Assume R is a PID.

(1) Let $R = \mathbb{Z}$ and $M = \mathbb{Z}^2$. Let $\beta = \{(1,0),(0,1)\}$ be the standard basis.

(a) Show that $\gamma = \{(2,1), (1,1)\}$ is also a basis for M.

(b) If x = (5, -3) what is $[x]_{\gamma}$ and $[x]_{\beta}$?

(c) Verify that if $Q = [Id]_{\gamma}^{\beta}$ then $Q^{-1} = [Id]_{\beta}^{\gamma}$.

(d) If T(x,y) = (2x - y, x + 3y) what is $[T]_{\beta}$, $[T]_{\gamma}$, $[T]_{\gamma}^{\beta}$?

(e) Verify that $[T]_{\beta}[x]_{\beta} = [T(x)]_{\beta}$ and $[T]_{\gamma}[x]_{\gamma} = [T(x)]_{\gamma}$.

(f) Verify that $[T]_{\beta} = Q[T]_{\gamma}Q^{-1}$.

(2) Let R be a PID. We define the *length* of an element $a \in R$ as follows. If a is a unit L(a) = 0. If a is not a unit then write $a = p_1p_2\cdots p_n$ where p_i are irreducible elements of R and set L(a) = n. (Note that L(ab) = L(a) + L(b) if $a, b \in \mathbb{R}$ are not zero.)

(a) Show that if g = gcd(a, b) then L(g) < L(a).

(b) Show that if $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in M_{2\times 2}(R)$ then there exist $P \in M_{2\times 2}(R)$ so that the (1,1) entry of PA is g where g = gcd(a,b) and det(P) = 1.

(c) Show that if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2\times 2}(R)$ then there exist $P \in M_{2\times 2}(R)$ so that the (1,1) entry of AP is q where $q = \gcd(a,b)$ and $\det(P) = 1$.

(3) (Basic step for PIDs) Show that if $A = (a_{ij}) \in M_{m \times n}(R)$ with $a_{11} \neq 0$ then A is equivalent to a matrix $B = (b_{ij})$ so that $b_{11} \neq 0$ and either

(a) $L(b_{11}) < L(a_{11})$ or

(b)
$$B = \begin{pmatrix} b_{11} & 0 & 0 & \cdots \\ 0 & b_{22} & b_{23} & \cdots \\ 0 & b_{32} & b_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
 and $b_{11} \mid b_{ij}$ for $i, j \geq 2$.

Note. Using this result we can prove that any matrix over a PID R is equivalent to a Smith normal form. The proof is the same as the one given in class for Euclidean domains, except the length function is used instead of the norm function.

(4) Suppose M is a module over R with generating set $\{y_1, \ldots y_n\}$. Suppose that

$$y'_j = \sum_{i=1}^n p_{ij}y_i, \quad j = 1, \dots, n$$

where $P = (p_{ij})$ is an invertible $n \times n$ matrix over R with $P^{-1} = (\hat{p}_{ij})$. Show that

(a) $y_j = \sum_{i=1}^n \hat{p}_{ij} y_i', \quad j = 1, ..., n$

(b) $\{y'_1, \dots, y'_n\}$ is a generating set for M.

(5) Suppose that L is a free module over R with basis $\{x_1, \ldots, x_m\}$ and

$$y_j = \sum_{i=1}^m a_{ij} x_i, \quad j = 1, \dots, n,$$

where $A = (a_{ij}) \in M_{m \times n}(R)$. Supposer further that $A' = (a'_{ij}) = QAP$, where $Q = (q_{ij})$ is an $m \times m$ invertible matrix over R with inverse $Q^{-1} = (\hat{q}_{ij})$ and $P = (p_{ij})$ is an $n \times n$ invertible matrix over R. Let

$$x'_{j} = \sum_{i=1}^{m} \hat{q}_{ij} x_{i}, \quad j = 1, \dots, m, \quad \text{and} \quad y'_{j} = \sum_{i=1}^{n} p_{ij} y_{i}, \quad j = 1, \dots, n,$$

Show that

$$y'_{j} = \sum_{i=1}^{m} a'_{ij}x'_{i}, \quad j = 1, \dots, n,$$