
Math 376: Differential Forms

The goal of this homework is to rephrase much of what we have talked about (concerning Stoke’s
theorem, etc.) in a way that’s suitable for even higher dimensional generalizations. What follows should
be considered a very small taste of what are known as differential forms.

In what follows, fix an open set U ⊆ Rn. Whether or not it is explicitly stated, all functions below
are assumed to be smooth–i.e., infinitely differentiable (all partial derivatives of all orders exist and are
continuous). For 0 ≤ k ≤ n, we define an infinite dimensional vector space Ωk (U), called the differential
k-forms on U , as follows.1

• Ω0 (U) is the set of all smooth functions f : U → R.

• Ω1 (U) is defined to be all formal sums,

f1 (x) dx1 + f2 (x) dx2 + · · ·+ fn (x) dxn,

where f1, . . . , fn : U → R are any smooth functions, and dx1, . . . , dxn are just formal vectors in
our vector space. Note that elements of Ω1 (U) can be thought of as functions f = (f1, . . . , fn) :
U → Rn. We define addition in the usual way:

(f1 (x) dx1 + f2 (x) dx2 + · · ·+ fn (x) dxn) + (g1 (x) dx1 + g2 (x) dx2 + · · ·+ gn (x) dxn)

= (f1 + g1) dx1 + · · ·+ (fn + gn) dxn.

Scalar multiplication is defined in a similar way.

• Ω2 (U) is defined to be all formal sums,∑
1≤i<j≤n

fi,j (x) dxi ∧ dxj , (1)

where, again, the fi,j : U → R are any smooth functions, and dxi ∧ dxj is just a formal element
of our vector space. We identify dxi ∧ dxj with −dxj ∧ dxi. Thus dxi ∧ dxi = 0 and every sum of
the form ∑

1≤i,j≤n

fi,j (x) dxi ∧ dxj ,

is of the form (1).

• Ωk (U) is defined to be all sums of the form,∑
1≤i1<i2<···<ik≤n

fi1,...,ikdxi1 ∧ · · · ∧ dxik . (2)

As before we identify dxi ∧ dxj with −dxj ∧ dxi so that, for instance, dx1 ∧ dx2 ∧ dx3 = −dx2 ∧
dx1 ∧ dx3 = dx2 ∧ dx3 ∧ dx1. This is why we restrict attention to i1 < i2 < · · · < ik in (2).

Problem 1. Explain why, with the above definition, Ωk (U) is zero dimensional if k > n.

1When k > n, one takes Ωk (U) to be the zero dimensional vector space.
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There is a linear map d : Ωk (U)→ Ωk+1 (U) given by the following,

d (fdxi1 ∧ · · · ∧ dxik) =

n∑
l=1

∂f

∂xl
dxl ∧ dxi1 ∧ · · · ∧ dxik , (3)

and extending by linearity (every element of Ωk (U) can be written as a finite sum of the terms discussed
in (3), so (3) uniquely determines d). Note that, in the sum on the right hand side of (3), there are
terms where l ≥ i1. In these cases, we use repeated application of the identity dxl ∧ dxi = −dxi ∧ dxl.
Example 1. In R3, we often write dx, dy, dz instead of dx1, dx2, dx3. Consider, in R3,

d (fdy) =
∂f

∂x
dx ∧ dy +

∂f

∂y
dy ∧ dy +

∂f

∂z
dz ∧ dy =

∂f

∂x
dx ∧ dy − ∂f

∂z
dy ∧ dz,

where we have used dy ∧ dy = 0.

Problem 2. Compute, in R3,
d (fdx+ gdy + hdz) .

Problem 3. Relate divergence with d. Hint: take n = 3 and think of a function F = (F1, F2, F3) : U → R3

as a 2-form F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy.

Problem 4. Relate curl with d. Hint: take n = 3, and proceed as in the previous problem, but now
thinking of d acting on 1-forms.

Problem 5. Relate the gradient with d (in any dimension). Hint: think of d acting on 0-forms (functions).

Problem 6. Show that d2 = 0. That is, if one applies d twice, one always gets the 0 vector. Conclude
that the divergence of the curl of a function is always 0.

We say a k-form, ω, is closed if dω = 0. We say a k-form, ω, is exact if ω = dγ for some k − 1 form
γ. Problem 6 shows that all exact forms are closed.

Problem 7. By Problem 5, we know that the gradient of a function can be seen as an exact 1-form.
Thus a necessary condition that a 1-form be a gradient of a 0 form is that it be closed. Consider the
case n = 2. For what open sets U ⊆ R2 do we have that all closed 1-forms are exact?

If we define a k dimensional parameterized surface, S, in U as S = r (T ), where r : T → S is a nice
function and T ⊂ Rk is a nice set. Say r (u1, . . . , uk) = (X1 (u1, . . . , uk) , . . . , Xn (u1, . . . , uk)). We can
define the integral of k-forms over S as follows. If

ω =
∑

1≤i1<···<ik≤n

fi1,...,ik (x) dxi1 ∧ · · · ∧ dxik ,

we define, ∫
S

ω =

∫
T

∑
1≤i1<···<ik≤n

fi1,...,ik (r (u1, . . . , uk))
∂ (Xi1 , . . . , Xik)

∂ (u1, . . . , uk)
du1 · · · duk.

With this notation, the theorems we have been discussing in class can be generalized in the following
way: ∫

S

dω =

∮
∂S

ω,

where ∂U denotes the boundary of U and
∮

denotes an integral with a chosen “orientation” which we
have not made precise,2 and ω is a k − 1 form. In this generality, this theorem is referred to as Stokes’
theorem.

Remark 2. In the above, we have used the usual coordinate system on Rn. At the heart of the power
of differential forms is the fact that one would get the same objects of study if one used any coordinate
system. One can even go further and define all of the above without reference to any coordinate system.
For instance, in R3 all of the above can be defined without reference to the coordinates x, y, z (so without
ever writing dx, dy, dz, etc.).

2In the case of Stokes’ theorem, in class, this was the direction in which we traversed the boundary of S.
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