MA542 Lecture Notes - Galoris Theory

Instructor: Tullia Dymarz Note taken by: Yujia Bao

1 Field Extension

Recall A field E is a commutative ring with 1 s.t. $1 \neq 0$ and every nonzero element of E is a unit.

Example. $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$

A subfield of E is a subring that contains 1 and is closed under multiplicative inverses. So

- 1. $0 \in F$
- 2. $a \in F \Rightarrow -a \in F$
- 3. $a, b \in F \Rightarrow a + b, ab \in F$
- 4. $1 \in F$
- 5. $a \in F$, $a \neq 0 \Rightarrow a^{-1} \in F$

Note: A subfield is a field.

Definition (Extension). Suppose F is a field. An extension of F is a field E which contains F as a subfield. We write E/F is an extension. (Let E/F be a field extension)

Example. \mathbb{C}/\mathbb{Q} is an extension.

Basic problem: Given a field F what are its extensions?

Definition. Suppose E/F is an extension. A subring of E/F is a subring of E which contains F. A subfield of E/F is a subfield of E that contains F.

Definition (Diagram). If K is a subfield of E/F, we draw

 $\begin{array}{c}
E \\
K \\
F
\end{array}$

e.g. \mathbb{C}/\mathbb{Q} contains \mathbb{R} as a subfield. Because $\mathbb{C} \longrightarrow \mathbb{R} \longrightarrow \mathbb{Q}$.

Definition. Suppose E/F is an extension, and $F[S] = \{u_1, ..., u_r\} \subseteq E$, then

$$F[S] = F[u_1, ..., u_r]$$

= set of *F*-linear combinations of elements of the form $u_1^{i_1} \cdots u_r^{i_r}$, where $i_j \ge 0$
$$F(S) = \left\{ \frac{v}{w} \mid w, v \in F[S], w \ne 0 \right\}$$

Recall: $F[\lambda]$ -polynomials with coefficients in F

Clearly F[S] is the smallest subring of E/F that contains S. And F(S) is the smallest subfield containing S. We say F[S] is the subring of E/F generated by S and F(S) is the subfield generated by S.

Example. Consider E/F and let $u \in E$. Then

$$F[u] = \left\{ a_0 + a_1 u + a_2 u^2 + \dots + a_k u^k | a_i \in F, k \in \mathbb{N} \right\}$$
$$= \left\{ f(u) | f(\lambda) \in F[\lambda] \right\}$$
$$F(u) = \left\{ \frac{f(u)}{g(u)} \mid f, g \in F[\lambda], \ g(u) \neq 0 \right\}$$

Example. Consider \mathbb{C}/\mathbb{Q} , let $u = \sqrt{2}$.

$$\mathbb{Q}[\sqrt{2}] = \left\{ a_0 + a_1\sqrt{2} + a_2(\sqrt{2})^2 + \dots + a_k(\sqrt{2})^k \mid a_i \in \mathbb{Q} \right\}$$
$$= \left\{ a'_0 + a'_1\sqrt{2} \mid a'_0, a'_1 \in \mathbb{Q} \right\}$$
$$\mathbb{Q}(\sqrt{2}) = \left\{ \frac{a_0 + a_1\sqrt{2}}{b_0 + b_1\sqrt{2}} \mid a_0, a_1, b_0, b_1 \in \mathbb{Q}, \ b_0 + b_1\sqrt{2} \neq 0 \right\}$$
$$= \left\{ c_0 + c_1\sqrt{2} \mid c_0, c_1 \in \mathbb{Q} \right\}$$
$$= \mathbb{Q}[\sqrt{2}]$$

Question: When is F(u) = F[u]?

Definition. Suppose E/F is an extension and $f(\lambda) \in F[\lambda]$. A root of $f(\lambda)$ in E is an element $u \in E$ s.t. f(u) = 0.

Definition. We say that u is algebraic over F if it is the root of some nonzero polynomial in $F[\lambda]$. Otherwise we say u is transcendental over F.

Example. Consider \mathbb{C}/\mathbb{Q} . Let $u = \sqrt[3]{5}$, then u is a root of $\lambda^3 = 5$. So u is algebraic over \mathbb{Q} .

Definition (Minimal Polynomial). Suppose E/F is an extension. Let $u \in E$ be an element that is algebraic over F. Let

$$I = \{f(\lambda) \in F[\lambda] \mid f(u) = 0\}$$

Then I is an ideal over the ring of polynomials and $I \neq \{0\}$ since u is algebraic over F. So $I = (m(\lambda))$ since $F[\lambda]$ is a PID where $m(\lambda)$ is a monic polynomial of degree ≥ 1 . $m(\lambda)$ is called the minimal polynomial of u over F (Note m(u) = 0 by definition)

Note, if $f(\lambda) \in F[\lambda]$, then f(u) = 0 if and only if $m(\lambda) | f(\lambda)$. So $m(\lambda)$ is the monic polynomial of smallest degree ≥ 1 over F which has u as a root.

Definition. Suppose E/F is an extension and $u \in E$ is algebraic over F. The degree of u over F is denoted by $\deg_F(u)$, which is the degree of the minimal polynomial $m(\lambda)$.

Proposition. Suppose E/F is an extension and $u \in E$ is algebraic over F. Then the minimal polynomial of u over F is the unique irreducible polynomial over F which has u as a root.

Proof. Let $m(\lambda)$ be the minimal polynomial of u over F. Suppose for contradiction

$$m(\lambda) = g(\lambda)h(\lambda)$$

where $g(\lambda), h(\lambda) \in F[\lambda]$ has smaller degree than $m(\lambda)$. Plug in u, then we have

$$0 = m(u) = h(u)g(u)$$

Since $g(u), h(u) \in E$ which is a field. So one of g(u) or h(u) is zero. Without loss of generality, g(u) = 0. But this contradicts that $m(\lambda)$ is the smallest degree polynomial with u as a root. Therefore $m(\lambda)$ is irreducible.

Now we show the uniqueness of $m(\lambda)$. Suppose p is another monic irreducible polynomial over F that has root u. Then we know $m(\lambda) \mid p(\lambda)$ since it has u as a root which implies $p(\lambda) \in (m(\lambda))$. Since $p(\lambda)$ is irreducible, it follows that either $m(\lambda) = 1$ or $p(\lambda)$. Since the degree of $m(\lambda)$ is at least 1. So $m(\lambda) = p(\lambda)$.

Example. Consider $u = \sqrt[3]{5}$ in \mathbb{C}/\mathbb{Q} . Then $\sqrt[3]{5}$ is root of $\lambda^3 - 5 \in \mathbb{Q}[\lambda]$. Using Eisenstein's criterion which is for $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, where a_i are integers, if

- 1. *p* divides each a_i for $i \neq n$
- 2. p does not divide a_n and p^2 does not divide a_0
- then f(x) is irreducible over \mathbb{Q} .

Definition. Suppose E/F is an extension. Then E is a vector space over F. The vector space addition is the usual addition in E. The scalar multiplication is given by multiplication of elements of E by elements of F. The **degree** of E/F is the dimension of E as a vector space. Denote it by [E : F].

If [E : F] is infinite, we call the extension E/F infinite and write $[E : F] = \infty$. If [E : F] is finite, we called E/F finite and write $[E : F] < \infty$.

Example. \mathbb{C}/\mathbb{Q} is infinite extensions and \mathbb{R}/\mathbb{Q} as well. So they have infinity degrees.

For \mathbb{C}/\mathbb{R} , $[\mathbb{C}:\mathbb{R}] = 2$ because $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$. The corresponding diagram is:

 \mathbb{C} $2 \mid$ \mathbb{R}

Note: If [E:F] = 1, then E = F.

Proposition. Suppose that E/F is a field extension and $u \in E$ that is algebraic over F. Then

- 1. F(u) = F[u]
- 2. $\{1, u, ..., u^{n-1}\}$ is an F-basis (as a vector space over F) for F(u) where $n = \deg_F(u)$. (The degree of u in terms of the minimal polynomial.)
- 3. F(u)/F is a finite extension with $[F(u) : F] = \deg_F(u)$.

Proof. Let $m(\lambda)$ be the minimal polynomial of u over F, say $m(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_0, a_i \in F$. $n = \deg_F(u).$

 We must show that ∀x ∈ F[u] \ {0} ⇒ x⁻¹ ∈ F[u]. So x = f(u) ≠ 0 for some f(λ) ∈ F[λ], m(λ) ∤ f(λ) since f(u) ≠ 0. Also m(λ) is irreducible over F. Hence gcd(f(λ), m(λ)) = 1. So ∃s(λ), t(λ) ∈ F[λ] such that s(λ)m(λ)+t(λ)f(λ) = 1. Plug in u, we get s(u)m(u)+t(u)f(u) = 1. So we have t(u) = x⁻¹ ∈ F[u].

Note: This shows how to find x^{-1} .

- 2. Since F(u) = F[u], every element of F(u) is a linear combination of 1, u, u², But m(u) = 0 which implies uⁿ + a_{n-1}uⁿ⁻¹ + ··· + a₀ = 0. So uⁿ is a linear combination of {1, u, ..., uⁿ⁻¹}. Hence by induction, u^k is a linear combination of {1, u, ..., uⁿ⁻¹} for k ≥ n. Thus {1, u, ..., uⁿ⁻¹} spans F(u). This is an independent set over F since u is not a root of non-zero polynomial over F of degree less than n − 1.
- 3. Follows from above. Think of this picture:

$$\begin{array}{c}
E \\
| \\
F(u) \\
\deg_F(u) \\
F
\end{array}$$

Example. $u = \sqrt[3]{5}$ in \mathbb{C}/\mathbb{Q} . u has minimal polynomial $m(\lambda) = \lambda^3 - 5 \in \mathbb{Q}[\lambda]$. Thus $\deg_{\mathbb{Q}}(\sqrt[3]{5}) = 3$. $\mathbb{Q}[\sqrt[3]{5}] = \mathbb{Q}(\sqrt[3]{5})$ and basis for $\mathbb{Q}(\sqrt[3]{5})/\mathbb{Q}$ is $\{1, \sqrt[3]{5}, (\sqrt[3]{5})^2\}$. i.e. every element of $\mathbb{Q}(\sqrt[3]{5})$ can be written as $a_0 + a_1\sqrt[3]{5} + a_2(\sqrt[3]{5})^2$, $a_0, a_1, a_2 \in \mathbb{Q}$. Also $[\mathbb{Q}(\sqrt[3]{5}) : \mathbb{Q}] = 3$.

ex: Find $(1 + 2\sqrt[3]{5} + 7(\sqrt[3]{5})^2)^{-1}$. (Write it in the form of $a_0 + a_1\sqrt[3]{5} + a_2(\sqrt[3]{5})^2$)

Proposition (Characterization of algebraic elements). Suppose E/F and $u \in E$, then TFAE

1. u is algebraic over F.

