = E. Finally, since f ′(λ) = −1,
so gcd(f(λ), f ′(λ)) = 1. So f(λ) has distinct roots in E. So |K| = pn. Then |E| = pn.

Definition. The unique field of order pn is called the Galois field of order pn and is denoted by Fpn .

Example. The Galois field of order 81 is the splitting field of f(λ) = λ81 − λ over F3. So F34 = F81 =

{all roots of λ81 − λ}.
For computations, construct F81. F3[λ]/(q(λ)) ≃ {a0 + a1r + a2r

2 + a3r
3 | ai ∈ F3} where q(λ) is

irreducible of degree 4.
There are 18 such polynomails. λ4 + λ+ 2 = q(λ).

From now on, assume char(E) = 0. i.e. n · 1E = 0 if and only if n = 0. Thus for nonzero u, nu = 0 if
and only if n = 0.

Lemma. Suppose p(λ) is a monic irreducible polynomial of degree ≥ 1 over F . Then p(λ) has distinct
roots in its splitting field.

Proof. Suppose for contradiction that p(λ) does not have distinct roots in its splitting field. As was
proved last time, p(λ) and p′(λ) (the derivative) are not relatively prime. Let d(λ) = gcd(p(λ), p′(λ)) in
F [λ]. So deg(d(λ)) ≥ 1. Since then d(λ) must be a factor of p(λ) and p(λ) is irreducible, we must have
d(λ) = p(λ). So p(λ) | p′(λ). But p′(λ) is either 0 or has degree less than deg(p(λ)). So p′(λ) = 0.

But if p(λ) = λn + · · ·+ a1λ+ a0, then p′(λ) = nλn−1 + · · ·+ a1. Since char(F ) = 0, so p′(λ) ̸= 0.
Contradiction.

Definition (Normal extension). Suppose E/F is an extension. We say E/F is a normal extension if E
is the splitting field of some monic polynomial of degree ≥ 1 over F .

18



Note. Any normal extension is finite, since splitting field are finite.

Proposition. Suppose E/F is normal. Then ∃ a monic polynomial f(λ) over F of deg ≥ 1, s.t. E is the
splitting field of f(λ) over F and f(λ) has distinct roots in E. Hence

|Gal(E/F )| = [E : F ]

Proof. By definition, E is the splitting field of some h(λ) ∈ F [λ]. Then h(λ) = p1(λ)
l1 · · · pk(λ)lk ,

where pi(λ) are distinct monic irreducible polynomials over F . Let f(λ) = p1(λ) · · · pn(λ). Then f(λ)

and h(λ) have the same distinct roots. Then E is the splitting field of f(λ) over F . Since char(E) = 0,
we proved that each pi(λ) has distinct root in E. Also if i ̸= j, then pi(λ) and pj(λ) cannot have a
common root in E. (Since then both pi and pj would be the minimal polynomials of that root which
means pi | pj and pj | pi, i.e. pi = pj .) Therefore, f(λ) has distinct roots in E.

Last statement follows from the extension theorem for splitting field.

Definition. Suppose G ≤ Aut(E) (G is a subgroup of automorphisms of the field E). We define
Inv(G) = {a ∈ E | σ(a) = a, σ ∈ G}.

Lemma (Exercise). Inv(G) is a subfield of E called the subfield of G-invariants in E.

Example. Let E = C, G = {ϵ, σ}. Then if a ∈ E = C, a ∈ Inv(G) ⇔ σ(a) = a ⇔ a ∈ R. So
Inv(G) = R. Note, C/R has degree 2. Also it is the splitting field of λ2 + 1. So it is a normal extension.

Now we are curious about the correspondence between groups and extensions. Suppose E is a field.

1. If F is a subfield of E s.t. E/F is a normal extension. Can we have Gal(E/F ) being a finite
subgroup of Aut(E) and |Gal(E/F )| = [E : F ]?

2. If G is a finite subgroup of Aut(E) and F = Inv(G). Can we have E/F being a normal extension
and [E : F ] = |G|?

3. Does this establish a one to one correspondence between

subfields F of E such that E/F is normal ←→ finite subgroups of Aut(E)

Lemma (Artin’s Lemma). Suppose E is a field, G ≤ Aut(E) that is finite. Let F = Inv(G). Then E/F

is a finite extension and [E : F ] ≤ |G|.

Proof. We will show that any set of more than m = |G| elements in E is linearly dependent over F . This
will prove both statements.

