MATH 542 - Assignment 2 - PIDs and Euclidean domains

Assume that R is a PID.

(1) Show that if d = gcd(a, b) then

$$(d) = (a, b)$$

where $(a, b) = Ra + Rb = \{ra + sb \mid r, s \in R\}.$

Note: This implies that there is some $r, s \in R$ such that d = ra + sb.

- (2) Show that if e = lcm(a, b) then $(e) = (a) \cap (b)$.
- (3) Suppose $p \in R$ is not a unit. We call p **irreducible** if whenever p = ab then either a or b is a unit. What are the irreducible elements of \mathbb{Z} ? of F[x]?
- (4) Prove that if p is irreducible and $p \mid ab$ then either $p \mid a$ or $p \mid b$.

Note: Using this lemma we can prove that any $r \in R$ has the form $r = p_1 p_2 \cdots p_k$ where each p_i is irreducible.

(5) Using the note from the previous problem find a nice formula for lcm and gcd of $a, b \in R$ in terms of the irreducibles of a and b.

Assume that R is an integral domain.

- (6) A norm on R is a function N which assigns to each nonzero $a \in R$ a nonnegative integer $N(a) \in \mathbb{R}$. We say that an integral domain R is a **Euclidean domain** if it has a norm that satisifies the following condition: If $a, b \in R$ with $b \neq 0$ then there exists elements $q, r \in R$ so that a = qb + r and either r = 0 or N(r) < N(b). We as that q is the quotient and r is the remainder. Clearly \mathbb{Z} is a Euclidean domain with N(a) = |a|. Show that F[x] is a Euclidean domain with N given by the degree of the polynomial.
- (7) (*) (Honors) Show that any Euclidean domain is a PID.
- (8) The nice thing about Euclidean domains is that we have a *Euclidean algorithm* to find r, s such that ra + sb = gcd(a, b). You have probably seen examples of this algorithm in \mathbb{Z} (if not then refer to wikipedia for example). Apply the same algorithm in F[x] to the polynomials $x^2 1$ and $x^2 + 2x + 1$.