2. F(u) = F[u]

3. F(u)/F is finite. (The field extension is finite. No need of F being finite.)

Proof. We have $1 \ge 2$, $1 \ge 3$ from before. Now we proof $2 \ge 1$ and $3 \ge 1$.

'2) \Rightarrow 1)': Suppose F(u) = F[u], then F[u] is closed under inverses. Assume $u \neq 0$. (If u = 0, the minimal polynomial for u is $m(\lambda) = \lambda$)

So $u^{-1} = f(u) \in F[u]$. Then we have $u \cdot f(u) = 1$. Let $g(\lambda) = \lambda f(\lambda) - 1$. Then $g(\lambda) \in F[\lambda]$ with $g(u) = u \cdot f(u) - 1 = 0$. Hence u is algebraic over F.

'3) \Rightarrow 1)': Suppose F(u)/F is finite. Let n = [F(u) : F], then $\{1, u, u^2, ..., u^{n-1}, u^n\}$ has n + 1 elements and so is dependent. i.e. $0 = a_0 + a_1 u + \cdots + a_n u^n$ where $a_i \in F$ not all zero. So u is the root of the polynomial $a_0 + a_1 \lambda + \cdots + a_n \lambda^n$.

Example. We can show that π is transcendental, so $\mathbb{Q}(\pi) \neq \mathbb{Q}[\pi]$ and $\mathbb{Q}(\pi)/\mathbb{Q}$ is infinite.

Proposition (Multiplicativity of degree). Suppose K/E/F is a tower of extensions. Then

 $[K:F] < \infty \Longleftrightarrow [K:E] < \infty, [E:F] < \infty$

Moreover, in this case we have

$$[K:F] = [K:E] \cdot [E:F]$$

And

$$K \\ | [K : E] \\ E \\ | [E : F] \\ F$$

So [K : E] | [K : F] and [E : F] | [K : F].

Proof. ' \Rightarrow ': If $[K : F] < \infty$, so K is a finite dimension vector space over F. But $F \subseteq E$, so any spanning set over F for K is also a spanning set over E for K. So [K : E] is finite. Also since $E \subseteq K$, then E is

a subspace of K over F and any subspace of a finite dimensional vector space is finite dimensional. So $[E:F] < \infty$.

' \Leftarrow ': Suppose K/E, E/F are finite extensions. Let $\{u_1, ..., u_n\}$ be a basis of K/E. Let $\{v_1, ..., v_s\}$ be a basis of E/F. We will show that $\{u_iv_j\}$, where i = 1, ..., n; j = 1, ..., s, is a basis for K/F. This will show K/F is finite and $[K : F] = [K : E] \cdot [E : F] = n \cdot s$.

Generation: Let $x \in K$ then $x = \sum_{i=1}^{n} e_i u_i$, $e_i \in E$. Since we can write $e_i = \sum_{i=1}^{s} a_{ij} v_j$, $a_{ij} \in F$, we have $x = \sum_{i=1}^{n} \sum_{j=1}^{s} a_{ij} (v_j u_i)$.

Independence: Suppose $\sum_{i=1}^{n} \sum_{j=1}^{s} a_{ij}(v_j u_i) = 0$. Want to show that $a_{ij} = 0$ for all i, j. Then we have $\sum_{i=1}^{n} (\sum_{j=1}^{s} a_{ij}v_j)u_i = 0$. Since u_i are basis, so $\sum_{j=1}^{s} a_{ij}v_j = 0$ for all i. By the independence of v_j , we get $a_{ij} = 0$. Therefore it is independent.

Corollary 1. Suppose K/F is finite. Let $u \in K$. Then u is algebraic over F and $\deg_F(u) \mid [K : F]$.

Proof. By theorem from last time, F(u)/F is finite since K/F is finite. So u is algebraic. By the multiplicativity of degree, we get [K : F] = [K : F(u)][F(u) : F] and $\deg_F(u) = [F(u) : F]$. So we have $\deg_F(u) \mid [K : F]$.

Note: If [F(u) : F] = 1, then $u \in F$.

Example. $\mathbb{Q}(\sqrt[3]{5})/\mathbb{Q}$ is an extension of degree 3. Let $u = 1 + \sqrt[3]{5} - (\sqrt[3]{5})^2$. Then u is algebraic over \mathbb{Q} and $\deg_{\mathbb{Q}}(u)$ is 1 or 3. Since u is not inside \mathbb{Q} (u has a unique expression as $a_0 \cdot 1 + a_1 \cdot \sqrt[3]{5} + a_2(\sqrt[3]{5})^2$), so $\deg_{\mathbb{Q}}(u)$ can only be 3.

From the diagram, we see $\mathbb{Q}(u) = \mathbb{Q}(\sqrt[3]{5})$.

Proposition. Suppose $u_1, ..., u_k$ are elements of some extension of F. Suppose u_i is algebraic over F with degree n_i , i = 1, ..., k. Then $F(u_1, ..., u_k)/F$ is finite and $[F(u_1, ..., u_k) : F] \le n_1 n_2 \cdots n_k$. Moreover if $n_1, ..., n_k$ are pairwise relatively prime, then $[F(u_1, ..., u_k) : F] = n_1 n_2 \cdots n_k$.

Proof. Case k = 2. ($k \ge 2$ follows similarly)

Suppose u_1, u_2 are algebraic with $\deg_F(u_1) = n_1$ and $\deg_F(u_2) = n_2$. Then we have the following diagram

Notice that $F(u_1, u_2) = \{v/w \mid v, w \in F(u_1), w \neq 0\}$. But u_2 is a root of a polynomial over F of degree n_2 . Thus (using the same polynomial) u_2 is a root of a polynomial with coefficients in $F(u_1)$ of deg n_2 . Hence u_2 is algebraic over $F(u_1)$ with $deg_{F(u_1)}(u_2) \leq n_2$. (Minimal polynomial divides this polynomial!) Thus $F(u_1, u_2)/F(u_1)$ is finite of degree $\leq n_2$. So $F(u_1, u_2)/F$ is finite and $[F(u_1, u_2)] = F \leq n_1 n_2$

Now suppose $gcd(n_1, n_2) = 1$. Since $n_1 | [F(u_1, u_2) : F]$ and $n_2 | [F(u_1, u_2) : F]$. So $gcd(n_1, n_2) = 1$ implies $n_1n_2 | [F(u_1, u_2) : F]$. Since $[F(u_1, u_2) : F] \le n_1n_2$, we must have equality. \Box

Exercise. Suppose $u_1, ..., u_k$ are as in the proposition. Show that the elements of the form $u_1^{l_1} \cdots u_k^{l_k}$ with $0 \le l_i \le n_i - 1$ generate $F(u_1, ..., u_k)$ over F. Hence $F[u_1, ..., u_k] = F(u_1, ..., u_k)$.

Definition. Suppose $u_1, ..., u_k$ are elements of an extension E of F, then $F(u_1, ..., u_k)$ is called the subfield of E/F generated by $u_1, ..., u_k$. Also we can say the "extension of F generated by $u_1, ..., u_k$ ".

Example. Let $K = \mathbb{Q}(\sqrt[3]{5}, \sqrt{2})$ an extension of \mathbb{Q} which is generated by $\sqrt[3]{5}, \sqrt{2}$. Then we have

Since 2, 3 are relatively prime, we have $[\mathbb{Q}(\sqrt[3]{5},\sqrt{2}):\mathbb{Q}] = 6$. The generating set is given by

$$\left\{1, \sqrt[3]{5}, (\sqrt[3]{5})^2, \sqrt{2}, \sqrt[3]{5}\sqrt{2}, (\sqrt[3]{5})^2\sqrt{2}\right\}$$

This is actually a basis since the degree of the extension is 6.

Definition. Let p be a prime, $\mathbb{F}_p = \mathbb{Z}/(p) = \{\overline{0}, \overline{1}, ..., \overline{p-1}\}$ Since p is a prime, \mathbb{F}_p is a field. By abuse of notation, we will drop the bars, $\mathbb{F}_p = \{0, 1, ..., p-1\}$.

Example. $\mathbb{F}_3 = \{0, 1, 2\}$. Let $f(\lambda) = \lambda^2 - 2 \in \mathbb{F}_3[\lambda]$. Check that this polynomial has no roots. f(0) = -2 = 1, f(1) = -1 = 2, f(2) = 2. So $f(\lambda)$ is irreducible over \mathbb{F}_3 . (Since f is of degree 2 and has no roots.)

How to build an extension of \mathbb{F}_3 in which $\lambda^2 - 2$ ha a root?

In general, suppose $f(\lambda) \in F[\lambda]$ has degree ≥ 1 over \mathbb{F} . Can we construct an extension of F in which $f(\lambda)$ has a root? When we do this, we can assume that f is monic and irreducible. The field will be F(r) where r is this root in some extension of F.

Proposition (Existense & Uniqueness of F(r)). Suppose $p(\lambda)$ is an irreducible monic polynomial over F.