Suppose G = {σ1, ..., σm} and σ1 = ϵE . Let u1, ..., un be elements of E where n > m. We will show
that they are dependent. Consider a system of equations

Ax⃗ = 0⃗
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where

A =

σ1(u1) · · · σ1(un)

· · · · · · · · ·
σm(u1) · · · σm(un)


m×n

This is a system with n unknowns and m equations, so there is always a nontrivial solution in En. Our
goal is to find a solution in F n. Then since σ1 = ϵE , the first equation will give

x1u1 + x2u2 + · · ·+ xnun = 0

Note if s =
[
s1 · · · sn

]T
is a solution of Ax⃗ = 0⃗. Then ∀i, we have σi(s) =

[
σi(s1) · · ·σi(sn)

]T
is

a solution to σi(A)x⃗ = 0⃗ where σi(A) = (σi(ajk)). But σi(A) is obtained from A by permuting the rows.
Therefore both the above to linear systems has the same solution. So σi(s) is also a solution of Ax⃗ = 0⃗.

Now choose solution s =
[
s1 · · · sn

]T
with fewest nonzero entries. WLOG, assume s1 ̸= 0.

Replace s with s/s1 to get s1 = 1. Now we have s =
[
1 s2 · · · sn

]T
. Assume for contradiction

s /∈ F n. Therefore si /∈ F for some i and WLOG s2 /∈ F . Since F = Inv(G) so ∃σj ∈ G such that
σj(s2) ̸= s2. But σj(s) is also a solution and so is s− σj(s). Then we have

s− σj(s) =


1

s2
...
sn

−


1

σj(s2)
...
...

 =


0

s′2
...
...


where s′2 ̸= 0. This is a nontrivial solution with fewer zero extries! Contradiction!

Remarks. 1. If we have E/K/F and E/F is normal. Then E/K is normal.

2. If E/K/F , then Gal(E/K) ≤subgroup Gal(E/F ).

Theorem 5 (Characterization of normal extensions). Suppose E/F , then TFAE

1. E/F is normal

2. F = Inv(G) for some finite group G ≤ Aut(E).

3. E/F is a finite extension with the following property:

If p(λ) is any monic irreducible polynomial over F which has a root in E. Then p(λ) is a product
of degree one factors in E[λ].

Moreover, in this case, we have
Inv(Gal(E/F )) = F (1)
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Proof. 1⇒2: Suppose E/F is normal. Let G = Gal(E/F ). Let F ′ = Inv(G). Then we have E/F ′/F .
By remark 1, we have E/F ′ is normal since E/F is normal. Let G′ = Gal(E/F ′). Then by remark 2,
we have G′ ≤subgroup G. Since E/F and E/F ′ are normal, we have |G| = [E : F ] and |G′| = [E : F ′].

Now if σ ∈ G, then σ fixes elements of F ′ since F ′ = Inv(G). So we see G ≤ G′. Then we have
G = G′. Thus |G| = |G′| and we get [E : F ] = [E : F ′]. This means F = F ′. Then we have
F = Inv(G). So 2. and Inv(Gal(E/F )) = F follow.
2⇒3: Suppose F = Inv(G) for some finite G ≤ Aut(E). By Artin’s Lemma, E/F is finite.

Suppose p(λ) is monic irreducible polynomial over F with a root r in E. Then p(λ) is the minimal
polynomial of r over f . We want to show p(λ) splits as product of degree 1 factors in E[λ]. This is
enough to show that ∃f(λ) ∈ F [λ] that splits in E[λ] and has r as a root. Since then p(λ) | f(λ) and
therefore if f(λ) splits as product of degree 1 polynomials in E[λ], so does p(λ).

Let f(λ) =
∏

σ∈G(λ− σ(r)) ∈ E[λ]. We want to show that f(λ) ∈ F [λ].
Now take τ ∈ G. (τf)(λ) =

∏
σ∈G(λ − (τσ)(r)) =

∏
δ∈G(λ − δ(r)) = f(λ). Now we have

f(λ) ∈ F [λ]. So f(λ) is a polynomial with r as a root and coefficients in F . f(λ) splits in E[λ] by
definition and therefore so does p(λ).

3⇒1: Suppose any monic irreducible polynomial p(λ) with a root in E splits as a product of degree
1 factors in E[λ], We want to show that it is a normal extension, namely there is a polynomial f(λ) such
that E is the splitting field of f(λ) over F .

Since E/F is finite. Then we have u1, ..., uk ∈ E such that E = F (u1, ..., uk) and ui is algebraic
over F . Let pi(λ) be the minimal polynomial of ui over F . By assumption, each pi(λ) splits in E[λ].
Let f(λ) = p1(λ) · · · pk(λ). Then f(λ) splits as a product of degree 1 polynomials in E[λ]. And E is
generated by the roots of f(λ). So E is the splitting field of f(λ). Thus E/F is normal.

Example. Suppose E = Q( 3
√
5). Is it normal?

