Honors - Due Thursday Feb 21

If I is a nonempty index set (possibly infinite) and M_i an R-module for each $i \in I$ the direct product $\prod_{i \in I} M_i$ is set set of elements $(m_i)_{i \in I}$ where $m_i \in M_i$ with component-wise addition (i.e. $(m_i)_{i \in I} + (m'_i)_{i \in I} = (m_i + m'_i)_{i \in I}$) and component-wise R action. The direct sum $\bigoplus_{i \in I} M_i$ is the subset of elements $(m_i)_{i \in I} \in \prod_{i \in I} M_i$ for which $m_i = 0$ for all but finitely many $i \in I$. (Note that when I is finite the two definitions coincide!)

- (1) Prove that the direct product of R modules is indeed an R module and that the direct sum is a submodule of the direct product.
- (2) Show that if $R = \mathbb{Z}$ and $I = \{1, 2, ...\}$ and $M_i = \mathbb{Z}/(i)$ then their direct sum is not isomorphic to their direct product.
- (3) Let $I = \{1, 2, ...\}$ and consider the free \mathbb{Z} module $M_i = \mathbb{Z}$. Let $M = \prod_{i \in I}$. Show that M is not a free \mathbb{Z} module. (Hint: Chapter 10.3 ex 24 in Dummit and Foote walks you through this)