- 1. Suppose E/F is an extension such that E = F(r) where r is a root of $p(\lambda)$. Then $E \simeq F[\lambda]/(p(\lambda))$. (Field extession). In fact, $f(r) \in E = F(r)$ corresponds to $f(\lambda) + (p(\lambda)) \in F[\lambda]/(p(\lambda))$.
- 2. Let $E = F[\lambda]/(p(\lambda))$ then E/F is an extension such that E = F(r) for some root r of $p(\lambda)$ in E.
- **Proof.** 1. Suppose E/F is an extension, so that E = F(r) where r is root of $p(\lambda)$. Since $p(\lambda)$ is irreducible, we know it is the minimal polynomial of r. Hence $\{f(\lambda) \in F[\lambda] \mid f(r) = 0\} = (p(\lambda))$. Define $\varphi : F[\lambda] \to E$, such that $\varphi(f(\lambda)) = f(r)$. Check that this is a ring homomorphism. Note $\text{Ker}(\varphi) = (p(\lambda))$. Note φ is surjective since $\text{Im}(\varphi) = F[r] = F(r) = E$. (Because r is algebraic) By the first isomorphic theorem, we have $E \simeq F[\lambda]/(p(\lambda))$ with $f(r) \longleftrightarrow f(\lambda) + (p(\lambda))$.
 - 2. Let $E = F[\lambda]/(p(\lambda))$. Then the elements of E can be written uniquely as

$$a_0 + a_1\lambda + \dots + a_{n-1}\lambda^{n-1} + (p(\lambda))$$

where $n = \deg(p(\lambda))$, $a_i \in F$. Identify $a \in F$ with $a + (p(\lambda))$ (Isomorphism). Then F is a subfield of E so E/F is an extension. Let $r = \lambda + (p(\lambda))$. We can write the above form as following:

$$a_{0} + a_{1}\lambda + \dots + a_{n-1}\lambda^{n-1} + (p(\lambda))$$

= $(a_{0} + (p(\lambda))) + (a_{1} + (p(\lambda)))(\lambda + (p(\lambda))) + \dots + (a_{n-1} + (p(\lambda)))(\lambda + (p(\lambda)))^{n-1}$
= $a_{0} + a_{1}r + \dots + a_{n-1}r^{n-1}$

So we have E = F[r] and since E is a field, we have E = F(r).

Claim r is a root of $p(\lambda)$. $p(r) = p(\lambda + (p(\lambda))) = p(\lambda) + (p(\lambda)) = 0 + (p(\lambda)) = 0 \in F$. So r is a root of $p(\lambda)$.

Example. $F = \mathbb{F}_3$ and $p(\lambda) = \lambda^2 - 2 \in \mathbb{F}_3[\lambda]$ (irreducible).

 $E = F(\lambda)/(\lambda^2 - 2) = \{a_0 + a_1\lambda + (p(\lambda)) \mid a_0, a_1 \in \mathbb{F}_3\} = \{a_0 + a_1r \mid a_0, a_1 \in \mathbb{F}_3\}, \text{ where } r \text{ is a root of } p(\lambda) \text{ in } E, \text{ i.e. } r^2 - 2 = 0.$ Sample calculation: $(1 + 2r)(1 + 2r) = 1 + 4r + 4r^2 = 1 + r + r^2 = 1 + r + 2 = 3 + r = r$

The number of elements of E is 9. The degree of the extension E/F is 2 since $\deg(p(\lambda)) = 2$.

Example. Let $F = \mathbb{F}_5$ and $p(\lambda) = \lambda^3 + \lambda + 1$. Claim that $p(\lambda)$ is irreducible over \mathbb{F}_5 . Let E = F(r) where r is root of $p(\lambda)$. Then elements of E are uniquely written as $a_0 + a_1r + a_2r^2$. So [E : F] = 3. Sample calculation: Use the fact that $r^3 + r + 1 = 0$, $r^3 = -r - 1 = 4r + 4$.

$$(1+r^2)^2 = 1 + 2r^2 + r^4 = 1 + 2r^2 + r(4r+4) = 1 + 2r^2 + 4r^2 + 4r = 1 + 4r + r^2.$$

Definition. An extension E/F is said to be simple is E = F(r) for some $r \in E$.

Summary. Element of E are uniquely written as

$$a_0 + a_1 r + \dots + a_{n-1} r^{n-1}$$

where n is the degree of the minimal polynomial $p(\lambda)$ and to compute in E, use fact that p(r) = 0.

Definition. Suppose F is a field. The **order** of F is the number of elements in F and denoted as |F|.

Thus we have $|F| < \infty$ or $|F| = \infty$.

2 Field Automorphism

Definition. Suppose R, R' are rings with identity. A homomorphism $\varphi : R \to R'$ is a map that satisfies

1. $\varphi(a+b) = \varphi(a) + \varphi(b)$

2.
$$\varphi(ab) = \varphi(a)\varphi(b)$$

3.
$$\varphi(1) = 1$$

Isomorphism is a bijective homomorphism.

Note. $\varphi : R \to R'$ is injective iff $\text{Ker}(\varphi) = \{0\}$.

Definition. An automorphism is an isomorphism $\varphi : R \to R$.

Example. Let $\varphi : \mathbb{C} \to \mathbb{C}$, s.t. $\varphi(a + bi) = a - bi$. Here φ is an automorphism.

Note. The only automorphism of \mathbb{R} is the identity. But there are infinity many automorphism of \mathbb{C} .

Lemma. Suppose $\varphi: F \to F'$ is a homomorphism of fields, then φ is injective.

Proof. Recall that $\text{Ker}(\varphi)$ is an ideal. Also the only ideals of a field are $\{0\}$ or F. Since $\varphi(1) = 1$ which is not inside the kernel of φ , this means $\text{Ker}(\varphi)$ cannot be F. So $\text{Ker}(\varphi)$ is zero and this implies φ is injective.

Definition. Suppose $\varphi: F \to F'$ is a homomorphism of fields. Define $\tilde{\varphi}: F[\lambda] \to F'[\lambda]$ by

$$\tilde{\varphi}(a_0 + a_1\lambda + \dots + a_n\lambda^n) = \varphi(a_0) + \varphi(a_1)\lambda + \dots + \varphi(a_n)\lambda^n$$

Claim that $\tilde{\varphi}$ is a ring homomorphism. We say $\tilde{\varphi}$ is induced by φ or φ induces $\tilde{\varphi}$. For $f(\lambda) \in F[\lambda]$, we define $({}^{\varphi}f)(\lambda) \in F'[\lambda]$, where $({}^{\varphi}f)(\lambda) = \tilde{\varphi}(f(\lambda))$.

Example. Let $\varphi : \mathbb{C} \to \mathbb{C}$ be complex conjugation and $f(\lambda) = (2+i)\lambda^3 + (1+i)\lambda + 6$. So $(\varphi f)(\lambda) = (2-i)\lambda^3 + (1-i)\lambda + 6$.

Definition. Suppose E/F and E'/F' are extensions. Suppose $\varphi : F \to F'$ and $\sigma : E \to E'$ are field homomorphism. We say that σ extends φ if $\sigma \mid_F = \varphi$. (Restrict σ to F, i.e. $\sigma(a) = \varphi(a)$ for $a \in F$)

Lemma. Suppose E/F and E'/F' are extensions and $\varphi : F \to F'$ and $\sigma : E \to E'$ are field homomorphisms and σ extends φ . Suppose $f(\lambda) \in F[\lambda]$ and r is a root of $f(\lambda)$ in E. Then $\sigma(r)$ is a root of $({}^{\varphi}f)(\lambda) \in F'[\lambda]$.

Proof. Let $f(\lambda) = a_0 + a_1\lambda + \cdots + a_n\lambda^n$, where $a_i \in F$. Then $0 = f(r) = a_0 + a_1r + \cdots + a_nr^n$. Apply σ to both sides. Then we get

$$0 = \varphi(a_0) + \varphi(a_1)\sigma(r) + \dots + \varphi(a_n)(\sigma(r))^n$$

Therefore, $\sigma(r)$ is a root of $(\varphi f)(\lambda) \in F'[\lambda]$.

Theorem 1 (Extension Theorem for simple extensions). Suppose E = F(r), where r is algebraic over F. Let $p(\lambda)$ be the minimal polynomial of r. Let E'/F' be another extension and $\varphi : F \to F'$ is a homomorphism. Let $p'(\lambda) = (\varphi p)(\lambda)$.

1. Suppose r' is a root of $p'(\lambda)$ in E'. Then there exist an unique homomorphism $\sigma : E \to E'$ that extends $\varphi : F \to F'$ and maps r to r'.

Moreover, if φ is an isomorphism and E' = F'(r'). Then σ is also an isomorphism.

2. The number of extensions of φ to homomorphisms from E to E' is the number of roots of $p'(\lambda)$ in E'.

Proof. Proof of 2) from 1): Since any homomorphism $\sigma : E \to E'$ maps r to a root of $p'(\lambda)$ and by 1), there is only one that does this for each root r' of $p'(\lambda)$.

Proof of 1). Uniqueness: Suppose σ_1 , σ_2 map r to r' and they extend φ . Then if $a \in F$, $\sigma_1(r) = \varphi(a) = \sigma_2(r)$. Also $\sigma_1(r) = \sigma_2(r) = r'$. Hence, since E = F(r) = F[r], we have $\sigma_1(x) = \sigma_2(x)$ for any $x \in E$. So $\sigma_1 = \sigma_2$.

Existence: We can assume φ is surjective. (Else replace F' with $\text{Im}(\varphi)$.) So φ is an isomorphism. Also assume E' = F'(r'). (Else replace E' by F'(r').) Since E = F(r), $E \simeq F[\lambda]/(p(\lambda))$. Also since

 φ is an isomorphism, $p'(\lambda)$ is irreducible over F'. (Think about it.) Now since E' = F'(r'), we have $E' \simeq F'[\lambda]/(p'(\lambda))$.

