MATH 375 HOMEWORK 1 DUE WEDNESDAY SEPT. 9

- (1) Prove by contradiction that there are infinitely many primes.
- (2) Prove the following formula by induction:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

(3) Prove the following formula by induction:

$$1^3 + 2^3 + \dots + (n-1)^3 < n^4/4 < 1^3 + 2^3 + \dots + n^3$$

- (4) Let P(n) denote the statement: $1 + 2 + \dots + n = \frac{1}{8}(2n+1)^2$.
 - (a) Prove that if P(k) is true for an integer k then P(k+1) is also true.
 - (b) Criticize the statement: "By induction it follows that P(n) is true for all n."
 - (c) Amend P(k) by changing the equality to an inequality that is true for all positive integers n.
- (5) The Fibonacci numbers are given by the recursive formula

$$a_0 = 1$$
, $a_1 = 1$ and $a_{n+1} = a_n + a_{n-1}$ for $n \ge 1$.

Prove that for all $n \ge 1$

$$a_n < \left(\frac{1+\sqrt{5}}{2}\right)^n$$

(6) (Well-ordering principle) Show that every non empty collection of positive integers has a smallest member (i.e. If T is a subset of positive integers then there is some $t_0 \in T$ such that for all $t \in T$ we have that $t_0 \leq t$).

Hint 1: Use contradiction followed by induction.

Hint 2: Let S be the set of all positive integers n such that n < t for all $t \in T$.