Solution: p(λ) = λ3 − 5 is the minimal polynomial of 3
√
5. But it does not split as product of degree 1

factors in E[λ]. So it is not normal.
Also since |Gal(E/Q)| = 1 and E/Q has degree 3. So it is not normal.

Theorem 6 (General Galois Correspondence). Suppose E is a field.

1. (Fields to groups) Suppose F is a subfield of E such that E/F is normal. Let G = Gal(E/F ). Then
G is a finite group. Morever |G| = [E : F ] and Inv(G) = F .

2. (Groups to fields) Suppose G ≤ Aut(E) such that G is finite. Let F = Inv(G). Then E/F is a
normal extension. Morever [E : F ] = |G| and Gal(E/F ) = G.

Proof. 1. Done by previous theorem.

2. By previous theorem, we have E/F is normal. Note, G ≤ Gal(E/F ). Since it is normal,
|Gal(E/F )| = [E : F ]. By Artin’s lemma, we have [E : F ] ≤ |G|. So |Gal(E/F )| ≤ |G| ≤
|Gal(E/F )|. Thus we have G = Gal(E/F ) and [E : F ] = |Gal(E/F )| = |G|.
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Theorem 7 (The Galois correspondence for normal extensions). Suppose E/F normal and G = Gal(E/F ).
Let

• subfield(E/F ) the set of all subfields of E/F

• subgp(G) the set of all subgroups of G.

There exists a correspondence between the above two.

• If K ∈ subfield(E/F ), then let H = Gal(E/K). So H ∈ subgp(G).

• If H ∈ subgp(G), then let K = Inv(H). So K ∈ subfield(E/F ).

In this case, we write
H ←→ K or K ←→ H

We say H corresponds to K or vice sersa.

Exercise: If E/F is not normal, what will happen? H is still a subgroup of G and K is still a subfield
of E, namely E/K/F is an extension.

Lemma. Suppose E/F is normal. G = Gal(E/F ) and K ←→ H . If σ ∈ G, then σ(K) ←→ σHσ−1.
Note σ(K) = {σ(u) | u ∈ K}.

Proof. Since K ←→ H , then K = Inv(H). Also, σ(K) ←→ σHσ−1 is equivalent to σ(K) =

Inv(σHσ−1). This is what we are going to show. If v ∈ E, then

v ∈ Inv(σHσ−1)⇐⇒ στσ−1(v) = v, ∀τ ∈ H

⇐⇒ τ(σ−1(v)) = σ−1(v)

⇐⇒ σ−1(v) ∈ Inv(H) = K

⇐⇒ v ∈ σ(K)

So Inv(σHσ−1) = σ(K), i.e. σ(K)←→ σHσ−1.

Theorem 8 (Fundamental Theorem of Galois Theory). Suppose E/F is normal. G = Gal(E/F ). The
bijective correspondence H ←→ K (between subgroups and subfields) has the following properties;

1. If K ←→ H , then [E : K] = |H| and [K : F ] = [G : H] (Think about E/K/F . [G : H] is the
index of H in G.)

2. If K1 ←→ H1 and K2 ←→ H2, then K1 ⊆subgp K2 ⇐⇒ H2 ⊆subgp H1. Thus the correspondence
is inclusion reversing and K1 ∩K2 ←→ ⟨H1, H2⟩.

3. If K ←→ H , then

K/F is normal ⇐⇒ H ⊴ G (H is a normal subgp of G)
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In that case, Gal(K/F ) ≃ G/H .

Proof. 1. Since E/F is normal, then E/K is normal. Then we have [E : K] = |Gal(E/K)| = |H|.
For the second part, [E : F ] = [E : K][K : F ]. Since [E : F ] = |G|. So |G| = |H|[K : F ] which
implies [K : F ] = |G|/|H|. By Langrange’s theorem from group theory, [G : H] = |G|/|H|. Thus
we’ve showed [K : F ] = [G : H].

2. We have Ki = Inv(Hi) and Hi = Gal(E/Ki). If K1 ⊆ K2, then H2 ⊆ H1. If H2 ⊆ H1, then
K1 ⊆ K2. The second statement is for exercise.

3. Recall H ⊴ G iff σHσ−1 = H for all σ ∈ G.

’⇒’: Suppose K/F is normal, we will show that σ(K) = K for all σ ∈ G and by lemma, this will
show that σHσ−1 = H (since σHσ−1 ←→ σ(K))

Since K/F is normal, let u ∈ K such that p(λ) ∈ F [λ] and p(λ) has u as a root. Then p(λ) splits as
a product of degree 1 factors in K[λ] so all roots of p(λ) lies in K. Thus σ(u) ∈ K for any σ ∈ G.
(Recall that σp(λ) = p(λ) should has σ(u) as a root. Since we know all roots of p(λ) is in K, thus
σ(u) ∈ K.) Thus σ(K) ⊆ K holds. Also for σ−1 ∈ G, we have σ−1(K) ⊆ K which implies
K ⊆ σ(K). So K = σ(K).