Recall we have $\tilde{\varphi}: F[\lambda] \to F'[\lambda]$. But $\tilde{\varphi}(p(\lambda)) = p'(\lambda)$ by definition of $p'(\lambda)$. So $\tilde{\varphi}$ induces:

$$\begin{split} \tilde{\tilde{\varphi}} &: F[\lambda]/(p(\lambda)) &\longrightarrow F'[\lambda]/(p'(\lambda)) \\ \text{where } f(\lambda) + (p(\lambda)) &\longmapsto f'(\lambda) + (p'(\lambda)) \end{split}$$

Note, if $\varphi : F \to F'$ is an isomorphism, then $\tilde{\varphi} : F[\lambda] \to F'[\lambda]$ is an isomorphism, then $\tilde{\tilde{\varphi}} : F[\lambda]/(p(\lambda)) \to F'[\lambda]/(p'(\lambda))$ is an isomorphism. So we have

$$E \simeq F[\lambda]/(p(\lambda)) \xrightarrow{\tilde{\varphi}} F'[\lambda]/(p'(\lambda)) \simeq E'$$

So σ is composition of these isomorphisms.

To see σ extends φ . Let $a \in F$. Then $a \mapsto a + (p(\lambda)) \mapsto \varphi(a) + (p'(\lambda)) \mapsto \varphi(a)$. So $\sigma(a) = \varphi(a)$. Next, $r \mapsto \lambda + (p(\lambda)) \mapsto \lambda + (p'(\lambda)) \mapsto r'$. So $\sigma(r) = r'$.

Definition. Suppose F is a field, then let Aut(F) be the group of automorphisms which group operation composition of maps. It is called the automorphism group of F. The identity is

$$\epsilon_F: F \longrightarrow F$$
$$a \longmapsto a$$

Example. Aut $(\mathbb{R}) = \{\epsilon_{\mathbb{R}}\}$. Aut (\mathbb{C}) is infinite.

Definition. Any subgroup of Aut(F) is called an automorphism group.

Definition. Suppose E/F is an extension. An automorphism of E/F is an automorphism σ of E which extends ϵ_F , i.e. $\sigma \mid_F = \epsilon_F$.

Definition. Let $\operatorname{Gal}(E/F)$ = set of automorphisms of E/F. Then $\operatorname{Gal}(E/F)$ is a subgoup of $\operatorname{Aut}(E)$ and it is called the Galois group of E/F.

Example. Gal(\mathbb{C}/\mathbb{R}) = { $\epsilon_{\mathbb{C}}$, σ }, where σ is the complex conjugation automorphism.

Notes on $\operatorname{Gal}(E/F)$

1. Suppose E/F is finite. Suppose $\sigma : E \to E$ is a homomorphism extending $\epsilon : F \to F$. Claim that σ is an isomorphism.

Proof. σ is injective since all homomorphisms of fields are. Also σ is surjective since σ is an injective linear map from *E* to *E* as vector spaces over *F*. By Rank-Nullity theorem (since *E* is finite dimensional over *F*), σ is surjective.

So any homomorphism of E to E extending ϵ_F is an isomorphism of E. So $\operatorname{Gal}(E/F)$ is the set of all homomorphisms from E to E extending ϵ_F .

2. (Roots are permuted) Suppose $f(\lambda) \in F[\lambda]$ and $\sigma \in Gal(E/F)$. If r is a root of $f(\lambda)$, i.e. f(r) = 0, then $\sigma(r)$ is also a root of $f(\lambda)$. This is because $\sigma(r)$ is a root of $({}^{\sigma}f)(\lambda)$ and $({}^{\sigma}f)(\lambda) = f(\lambda)$. (Since $\sigma \mid_F = \epsilon_F$ which is an identity map of F) So σ permutes the roots of f.

Proposition. E = F(r) where r is algebraic over F. Let $p(\lambda)$ be the minimal polynomial of r over F. Let $r_1, ..., r_l$ be distinct roots of $p(\lambda)$ in E.

- 1. For i = 1, ..., l, there exists unique $\sigma_i \in \text{Gal}(E/F)$, such that $\sigma_i(r) = r_i$. WIOG, assume $r_1 = r$, then $\sigma_1 = \epsilon_E$. Also, if $x \in E = F(r)$, then $x = a_0 + a_1r + \cdots + a_{n-1}r^{n-1}$. Then $\sigma_1(x) = a_0 + a_1r_i + \cdots + a_{n-1}r_i^{n-1}$.
- 2. $Gal(E/F) = \{\sigma_1, ..., \sigma_l\}$
- 3. $|\operatorname{Gal}(E/F)| = l \le [E:F]$
- *Proof.* 1. Use part 1 of the extension theorem for simple extensions with E = E' and F = F' and $\varphi = \epsilon_F$.
 - 2. Use part 2 of the extension theorem for simple extensions. The number of extensions of ϵ_F is the number of distinct roots of $p(\lambda)$.
 - 3. Let $n = \deg(p(\lambda))$. Then [E : F] = n. Since $p(\lambda)$ has at most n distinct roots, so $l \le n$. (in any extension!)

г	-	-	-	

Example. Suppose $E = \mathbb{Q}(\sqrt{2})$. The minimal polynomial of $\sqrt{2}$ is $p(\lambda) = \lambda^2 - 2$ and it has $\sqrt{2}, -\sqrt{2}$ as roots. Thus $\operatorname{Gal}(E/\mathbb{Q}) = \{\sigma_1, \sigma_2\}$, where $\sigma_1 = \epsilon_E$ and $\sigma_2(\sqrt{2}) = -\sqrt{2}$. In this case, $[E : \mathbb{Q}] = |C_2|(E/\mathbb{Q})| = 2$.

In this case, $[E : \mathbb{Q}] = |\operatorname{Gal}(E/Q)| = 2.$

2.1 *n*th roots of unity

Suppose $G = \{x \in \mathbb{C} \mid x^n = 1\}$. This is a cyclic group of order n with generator

$$e^{\frac{2\pi i}{n}} = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$$

Note. If $z^n = 1$, then z is a root of $\lambda^n - 1$. However

$$\lambda^n - 1 = (\lambda - 1)(\lambda - z_2) \cdots (\lambda - \lambda_{z_n})$$

Example. Let $E = \mathbb{Q}(\sqrt[3]{5})$. Then the minimal polynomial is $p(\lambda) = \lambda^3 - 5$ over \mathbb{Q} . Let $z = e^{\frac{2\pi i}{3}} = \cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3}) = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. Then $\bar{z} = z^2 = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$. Now $\sqrt[3]{5}$, $z\sqrt[3]{5}$, $z^2\sqrt[3]{5}$ are roots of $p(\lambda)$ in \mathbb{C} . Note $z\sqrt[3]{5}$, $z^2\sqrt[3]{5} \notin E = \mathbb{Q}(\sqrt[3]{5})$. So $\sqrt[3]{5}$ is the only root of $p(\lambda)$ in E. So $\operatorname{Gal}(E/Q) = \{\epsilon_E\}$ since there is only one distinct root to $p(\lambda)$ in E.

In this case, we have $|\operatorname{Gal}(E/\mathbb{Q})| = 1$ while $[E : \mathbb{Q}] = 3$. We didn't include enough roots of $p(\lambda)$ to make E. We should have studied $\mathbb{Q}(\sqrt[3]{5}, z\sqrt[3]{5}, z^2\sqrt[3]{5})$ instead.

Definition (splitting field). Suppose $f(\lambda) \in F[\lambda]$. $f(\lambda)$ is monic of degree ≥ 1 and suppose E/F is an extension. We say E is a splitting field for $f(\lambda)$ over F if

1.
$$f(\lambda) = (\lambda - r_1) \cdots (\lambda - r_n)$$
, where $r_i \in E, i = 1, ..., n$.

2.
$$E = F(r_1, ..., r_n)$$
.

Also say E/F is splitting field for $f(\lambda)$.

Note. Suppose $f(\lambda) \in F[\lambda]$ monic, degree ≥ 1 .

- 1. If E is a splitting field for $f(\lambda)$, then E/F is finite.
- 2. Suppose E/K/F and E is a splitting field for $f(\lambda)$ over F, then E is a splitting field for $f(\lambda)$ over K.
- 3. To find a splitting field for $f(\lambda)$ over F, first find some field L (an extension of F) such that

$$f(\lambda) = (\lambda - r_1) \cdots (\lambda - r_n)$$

where $r_i \in L$ and let $E = F(r_1, ..., r_n)$.

Example. Suppose $f(\lambda) = \lambda^2 - 2 \in \mathbb{Q}[\lambda]$. Then $f(\lambda) = (\lambda - \sqrt{2})(\lambda + \sqrt{2})$, where $\sqrt{2}, -\sqrt{2} \in \mathbb{R}$. $E = \mathbb{Q}(\sqrt{2}, -\sqrt{2}) = \mathbb{Q}(\sqrt{2})$ is a splitting field for $\lambda^2 - 2$ over \mathbb{Q} .

Example. Let $f(\lambda) = \lambda^3 - 5 \in \mathbb{Q}[\lambda]$. Then $f(\lambda) = (\lambda - \sqrt[3]{5})(\lambda - z\sqrt[3]{5})(\lambda - z^2\sqrt[3]{5})$, where $z = e^{2\pi i/3}$. (Here we let $L = \mathbb{C}$.) So $E = \mathbb{Q}(\sqrt[3]{5}, z\sqrt[3]{5}, z^2\sqrt[3]{5}) = \mathbb{Q}(\sqrt[3]{5}, z)$ is a splitting field for $f(\lambda)$ over \mathbb{Q} .

Theorem 2 (Existence of splitting fields). Suppose $f(\lambda) \in F[\lambda]$ is monic and degree ≥ 1 . Then there exists a splitting field of $f(\lambda)$ over F.

