MATH 542 - Assignment 1 - Integral domains

For this assignment assume that the ring R is an **integral domain**. That is R is commutative with $1, 1 \neq 0$ and for $a, b \in R$, $ab = 0 \Rightarrow a = 0$ or b = 0. We say p divides a (and write $b \mid a$) if a = pb for some $b \in R$.

- (1) Suppose $n \ge 2$, for which n is $\mathbb{Z}/n\mathbb{Z}$ is an integral domain? Justify your answer.
- (2) Show that F[x], the ring of polynomials with coefficients in the field F, is an integral domain.
- (3) Recall that a **unit** in a ring R is any element with a multiplicative inverse. We say that $a, b \in R$ are **associates** if a = ub for some unit $u \in R$. Suppose R is an integral domain. Show that if $a, b \in R$ and $a \mid b$ and $b \mid a$ then a and b are associates.
- (4) What are the units in \mathbb{Z} ? What are the units in F[x]?
- (5) For $a \in R$, define $Ra = \{ra \mid r \in \mathbb{R}\}$. This is called the **principal ideal** generated by a. It is also denoted by (a). Show that if $(a) \subset (b)$ then $b \mid a$.
- (6) Recall that a **principal ideal domain** (or PID for short) is an integral domain where all ideals are principal. We will show that \mathbb{Z} and F[x] are PIDs on the next assignment. Assuming we know this, give a description of all ideals of \mathbb{Z} and F[x].
- (7) A greatest common divisor (or gcd) of $a, b \in R$ is an element g such that $g \mid a$ and $g \mid b$ and with the property that if f also divides both a and b then $f \mid d$. Show that any two gcd of a and b are associates.
- (8) A least common multiple (or lcm) of $a, b \in R$ is an element e such that any multiple of both a and b is also a multiple of e. Show that in a PID there always exists a least common multiple. Is it unique?