’⇐’: Suppose H ⊴ G. Then σHσ−1 = H for any σ ∈ G. Thus by lemma, σ(K) = K for any
σ ∈ G. For σ ∈ G, we have σ|K ∈ Gal(K/F ). Let G = {σ|K | σ ∈ G}, then G ≤subgp Gal(K/F ).
But since Inv(G) = F , then we have Inv(G) = F . By Characterization of normal extensions, we
have K/F is normal.

To show the last statment, we need a homomorphism φ : G = Gal(E/F ) −→ Gal(K/F ) such that
σ 7−→ σ|K . Ker(φ) = {σ ∈ G | σ(k) = k, ∀k ∈ K} = Gal(E/K) = H . Also we need to show
the surjectivity of φ. By Langrange’s theorem, we know | Im(φ)| = |G|/|H| = |Gal(K/F )|. So φ

has to be surjective. Then by the first isomorphic theorem, we have Gal(K/F ) ≃ G/H .

Example. Suppose f(λ) = λ4 + 1 ∈ Q[λ].

1. Write out the splitting field.

Since λ8−1 = (λ4+1)(λ4−1). Then we see the roots of λ4−1 are just 1, z2, z4, z6. And the roots
of λ4 + 1 are z, z3, z5, z7. So the splitting field E is Q(z, z3, z5, z7) = Q(z8).

2. What is [E : Q]?

Note z + z7 =
√
2 and z + z3 =

√
2i. So Q(

√
2) and Q(i) is a subfield of E. By multiplicativity of

degree, we have [Q(
√
2) : Q] = 2, or 4. It cannot be 2 since i /∈ Q(

√
2). Thus [E : Q] = 4.

3. Write G as a permutation group. G = Gal(Z/Q)

Note λ4+1 is therefore the minimal polynomial of z. Label roots as r1 = z8, r2 = z38 , r3 = z58 , r4 =

z78 . By extension theorem for simple extensions, ∃σ ∈ G, s.t. σ(r1) = z38 .
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Then σ(r2) = σ(z38) = σ(z8)
3 = (z38)

3 = z98 = r1; σ(r3) = σ(z58) = σ(z8)
5 = (z38)

5 = z158 = z78 =

r4; σ(r4) = σ(z78) = σ(z8)
7 = (z38)

7 = z218 = z58 = r3. Thus σ = (12)(34).

Also there exists another τ ∈ G such that τ(r1) = r3. Then similarly, we get τ(r1) = r3, τ(r2) =

r1, τ(r3) = r1, τ(r4) = r2. Thus τ = (13)(24).

στ = (14)(23) ∈ G.

So G = {ϵ, σ, τ, στ}. It’s the Klein 4 group.

4. Find all subgroups of G and their corresponding subfields. Since K4 is abelian, so all subgroups are
normal. Thus all corresponding subfields are normal extension.

𝐺

𝜎 𝜏 𝜎𝜏

ϵ

2

222

22

𝐸 = 𝐼𝑛𝑣(𝜖)

𝐼𝑛𝑣( 𝜎 ) 𝐼𝑛𝑣( 𝜏 ) Inv( 𝜎𝜏 )

𝐹 = 𝐼𝑛𝑣(𝐺)

2

222

22

Inv(⟨σ⟩) :. σ(r1 + r2) = r2 + r1 =
√
2i. Claim Inv(⟨σ⟩) = Q(

√
2i) by comparing degrees.

Inv(⟨τ⟩) :. r1 + r3 = 0. No extra information from this. Since τ(r1) = r3 = z58 = −r1 So
τ(r21) = r21 − i. Claim Inv(⟨τ⟩) = Q(i) by comparing degrees.

Inv(⟨στ⟩) :.
√
2 = r1 + r4 ∈ Inv(⟨στ⟩). Claim Inv(⟨στ⟩) = Q(

√
2) by comparing degrees.

In general, the splitting field of xn − 1 is called a cyclotomic field.

• Roots are called nth roots of unity.

• If n is prime, then λn−1
λ−1

is the minimal polynomial of zn = e2πi/n. In our example, n is not a
prime and also the minimal polynomial for z8 is λ4 + 1.

• In general, minimal polynomial of zn = e2πi/n is
∏

gcd(i,n)=1(λ − zin). So [Q(zn) : Q] = φ(n)

(The Euler function. Number of i that coprime to n).

24