Proof. It is sufficient to show that there exists an extension L of F s.t. $f(\lambda) = (\lambda - r_1) \cdots (\lambda - r_n)$ where $r_i \in L$. We know that there exists an extension K_1 of F in which $f(\lambda)$ has a root. (We know it for irreducible polynomials of degree ≥ 1 , so just apply our constructor to an irreducible factor of $f(\lambda)$. A root of irreducible factor is also a root of $f(\lambda)$.) Then $f(\lambda) = (\lambda - r_1)g(\lambda)$, where $r_1 \in K_1$, $g(\lambda) \in K_1[\lambda]$. If the degree of $f(\lambda) = 1$, then we are done. Otherwise, we can find a root of r_2 of $g(\lambda)$ in some extension K_2 of K_1 . Repeat this process.

Definition (Root terminology). Suppose $f(\lambda)$ is monic with degree ≥ 1 over F. Suppose $f(\lambda) = (\lambda - r_1) \cdots (\lambda - r_n)$, where r_i are elements of some extension L of F. If r_i are distinct, then we say $f(\lambda)$ has distinct roots in L. If we list only distinct roots $r_1, ..., r_l$, they are called the distinct roots of $f(\lambda)$ in L.

Challenge: Find irreducible polynomials with multiple distinct roots.

Theorem 3 (Extension theorm for splitting fields). Suppose $\varphi : F \to F'$ is an isomorphism. Let $f(\lambda)$ be a monic polynomial of degree $n \ge 1$ over F. Let $f'(\lambda) = (\varphi f)(\lambda)$. (Apply φ to coefficients of f.) Let E be a splitting field for $f(\lambda)$ over F. Let E' be a splitting field for $f'(\lambda)$ over F'.

- 1. There exists an extension of φ to an isomorphism $E \to E'$.
- 2. The number of extension of φ to an isomorphism $E \to E'$ is $\leq [E : F]$.
- *3.* If $f'(\lambda)$ has distinct roots in E', then equality holds.

Proof. By induction on k = [E : F]. Base case, k = 1. Then E = F. Therefore, $f(\lambda)$ is a product of degree one factors over F. Thus, the image polynomial $f'(\lambda)$ is a product of degree one factors over F'. Then E' = F' and 1. holds. (Since $\varphi : E \to E'$ is the extension.) Then 2. 3. holds as well.

Suppose now k > 1 and Theorem holds for smaller k. Then $E \neq F$. Hence there exists a root r of $f(\lambda)$ in E not in F. So there exists an irreducible factor $p(\lambda)$ of $f(\lambda)$ which has r as a root in E not in F with $\deg(p(\lambda)) \ge 2$. (Since r is not in F.)

Now we have $f(\lambda) = g(\lambda)p(\lambda)$ and p(r) = 0, $g(\lambda) \in F[\lambda]$. Consider the induce polynomial. Since φ is an isomorphism, $f'(\lambda) = p'(\lambda)g'(\lambda)$ and $p'(\varphi(r)) = 0$. Also $\deg(p'(\lambda)) = \deg(p(\lambda)) \ge 2$, and $p'(\lambda)$ is irreducible over F' as well.

Suppose $s_1, ..., s_l$ are distinct roots of $p'(\lambda)$ in E'. Note $l \leq m$, where $m = \deg(p'(\lambda))$. Then we have the following relationship.

By extension theorem for simple extensions, there exists an unique extension σ_i of φ to a homomorphism of F(r) into E' so that $\sigma_i(r) = s_i$. Then σ_i restricted on $F(s_i)$ is an isomorphism of F(r) onto $F'(s_i)$. By multiplicativity of degree, we get the degrees in the picture. But $m \ge 2$, so k/m < k. By induction, σ_i extendes to an Isomorphism of E to E'. This proves 1.

To prove 2, define $e(\varphi)$ as the number of extensions of φ to an isomorphism E to E'. Define $e(\sigma_i)$ as the number of extensions of σ_i to an isomorphism E to E'.

Now any extension of φ to an isomorphism of E to E' must map r to some s_i . Hence it must extend some σ_i . So we have

$$e(\varphi) = \sum_{i=1}^{l} e(\sigma_i)$$

By induction, $e(\sigma_i) \leq [E:F(r)] = k/m$. Plug this into the formula, we have

$$e(\varphi) \le \sum_{i=1}^{l} \frac{k}{m} = l \cdot \frac{k}{m} \le m \cdot \frac{k}{m} = k$$

This proves 2.

If the roots are distinct, then l = m. Again by induction, we have $e(\sigma_i) = k/m$. So

$$e(\varphi) = \sum_{i=1}^{m} \frac{k}{m} = k$$

Corollary 2 (Uniqueness of splitting fields). Suppose $f(\lambda)$ is monic polynomial of deg ≥ 1 over F. Suppose E/F and E'/F are splitting extensions of $f(\lambda)$. Then there exists an isomorphism from E to E' which extends $\epsilon_F : F \to F$. And thus we have E = E'.

Corollary 3. Suppose $f(\lambda)$ monic of deg ≥ 1 over F. Let E/F be the splitting extension of $f(\lambda)$. Then

$$|\operatorname{Gal}(E/F)| \le [E:F]$$

also if $f(\lambda)$ has distinct roots in E, then $|\operatorname{Gal}(E/F)| = [E:F]$.

Definition (Notation for elements of Gal(E/F)).

1. Suppose E/F is an extension $E = F(u_1, ..., u_k)$. Then an element $\sigma \in \text{Gal}(E/F)$ is denoted by $\sigma(u_i) = v_i$.

	u_1	\longrightarrow	v_1
σ.	u_2	\longrightarrow	v_2
	• • •	• • •	•••
	u_k	\longrightarrow	v_k

- 2. Suppose E/F is a splitting field of $f(\lambda) \in F[\lambda]$. Let $r_1, ..., r_l$ are distinct roots of $f(\lambda)$ in E. $E = F(r_1, ..., r_l)$. Then each $\sigma \in \text{Gal}(E/F)$ has form
 - $\sigma: \begin{array}{cccc} r_1 & \longrightarrow & r_{\pi(1)} \\ r_2 & \longrightarrow & r_{\pi(2)} \\ \cdots & \cdots & \cdots \\ r_l & \longrightarrow & r_{\pi(l)} \end{array}$

where π is a permutation. ($\pi \in S_l$, S_l is the permutation group on l objects.) Thus we have a map $\operatorname{Gal}(E/F) \to S_l$ that is an injective homomorphism. (It might not be surjective.) It is injective since only the identity in $\operatorname{Gal}(E/F)$ is the identity permutation on roots. i.e. Think of $\operatorname{Gal}(E/F)$ as a subgroup of S_l . Write $\sigma = \pi$. (Since each σ maps to a unique permutation.)

Example. Suppose E is a splitting field of $f(\lambda) = \lambda^3 - 5$ over \mathbb{Q} . Then $E = \mathbb{Q}(\sqrt[3]{5}, z\sqrt[3]{5}, z\sqrt[3]{5}) = \mathbb{Q}(\sqrt[3]{5}, z)$, where $z = e^{2\pi i/3}$.

Now $\sqrt[3]{5}$ has degree 3 over \mathbb{Q} . And z has degree 2 over \mathbb{Q} . (It is $(\lambda + \frac{1}{2})^2 + \frac{3}{4}$) Since 2, 3 are reletively prime, we have $[E : \mathbb{Q}] = 6$.

So $|\operatorname{Gal}(E/\mathbb{Q})| = 6$. Label the roots $r_1 = \sqrt[3]{5}$, $r_2 = z\sqrt[3]{5}$, $r_3 = z^2\sqrt[3]{5}$. So $\operatorname{Gal}(E/\mathbb{Q}) \leq S_3$. So $\operatorname{Gal}(E/\mathbb{Q}) = S_3$, since both have order 6.

For example, $\sigma = (123) \in \operatorname{Gal}(E/\mathbb{Q}) = S_3$. So

What about $\sigma(z)$?

$$\sigma(z) = \sigma\left(\frac{z\sqrt[3]{5}}{\sqrt[3]{5}}\right) = \frac{\sigma(z\sqrt[3]{5})}{\sigma(\sqrt[3]{5})} = \frac{z^2\sqrt[3]{5}}{z\sqrt[3]{5}} = z$$

Definition. Suppose $f(\lambda) \in F[\lambda]$.

$$f(\lambda) = a_n \lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_1 \lambda + a_0$$

Define the derivative of $f(\lambda)$ to be

$$f'(\lambda) = na_n\lambda^{n-1} + \dots + a_1$$

where $na_n = a_n + a_n + \cdots + a_n$. Note: roduct rule, sum rule works too.

Example. $f(\lambda) = \lambda^3 + 2\lambda^2 + \lambda + 1 \in \mathbb{F}_3[\lambda]$. Then $f'(\lambda) = 3\lambda^2 + 4\lambda + 1 = 0 + 1\lambda + 1 = \lambda + 1$.

Example. $f(\lambda) = 2\lambda^9 + \lambda^3 + 2 \in \mathbb{F}_3[\lambda]$. Then $f'(\lambda) = 18\lambda^8 + 3\lambda^2 = 0$.

Proposition. Suppose $f(\lambda)$ is monic of deg ≥ 1 over F. Suppose $f(\lambda)$ and $f'(\lambda)$ are relatively prime in $F[\lambda]$. Let E be the splitting field of $f(\lambda)$ over F. Then $f(\lambda)$ has distinct roots in E.

Proof. Since $f(\lambda)$ and $f'(\lambda)$ are relatively prime, we have $gcd(f(\lambda), f'(\lambda)) = 1$. Then we prove by contradiction.

