MATH 542 HOMEWORK 9 - DUE THURSDAY APRIL 18

- (1) Let $z = e^{2\pi i/p} = \cos(2\pi/p) + i\sin(2\pi/p) \in \mathbb{C}$ where p is a prime. Find $[\mathbb{Q}(z):\mathbb{Q}]$ and find a basis for $\mathbb{Q}(z)$ over \mathbb{Q} .
- (2) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find $[K : \mathbb{Q}]$ and find a basis for K over \mathbb{Q} .
- (3) Suppose that E/F is an extension and $char(F) \neq 2$. Show that

$$[E:F] = 2 \iff \exists u \in E \text{ so that } E = F(u), u \notin F, u^2 \in F$$

(4) Suppose that $u \in \mathbb{R}$. Then u is said to be *constructible* if there exists a sequence F_0, F_1, \ldots, F_k of subfields of \mathbb{R} so that $F_0 = \mathbb{Q}, u \in F_k$

$$F_0 \subseteq F_1 \subseteq \dots \subseteq F_k$$

and $[F_i:F_{i-1}] = 2$ for i = 1, ..., k.

- (a) Show that $\sqrt{2 + \sqrt{1 + \sqrt{5}}}$ is constructible.
- (b) Show that $\cos(\pi/9)$ is not constructible.¹
- (5) (a) Find all irreducible polynomials of degree ≤ 4 over \mathbb{F}_2 .
 - (b) Give examples of fields of order 2,4,8 and 16.

¹This solves the ancient problem of whether it is possible to trisect the angle $\pi/3$ using a ruler and a compass. If this were possible then one could show that $\cos(\pi/9)$ is constructible. (See your book for more info).