Modules associated to a linear operator. Suppose that F is a field and V a vector space over F (i.e. an F-module). Let $T: V \to V$ be a linear operator on V (i.e. an F-module homomorphism). Let $F[\lambda]$ be the ring of polynomials over F. For

$$f(\lambda) = a_n \lambda^n + \dots + a_1 \lambda + a_0 \in F[\lambda]$$

we define

 $f(T) = a_n T^n + \dots a_1 T + a_0 I.$

We can make V into an $F[\lambda]$ -module using T by defining the action of $f(\lambda) \in F[\lambda]$ to be

$$f(\lambda)T \cdot v \coloneqq f(T)v = a_n T^n(v) + \dots + a_1 T(v) + a_0 I(v)$$

We call V the $F[\lambda]$ -module associated to the linear operator T.

- (1) Recall that a subspace of V is called T-invariant if $w \in W \Rightarrow T(w) \in W$. Show that W is a T-invariant subspace of W if and only if W is an $F[\lambda]$ -submodule of V.
- (2) Let $V = \mathbb{R}^3$ be a vector space over \mathbb{R} and let $T: V \to V$ be a linear operator defined by

$$T\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} x_1\\ x_2\\ -x_3 \end{pmatrix}$$

Find all $\mathbb{R}[\lambda]$ -submodules of V.

(3) Suppose that R is a commutative ring with 1. Suppose that K and L are ideals of R (i.e. R-submodules of R) Show that

 $R/K \simeq R/L$ as *R*-modules $\Leftrightarrow K = L$.

(4) Consider the \mathbb{Z} -module $M = \mathbb{Z}^2$,

$$M_1 = \{(a_1, a_2) \mid 2a_1 + 3a_2 = 0\}$$
 and $M_2 = \{(a_1, a_2) \mid a_1 + a_2 = 0\}$

Show that M is the internal direct sum of M_1 and M_2 .

- (5) Suppose that R is an integral domain. Let $a, b \in R$ with $a, b \neq 0$. Prove that $(a)/(ab) \simeq R/(b)$ as R-modules.
- (6) Suppose a, b are relatively prime nonzero integers. Show that $\mathbb{Z}/(ab) \simeq \mathbb{Z}/(a) \oplus \mathbb{Z}/(b)$ as \mathbb{Z} -modules.