Now $f(\lambda) = (\lambda - r_1)(\lambda - r_2) \cdots (\lambda - r_n)$ where $r_i \in E$. Suppose for contradiction, $r_1 = r_2$. (i.e. $f(\lambda)$ does not have distinct roots.) So $f(\lambda) = (\lambda - r_1)^2 g(\lambda)$. However, $f'(\lambda) = 2(\lambda - r_1)g(\lambda) + (\lambda - r_1)^2 g'(\lambda)$. Since $f(\lambda)$ and $f'(\lambda)$ has r_1 as a root, then both of them can be divided by the minimal polynomial of r_1 . Contradiction!

Note. The converse is also true. If $f(\lambda)$ has distinct roots in E, then $f(\lambda)$ and $f'(\lambda)$ are relatively prime.

Example. Suppose $f(\lambda) = \lambda^{p^n} - \lambda \in \mathbb{F}_p[\lambda]$, where $n \ge 1$. Then $f'(\lambda) = p^n \lambda^{p^n-1} - 1 = -1$. So $gcd(f(\lambda), f'(\lambda)) = 1$. So $f(\lambda)$ has distinct roots in the splitting field.

3 Finite Fields

Proposition. Suppose E is a finite field.

- 1. Then *E* is a finite extension of $\mathbb{F}_p \triangleq \mathbb{Z}/p$ for some prime *p*.
- 2. Hence $|E| = p^n$ where $n = [E : \mathbb{F}_p]$.

Proof. 1. Define $\varphi : \mathbb{Z} \to E$, s.t. $\varphi(m) = m \cdot 1_E$ for $m \in \mathbb{Z}$. So φ is a homomorphism of rings. Let $F = \{m \cdot 1_E \mid m \in \mathbb{Z}\} = \operatorname{Im}(\varphi)$. Then F is a subring of E. Now $\operatorname{Ker}(\varphi)$ is an ideal of \mathbb{Z} . Since \mathbb{Z} is infinite and E is finite. Then $\operatorname{Ker}(\varphi) \neq (0)$. Hence $\operatorname{Ker}(\varphi) = (p)$ (ideal in a PID), where p is a positive integer. By definition, p is the characteristic of E. By a previous homework, p is a prime. Recap that φ is a homomorphism of \mathbb{Z} onto F with kernel (p). So $F \simeq \mathbb{Z}/(p) = \mathbb{F}_p$ as a ring. Then identify F with \mathbb{F}_p . Therefore E contains \mathbb{F}_p as a subring but \mathbb{F}_p is a field. So E contains \mathbb{F}_p as subfield. Therefore E is an extension of \mathbb{F}_p by definition. Since E is finite, E is a finite dimensional vector space over \mathbb{F}_p . So E/\mathbb{F}_p is finite.

2. Part 2 follows from part 1. Since E is a finite extension of \mathbb{F}_p , this means there is a basis $u_1, ..., u_n$ with all elements in E written uniquely as

$$a_1u_1 + a_2u_2 + \dots + a_nu_n$$

where $a_i \in \mathbb{F}_p$. So there are p^n choices for the a_i s. (p choices for each a_i .)

Proposition. Suppose E is a finite field of order p^n for p a prime and $n \ge 1$. Then $u^{p^n} = u, \forall u \in E$.

Proof. Let $E^{\times} = \{u \in E \mid u \neq 0\}$. Then E^{\times} is a group under multiplication. Also $|E^{\times}| = p^n - 1$. Hence by Langrange's Theorem, we know $u^{p^n-1} = 1$. So $u \cdot u^{p^n-1} = u$. So $u^{p^n} = u$. This also trivially holds for zero since $0^{p^n} = 0$.

Corollary 4 (Fermat's Little Theorem). If $u \in \mathbb{F}_p$, then $u^p = u$.

Corollary 5 (Freshman's Dream). Suppose that E is a field of characteristic p where p is a prime. Then for $v, u \in E$, we have

$$(u+v)^p = u^p + v^p$$

And hence

$$(u+v)^{p^n} = u^{p^n} + v^{p^n}$$

for $n \geq 1$.

Exercise. Suppose char(E) = 3 and $u, v \in E$. Then $(u + v)^3 = u^3 + 3u^2v + 3uv^2 + v^3 = u^3 + v^3$.

Theorem 4 (Classification of finite fields). Suppose that p is prime and $n \ge 1$. Then \exists a unique field of order p^n up to isomorphism, namely the splitting field of $\lambda^{p^n} - \lambda$ over \mathbb{F}_p .

Proof. Uniqueness: Suppose E is a field of order p^n . By the first proposition, E is an extension of \mathbb{F}_p of degree n. Let $f(\lambda) = \lambda^{p^n} - \lambda$. We want to show that E is the splitting field of $f(\lambda)$ over \mathbb{F}_p . By the second proposition, every element of E is a root of $f(\lambda)$. But $|E| = p^n$ and $\deg(f(\lambda)) = p^n$. Hence $f(\lambda) = \prod_{u \in E} (\lambda - u)$ in $E[\lambda]$. Certainly E is generated over \mathbb{F}_p by the roots of $f(\lambda)$. So E is the splitting field of $f(\lambda)$ over \mathbb{F}_p .

Existence: Suppose E is the splitting field of $f(\lambda)$ over \mathbb{F}_p where $f(\lambda) = \lambda^{p^n} - \lambda$. We want to show that $|E| = p^n$. Let $K = \{u \in E \mid u^{p^n} = u\}$ = set of all roots of $f(\lambda)$ in E. We'll show that K = Eand $|K| = p^n$. By Fermat's Little theorem, $a^p = a$ for all $a \in \mathbb{F}_p$. Therefore $a^{p^n} = a, \forall a \in \mathbb{F}_p$. So $a \in K$ and so $\mathbb{F}_p \subseteq K$. Use Freshman's Dream to get that K is a subfield of E. $(E/K/\mathbb{F}_p)$. Since Kcontains the roots of $f(\lambda)$ and E is generated by the roots, therefore K = E. Finally, since $f'(\lambda) = -1$, so $gcd(f(\lambda), f'(\lambda)) = 1$. So $f(\lambda)$ has distinct roots in E. So $|K| = p^n$. Then $|E| = p^n$.

Definition. The unique field of order p^n is called the Galois field of order p^n and is denoted by \mathbb{F}_{p^n} .

Example. The Galois field of order 81 is the splitting field of $f(\lambda) = \lambda^{81} - \lambda$ over \mathbb{F}_3 . So $\mathbb{F}_{3^4} = \mathbb{F}_{81} = \{\text{all roots of } \lambda^{81} - \lambda\}.$

For computations, construct \mathbb{F}_{81} . $\mathbb{F}_3[\lambda]/(q(\lambda)) \simeq \{a_0 + a_1r + a_2r^2 + a_3r^3 \mid a_i \in \mathbb{F}_3\}$ where $q(\lambda)$ is irreducible of degree 4.

There are 18 such polynomials. $\lambda^4 + \lambda + 2 = q(\lambda)$.

From now on, assume char(E) = 0. i.e. $n \cdot 1_E = 0$ if and only if n = 0. Thus for nonzero u, nu = 0 if and only if n = 0.

Lemma. Suppose $p(\lambda)$ is a monic irreducible polynomial of degree ≥ 1 over F. Then $p(\lambda)$ has distinct roots in its splitting field.

Proof. Suppose for contradiction that $p(\lambda)$ does not have distinct roots in its splitting field. As was proved last time, $p(\lambda)$ and $p'(\lambda)$ (the derivative) are not relatively prime. Let $d(\lambda) = \text{gcd}(p(\lambda), p'(\lambda))$ in $F[\lambda]$. So $\text{deg}(d(\lambda)) \ge 1$. Since then $d(\lambda)$ must be a factor of $p(\lambda)$ and $p(\lambda)$ is irreducible, we must have $d(\lambda) = p(\lambda)$. So $p(\lambda) | p'(\lambda)$. But $p'(\lambda)$ is either 0 or has degree less than $\text{deg}(p(\lambda))$. So $p'(\lambda) = 0$.

But if $p(\lambda) = \lambda^n + \dots + a_1\lambda + a_0$, then $p'(\lambda) = n\lambda^{n-1} + \dots + a_1$. Since char(F) = 0, so $p'(\lambda) \neq 0$. Contradiction.

Definition (Normal extension). Suppose E/F is an extension. We say E/F is a normal extension if E is the splitting field of some monic polynomial of degree ≥ 1 over F.

Note. Any normal extension is finite, since splitting field are finite.

Proposition. Suppose E/F is normal. Then \exists a monic polynomial $f(\lambda)$ over F of deg ≥ 1 , s.t. E is the splitting field of $f(\lambda)$ over F and $f(\lambda)$ has distinct roots in E. Hence

$$|\operatorname{Gal}(E/F)| = [E:F]$$

Proof. By definition, E is the splitting field of some $h(\lambda) \in F[\lambda]$. Then $h(\lambda) = p_1(\lambda)^{l_1} \cdots p_k(\lambda)^{l_k}$, where $p_i(\lambda)$ are distinct monic irreducible polynomials over F. Let $f(\lambda) = p_1(\lambda) \cdots p_n(\lambda)$. Then $f(\lambda)$ and $h(\lambda)$ have the same distinct roots. Then E is the splitting field of $f(\lambda)$ over F. Since char(E) = 0, we proved that each $p_i(\lambda)$ has distinct root in E. Also if $i \neq j$, then $p_i(\lambda)$ and $p_j(\lambda)$ cannot have a common root in E. (Since then both p_i and p_j would be the minimal polynomials of that root which means $p_i \mid p_i$ and $p_j \mid p_i$, i.e. $p_i = p_j$.) Therefore, $f(\lambda)$ has distinct roots in E.

Last statement follows from the extension theorem for splitting field.

Definition. Suppose $G \leq \operatorname{Aut}(E)$ (G is a subgroup of automorphisms of the field E). We define $\operatorname{Inv}(G) = \{a \in E \mid \sigma(a) = a, \sigma \in G\}.$

Lemma (Exercise). Inv(G) is a subfield of E called the subfield of G-invariants in E.

