MATH 542 HOMEWORK 8 - DUE THURSDAY APRIL 11

- (1) Suppose that E/F is an extension so that [E:F] = 1. Show that E = F.
- (2) Let $u = \cos(\pi/9) \in \mathbb{C}$. Show that u is algebraic over \mathbb{Q} and find the minimal polynomial of u over \mathbb{Q} .
- (3) (a) If F is a field and p = char(F) (see notes) show that either p is 0 or p is a prime.
 - (b) If E is an extension of \mathbb{Q} what is char(E)?
 - (c) Let p be a prime and let $\mathbb{F}_p = \mathbb{Z}/(p) = \{\overline{0}, \overline{1}, \dots, p-1\}$ be the field of integers mod p. What is $char(\mathbb{F}_p)$?
- (4) Let $r = \sqrt[3]{5}$. Find the inverse of $1 + r r^2$ in $\mathbb{Q}(r)$. Express your answer in the form $a_0 + a_1r + a_2r^2$ where $a_0, a_1, a_2 \in \mathbb{Q}$.
- (5) Suppose that E/F is an extension. Let K be the set of all elements of E which are algebraic over F. Show that K is a subfield of E. (In the case when E/F is \mathbb{C}/\mathbb{Q} , K is called the field of algebraic numbers.)

MATH 542 HOMEWORK 9 - DUE THURSDAY APRIL 18

- (1) Let $z = e^{2\pi i/p} = \cos(2\pi/p) + i\sin(2\pi/p) \in \mathbb{C}$ where p is a prime. Find $[\mathbb{Q}(z):\mathbb{Q}]$ and find a basis for $\mathbb{Q}(z)$ over \mathbb{Q} .
- (2) Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Find $[K : \mathbb{Q}]$ and find a basis for K over \mathbb{Q} .
- (3) Suppose that E/F is an extension and $char(F) \neq 2$. Show that

$$[E:F] = 2 \iff \exists u \in E \text{ so that } E = F(u), u \notin F, u^2 \in F$$

(4) Suppose that $u \in \mathbb{R}$. Then u is said to be *constructible* if there exists a sequence F_0, F_1, \ldots, F_k of subfields of \mathbb{R} so that $F_0 = \mathbb{Q}, u \in F_k$

$$F_0 \subseteq F_1 \subseteq \dots \subseteq F_k$$

and $[F_i:F_{i-1}] = 2$ for i = 1, ..., k.

- (a) Show that $\sqrt{2 + \sqrt{1 + \sqrt{5}}}$ is constructible.
- (b) Show that $\cos(\pi/9)$ is not constructible.¹
- (5) (a) Find all irreducible polynomials of degree ≤ 4 over \mathbb{F}_2 .
 - (b) Give examples of fields of order 2,4,8 and 16.

¹This solves the ancient problem of whether it is possible to trisect the angle $\pi/3$ using a ruler and a compass. If this were possible then one could show that $\cos(\pi/9)$ is constructible. (See your book for more info).

(1) Let $f(\lambda) \in F[\lambda]$ be a monic polynomial of degree $n \ge 1$.

Let *E* be the splitting field of $f(\lambda)$ over *F* and suppose that $f(\lambda)$ has distinct roots in *E*. Let K_1 and K_2 be subfields of E/F so that $\langle K_1, K_2 \rangle = E$ and

$$[K_1:F][K_2:F] = [E:F]$$

Let

$$G = Gal(E/F), G_1 = Gal(E/K_1) \text{ and } G_2 = Gal(E/K_2).$$

(So G_1 and G_2 are subgroups of G.)

Show that

a) $G_1 \cap G_2 = \{\epsilon\}$ b) $G_1 G_2 = G.^3$

(2) Suppose that E/F is a finite extension of degree n.

- a) Let E'/F' be an extension and let $\phi: F \to F'$ be an isomorphism. Show that the number of extensions of ϕ to a homomorphism of E to E' is $\leq n$.
- b) Show that $|Gal(E/F)| \leq n$.
- (3) Let $f(\lambda) \in \mathbb{Q}[\lambda]$ be given below. Let E be the splitting field of $f(\lambda)$ over \mathbb{Q} and let $G = Gal(E/\mathbb{Q})$. Find E and find $[E : \mathbb{Q}]$.
 - a) $f(\lambda) = \lambda^5 2 \in \mathbb{Q}[\lambda]$
 - b) $f(\lambda) = \lambda^4 4\lambda^2 + 2 \in \mathbb{Q}[\lambda]$ (Hint: Show that *E* is generated by a single root of $f(\lambda)$ in *E*.)
- (4) Let $E = \mathbb{F}_2(\lambda)/(q(\lambda))$ where $q(\lambda) = \lambda^4 + \lambda + 1 \in \mathbb{F}_2(\lambda)$. Then

$$E = \{a_0 + a_1r + a_2r^2 + a_3r^3 \mid a_0, a_1, a_2, a_3 \in \mathbb{F}_2\}$$

where $r = \lambda + (q(\lambda))$. From our previous assignment we know that E is a field of order 16. Find a generator for the group $E^{\times} = \{u \in E \mid u \neq 0\}$.

²The field generated by K_1 and K_2 denoted $\langle K_1, K_2 \rangle$ is the smallest subfield of E containing K_1, K_2 . ³Recall $G_1G_2 = \{g_1g_2 \mid g_1 \in G_1, g_2 \in G_2\}$. In general it is not a subgroup.

MATH 542 HOMEWORK 11 - DUE THURSDAY MAY 2

- (1) Let $f(\lambda) = \lambda^4 4\lambda^2 + 2 \in \mathbb{Q}[\lambda]$, let *E* be the splitting field of $f(\lambda)$ over \mathbb{Q} and let $G = Gal(E/\mathbb{Q})$.
 - a) Find E and $[E:\mathbb{Q}]$.
 - b) Find G as a group of permutations of the roots of $f(\lambda)$.
 - c) Find all of the subgroups of G. Which of there subgroups are normal in G?
 - d) For each subgroup of G, find the corresponding subfield of E/\mathbb{Q} , given generators for the subfield and indicate whether or not the subfield is a normal extension of \mathbb{Q} .
- (2) Let $f(\lambda) = \lambda^3 5$, let *E* be the splitting field of $f(\lambda)$ over \mathbb{Q} and let $G = Gal(E/\mathbb{Q})$.
 - a) Find E and $[E:\mathbb{Q}]$.
 - b) Find G as a group of permutations of the roots of $f(\lambda)$.
 - c) Find all of the subgroups of G. Which of there subgroups are normal in G?
 - d) For each subgroup of G, find the corresponding subfield of E/\mathbb{Q} , given generators for the subfield and indicate whether or not the subfield is a normal extension of \mathbb{Q} .