Example. Let $E = \mathbb{C}$, $G = \{\epsilon, \sigma\}$. Then if $a \in E = \mathbb{C}$, $a \in \text{Inv}(G) \Leftrightarrow \sigma(a) = a \Leftrightarrow a \in \mathbb{R}$. So $\text{Inv}(G) = \mathbb{R}$. Note, \mathbb{C}/\mathbb{R} has degree 2. Also it is the splitting field of $\lambda^2 + 1$. So it is a normal extension.

Now we are curious about the correspondence between groups and extensions. Suppose E is a field.

- 1. If F is a subfield of E s.t. E/F is a normal extension. Can we have Gal(E/F) being a finite subgroup of Aut(E) and |Gal(E/F)| = [E : F]?
- 2. If G is a finite subgroup of Aut(E) and F = Inv(G). Can we have E/F being a normal extension and [E : F] = |G|?
- 3. Does this establish a one to one correspondence between

subfields F of E such that E/F is normal \longleftrightarrow finite subgroups of Aut(E)

Lemma (Artin's Lemma). Suppose E is a field, $G \leq Aut(E)$ that is finite. Let F = Inv(G). Then E/F is a finite extension and $[E : F] \leq |G|$.

Proof. We will show that any set of more than m = |G| elements in E is linearly dependent over F. This will prove both statements.

Suppose $G = \{\sigma_1, ..., \sigma_m\}$ and $\sigma_1 = \epsilon_E$. Let $u_1, ..., u_n$ be elements of E where n > m. We will show that they are dependent. Consider a system of equations

$$A\vec{x} = \vec{0}$$

where

$$A = \begin{bmatrix} \sigma_1(u_1) & \cdots & \sigma_1(u_n) \\ \cdots & \cdots & \cdots \\ \sigma_m(u_1) & \cdots & \sigma_m(u_n) \end{bmatrix}_{m \times n}$$

This is a system with n unknowns and m equations, so there is always a nontrivial solution in E^n . Our goal is to find a solution in F^n . Then since $\sigma_1 = \epsilon_E$, the first equation will give

$$x_1u_1 + x_2u_2 + \dots + x_nu_n = 0$$

Note if $\overline{s} = \begin{bmatrix} s_1 & \cdots & s_n \end{bmatrix}^T$ is a solution of $A\vec{x} = \vec{0}$. Then $\forall i$, we have $\sigma_i(\overline{s}) = \begin{bmatrix} \sigma_i(s_1) & \cdots & \sigma_i(s_n) \end{bmatrix}^T$ is a solution to $\sigma_i(A)\vec{x} = \vec{0}$ where $\sigma_i(A) = (\sigma_i(a_{jk}))$. But $\sigma_i(A)$ is obtained from A by permuting the rows. Therefore both the above to linear systems has the same solution. So $\sigma_i(\overline{s})$ is also a solution of $A\vec{x} = \vec{0}$.

Now choose solution $\overline{s} = \begin{bmatrix} s_1 & \cdots & s_n \end{bmatrix}^T$ with fewest nonzero entries. WLOG, assume $s_1 \neq 0$. Replace \overline{s} with \overline{s}/s_1 to get $s_1 = 1$. Now we have $\overline{s} = \begin{bmatrix} 1 & s_2 & \cdots & s_n \end{bmatrix}^T$. Assume for contradiction $\overline{s} \notin F^n$. Therefore $s_i \notin F$ for some i and WLOG $s_2 \notin F$. Since F = Inv(G) so $\exists \sigma_j \in G$ such that $\sigma_i(s_2) \neq s_2$. But $\sigma_i(\overline{s})$ is also a solution and so is $\overline{s} - \sigma_i(\overline{s})$. Then we have

$$\overline{s} - \sigma_j(\overline{s}) = \begin{bmatrix} 1\\s_2\\\vdots\\s_n \end{bmatrix} - \begin{bmatrix} 1\\\sigma_j(s_2)\\\vdots\\\vdots\\\vdots \end{bmatrix} = \begin{bmatrix} 0\\s'_2\\\vdots\\\vdots\\\vdots \end{bmatrix}$$

where $s'_2 \neq 0$. This is a nontrivial solution with fewer zero extries! Contradiction!

Remarks. 1. If we have E/K/F and E/F is normal. Then E/K is normal.

2. If E/K/F, then $\operatorname{Gal}(E/K) \leq_{\operatorname{subgroup}} \operatorname{Gal}(E/F)$.

Theorem 5 (Characterization of normal extensions). Suppose E/F, then TFAE

- 1. E/F is normal
- 2. F = Inv(G) for some finite group $G \leq Aut(E)$.
- 3. E/F is a finite extension with the following property:

If $p(\lambda)$ is any monic irreducible polynomial over F which has a root in E. Then $p(\lambda)$ is a product of degree one factors in $E[\lambda]$.

Moreover, in this case, we have

$$Inv(Gal(E/F)) = F \tag{1}$$

Proof. 1 \Rightarrow 2: Suppose E/F is normal. Let $G = \operatorname{Gal}(E/F)$. Let $F' = \operatorname{Inv}(G)$. Then we have E/F'/F. By remark 1, we have E/F' is normal since E/F is normal. Let $G' = \operatorname{Gal}(E/F')$. Then by remark 2, we have $G' \leq_{\operatorname{subgroup}} G$. Since E/F and E/F' are normal, we have |G| = [E : F] and |G'| = [E : F'].

Now if $\sigma \in G$, then σ fixes elements of F' since F' = Inv(G). So we see $G \leq G'$. Then we have G = G'. Thus |G| = |G'| and we get [E : F] = [E : F']. This means F = F'. Then we have F = Inv(G). So 2. and Inv(Gal(E/F)) = F follow.

2⇒3: Suppose F = Inv(G) for some finite $G \le Aut(E)$. By Artin's Lemma, E/F is finite.

Suppose $p(\lambda)$ is monic irreducible polynomial over F with a root r in E. Then $p(\lambda)$ is the minimal polynomial of r over f. We want to show $p(\lambda)$ splits as product of degree 1 factors in $E[\lambda]$. This is enough to show that $\exists f(\lambda) \in F[\lambda]$ that splits in $E[\lambda]$ and has r as a root. Since then $p(\lambda) | f(\lambda)$ and therefore if $f(\lambda)$ splits as product of degree 1 polynomials in $E[\lambda]$, so does $p(\lambda)$.

Let $f(\lambda) = \prod_{\sigma \in G} (\lambda - \sigma(r)) \in E[\lambda]$. We want to show that $f(\lambda) \in F[\lambda]$.

Now take $\tau \in G$. $({}^{\tau}f)(\lambda) = \prod_{\sigma \in G} (\lambda - (\tau \sigma)(r)) = \prod_{\delta \in G} (\lambda - \delta(r)) = f(\lambda)$. Now we have $f(\lambda) \in F[\lambda]$. So $f(\lambda)$ is a polynomial with r as a root and coefficients in F. $f(\lambda)$ splits in $E[\lambda]$ by definition and therefore so does $p(\lambda)$.

 $3\Rightarrow1$: Suppose any monic irreducible polynomial $p(\lambda)$ with a root in E splits as a product of degree 1 factors in $E[\lambda]$, We want to show that it is a normal extension, namely there is a polynomial $f(\lambda)$ such that E is the splitting field of $f(\lambda)$ over F.

Since E/F is finite. Then we have $u_1, ..., u_k \in E$ such that $E = F(u_1, ..., u_k)$ and u_i is algebraic over F. Let $p_i(\lambda)$ be the minimal polynomial of u_i over F. By assumption, each $p_i(\lambda)$ splits in $E[\lambda]$. Let $f(\lambda) = p_1(\lambda) \cdots p_k(\lambda)$. Then $f(\lambda)$ splits as a product of degree 1 polynomials in $E[\lambda]$. And E is generated by the roots of $f(\lambda)$. So E is the splitting field of $f(\lambda)$. Thus E/F is normal.

Example. Suppose $E = \mathbb{Q}(\sqrt[3]{5})$. Is it normal?

Solution: $p(\lambda) = \lambda^3 - 5$ is the minimal polynomial of $\sqrt[3]{5}$. But it does not split as product of degree 1 factors in $E[\lambda]$. So it is not normal.

Also since $|\operatorname{Gal}(E/\mathbb{Q})| = 1$ and E/\mathbb{Q} has degree 3. So it is not normal.

Theorem 6 (General Galois Correspondence). Suppose E is a field.

- 1. (Fields to groups) Suppose F is a subfield of E such that E/F is normal. Let G = Gal(E/F). Then G is a finite group. Morever |G| = [E : F] and Inv(G) = F.
- 2. (Groups to fields) Suppose $G \leq \operatorname{Aut}(E)$ such that G is finite. Let $F = \operatorname{Inv}(G)$. Then E/F is a normal extension. Morever [E:F] = |G| and $\operatorname{Gal}(E/F) = G$.

Proof. 1. Done by previous theorem.

2. By previous theorem, we have E/F is normal. Note, $G \leq \operatorname{Gal}(E/F)$. Since it is normal, $|\operatorname{Gal}(E/F)| = [E : F]$. By Artin's lemma, we have $[E : F] \leq |G|$. So $|\operatorname{Gal}(E/F)| \leq |G| \leq |\operatorname{Gal}(E/F)|$. Thus we have $G = \operatorname{Gal}(E/F)$ and $[E : F] = |\operatorname{Gal}(E/F)| = |G|$.

Theorem 7 (The Galois correspondence for normal extensions). Suppose E/F normal and G = Gal(E/F). Let

- subfield (E/F) the set of all subfields of E/F
- subgp(G) the set of all subgroups of G.

There exists a correspondence between the above two.

- If $K \in \text{subfield}(E/F)$, then let H = Gal(E/K). So $H \in \text{subgp}(G)$.
- If $H \in \text{subgp}(G)$, then let K = Inv(H). So $K \in \text{subfield}(E/F)$.

In this case, we write

$$H \longleftrightarrow K \quad or \quad K \longleftrightarrow H$$

We say H corresponds to K or vice sersa.

Exercise: If E/F is not normal, what will happen? *H* is still a subgroup of *G* and *K* is still a subfield of *E*, namely E/K/F is an extension.

Lemma. Suppose E/F is normal. $G = \operatorname{Gal}(E/F)$ and $K \longleftrightarrow H$. If $\sigma \in G$, then $\sigma(K) \longleftrightarrow \sigma H \sigma^{-1}$. Note $\sigma(K) = \{\sigma(u) \mid u \in K\}$.

Proof. Since $K \leftrightarrow H$, then K = Inv(H). Also, $\sigma(K) \leftrightarrow \sigma H \sigma^{-1}$ is equivalent to $\sigma(K) = \text{Inv}(\sigma H \sigma^{-1})$. This is what we are going to show. If $v \in E$, then

$$v \in \operatorname{Inv}(\sigma H \sigma^{-1}) \iff \sigma \tau \sigma^{-1}(v) = v, \quad \forall \tau \in H$$
$$\iff \tau(\sigma^{-1}(v)) = \sigma^{-1}(v)$$
$$\iff \sigma^{-1}(v) \in \operatorname{Inv}(H) = K$$
$$\iff v \in \sigma(K)$$

So $\operatorname{Inv}(\sigma H \sigma^{-1}) = \sigma(K)$, i.e. $\sigma(K) \longleftrightarrow \sigma H \sigma^{-1}$.

Theorem 8 (Fundamental Theorem of Galois Theory). Suppose E/F is normal. G = Gal(E/F). The bijective correspondence $H \longleftrightarrow K$ (between subgroups and subfields) has the following properties;

- 1. If $K \leftrightarrow H$, then [E : K] = |H| and [K : F] = [G : H] (Think about E/K/F. [G : H] is the index of H in G.)
- 2. If $K_1 \leftrightarrow H_1$ and $K_2 \leftrightarrow H_2$, then $K_1 \subseteq_{subgp} K_2 \iff H_2 \subseteq_{subgp} H_1$. Thus the correspondence is inclusion reversing and $K_1 \cap K_2 \leftrightarrow \langle H_1, H_2 \rangle$.
- *3. If* $K \leftrightarrow H$ *, then*

$$K/F$$
 is normal $\iff H \trianglelefteq G$ (H is a normal subgp of G)

In that case, $\operatorname{Gal}(K/F) \simeq G/H$.

- *Proof.* 1. Since E/F is normal, then E/K is normal. Then we have $[E : K] = |\operatorname{Gal}(E/K)| = |H|$. For the second part, [E : F] = [E : K][K : F]. Since [E : F] = |G|. So |G| = |H|[K : F] which implies [K : F] = |G|/|H|. By Langrange's theorem from group theory, [G : H] = |G|/|H|. Thus we've showed [K : F] = [G : H].
 - 2. We have $K_i = \text{Inv}(H_i)$ and $H_i = \text{Gal}(E/K_i)$. If $K_1 \subseteq K_2$, then $H_2 \subseteq H_1$. If $H_2 \subseteq H_1$, then $K_1 \subseteq K_2$. The second statement is for exercise.
 - 3. Recall $H \leq G$ iff $\sigma H \sigma^{-1} = H$ for all $\sigma \in G$.

' \Rightarrow ': Suppose K/F is normal, we will show that $\sigma(K) = K$ for all $\sigma \in G$ and by lemma, this will show that $\sigma H \sigma^{-1} = H$ (since $\sigma H \sigma^{-1} \longleftrightarrow \sigma(K)$)

Since K/F is normal, let $u \in K$ such that $p(\lambda) \in F[\lambda]$ and $p(\lambda)$ has u as a root. Then $p(\lambda)$ splits as a product of degree 1 factors in $K[\lambda]$ so all roots of $p(\lambda)$ lies in K. Thus $\sigma(u) \in K$ for any $\sigma \in G$. (Recall that ${}^{\sigma}p(\lambda) = p(\lambda)$ should has $\sigma(u)$ as a root. Since we know all roots of $p(\lambda)$ is in K, thus $\sigma(u) \in K$.) Thus $\sigma(K) \subseteq K$ holds. Also for $\sigma^{-1} \in G$, we have $\sigma^{-1}(K) \subseteq K$ which implies $K \subseteq \sigma(K)$. So $K = \sigma(K)$.

' \Leftarrow ': Suppose $H \leq G$. Then $\sigma H \sigma^{-1} = H$ for any $\sigma \in G$. Thus by lemma, $\sigma(K) = K$ for any $\sigma \in G$. For $\sigma \in G$, we have $\sigma|_K \in \operatorname{Gal}(K/F)$. Let $\overline{G} = \{\sigma|_K \mid \sigma \in G\}$, then $\overline{G} \leq_{\operatorname{subgp}} \operatorname{Gal}(K/F)$. But since $\operatorname{Inv}(G) = F$, then we have $\operatorname{Inv}(\overline{G}) = F$. By Characterization of normal extensions, we have K/F is normal.

To show the last statuent, we need a homomorphism $\varphi : G = \operatorname{Gal}(E/F) \longrightarrow \operatorname{Gal}(K/F)$ such that $\sigma \longmapsto \sigma|_K$. Ker $(\varphi) = \{\sigma \in G \mid \sigma(k) = k, \forall k \in K\} = \operatorname{Gal}(E/K) = H$. Also we need to show the surjectivity of φ . By Langrange's theorem, we know $|\operatorname{Im}(\varphi)| = |G|/|H| = |\operatorname{Gal}(K/F)|$. So φ has to be surjective. Then by the first isomorphic theorem, we have $\operatorname{Gal}(K/F) \simeq G/H$.

Example. Suppose $f(\lambda) = \lambda^4 + 1 \in \mathbb{Q}[\lambda]$.

1. Write out the splitting field.

Since $\lambda^8 - 1 = (\lambda^4 + 1)(\lambda^4 - 1)$. Then we see the roots of $\lambda^4 - 1$ are just $1, z^2, z^4, z^6$. And the roots of $\lambda^4 + 1$ are z, z^3, z^5, z^7 . So the splitting field E is $\mathbb{Q}(z, z^3, z^5, z^7) = \mathbb{Q}(z_8)$.

2. What is $[E : \mathbb{Q}]$?

Note $z + z^7 = \sqrt{2}$ and $z + z^3 = \sqrt{2}i$. So $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(i)$ is a subfield of E. By multiplicativity of degree, we have $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$, or 4. It cannot be 2 since $i \notin \mathbb{Q}(\sqrt{2})$. Thus $[E : \mathbb{Q}] = 4$.

3. Write G as a permutation group. $G = \operatorname{Gal}(\mathbb{Z}/\mathbb{Q})$

Note $\lambda^4 + 1$ is therefore the minimal polynomial of z. Label roots as $r_1 = z_8, r_2 = z_8^3, r_3 = z_8^5, r_4 = z_8^7$. By extension theorem for simple extensions, $\exists \sigma \in G$, s.t. $\sigma(r_1) = z_8^3$.

Then
$$\sigma(r_2) = \sigma(z_8^3) = \sigma(z_8)^3 = (z_8^3)^3 = z_8^9 = r_1; \ \sigma(r_3) = \sigma(z_8^5) = \sigma(z_8)^5 = (z_8^3)^5 = z_8^{15} = z_8^7 = r_4; \ \sigma(r_4) = \sigma(z_8^7) = \sigma(z_8)^7 = (z_8^3)^7 = z_8^{21} = z_8^5 = r_3.$$
 Thus $\sigma = (12)(34)$.
Also there exists another $\tau \in G$ such that $\tau(r_1) = r_3$. Then similarly, we get $\tau(r_1) = r_3, \tau(r_2) = r_1, \tau(r_3) = r_1, \tau(r_4) = r_2$. Thus $\tau = (13)(24)$.
 $\sigma\tau = (14)(23) \in G$.

So $G = \{\epsilon, \sigma, \tau, \sigma\tau\}$. It's the Klein 4 group.

4. Find all subgroups of G and their corresponding subfields. Since K_4 is abelian, so all subgroups are normal. Thus all corresponding subfields are normal extension.

 $\operatorname{Inv}(\langle \sigma \rangle) :. \sigma(r_1 + r_2) = r_2 + r_1 = \sqrt{2}i.$ Claim $\operatorname{Inv}(\langle \sigma \rangle) = \mathbb{Q}(\sqrt{2}i)$ by comparing degrees.

Inv $(\langle \tau \rangle)$:. $r_1 + r_3 = 0$. No extra information from this. Since $\tau(r_1) = r_3 = z_8^5 = -r_1$ So $\tau(r_1^2) = r_1^2 - i$. Claim Inv $(\langle \tau \rangle) = \mathbb{Q}(i)$ by comparing degrees.

Inv $(\langle \sigma \tau \rangle)$:. $\sqrt{2} = r_1 + r_4 \in \text{Inv}(\langle \sigma \tau \rangle)$. Claim Inv $(\langle \sigma \tau \rangle) = \mathbb{Q}(\sqrt{2})$ by comparing degrees.

In general, the splitting field of $x^n - 1$ is called a cyclotomic field.

- Roots are called nth roots of unity.
- If n is prime, then $\frac{\lambda^n 1}{\lambda 1}$ is the minimal polynomial of $z_n = e^{2\pi i/n}$. In our example, n is not a prime and also the minimal polynomial for z_8 is $\lambda^4 + 1$.
- In general, minimal polynomial of $z_n = e^{2\pi i/n}$ is $\prod_{\gcd(i,n)=1} (\lambda z_n^i)$. So $[\mathbb{Q}(z_n) : \mathbb{Q}] = \varphi(n)$ (The Euler function. Number of *i* that coprime to *n*).