PRACTICE EXAM

1. (Limits) Use the $\epsilon - \delta$ definition of a limit to show that $\lim_{x\to 3} 5x - 7 = 8$.

Solution: Given $\epsilon > 0$, let $\delta = \frac{\epsilon}{5}$. Then if $0 < |x - 3| < \delta$, we have that

$$|(5x-7)-8| = |5x-15| = 5|x-3| < 5 \cdot \frac{\epsilon}{5} = \epsilon.$$

Therefore, by the definition of limits, we have that $\lim_{x\to 3} 5x - 7 = 8$.

2. (Exponents) Compute

$$\frac{4^{1000} \cdot \left(-\frac{1}{2}\right)^{2015}}{\left(\frac{1}{2}\right)^{20}}$$

Solution:

$$\frac{4^{1000} \cdot (-\frac{1}{2})^{2015}}{(\frac{1}{2})^{20}} = \frac{2^{2000} \cdot 2^{-2015} \cdot (-1)^{2015}}{2^{-20}} = -\frac{2^{-15}}{2^{-20}} = -2^5 = -32.$$

3. (Inequalities) Find all x such that $\frac{1}{2x+1} > \frac{3}{4x+5}$.

Solution:

$$\begin{split} \frac{1}{2x+1} - \frac{3}{4x+5} &> 0, \\ \frac{-2(x-1)}{(2x+1)(4x+5)} &> 0, \\ x &\in (-\infty, -\frac{5}{4}) \cup (-\frac{1}{2}, 1) \end{split}$$

4. (Inverse Functions/Quadratics) Let $g(x) = x^2 - 15x + 100$. Find $g^{-1}(50)$ in each of the following cases if it exists.

- (a) Domain of g is $(-\infty, 7)$.
- (b) Domain of g is (11, 20).
- (c) Domain of g is (-20, 20).

Solution:

$$x^2 - 15x + 100 = 50$$
 \Rightarrow $x = 5, 10$

- (a) Only 5 belongs to the domain of g. Therefore, $g^{-1}(50) = 5$.
- (b) Neither 5 nor 10 belong to the domain of g. Therefore, $g^{-1}(50)$ does not exist.

1

(c) Both 5 and 10 belong to the domain of g. Therefore, the horizontal line test fails and $g^{-1}(50)$ does not exist.

- 5. (Quadratics) Let $f(x) = x^2 6x + 8$.
 - (a) Write f(x) in the vertex form and state its vertex.
 - (b) Find the largest interval containing 0 such that f is invertible.
 - (c) Find f^{-1} for that domain.
 - (d) Find the domain and the range of f^{-1}

Solution:

- (a) Complete the square to find the vertex form for f: $f(x) = x^2 6x + 8 = x^2 6x + 9 1 = (x 3)^2 1$. So the vertex of f is (3, -1).
- (b) In order for f to be invertible, it should be 1-1. So we need to find the largest interval containing 0 such that f is 1-1. The largest intervals on which f is 1-1 are $[3, \infty)$ and $(-\infty, 3]$. $(-\infty, 3]$ is the one containing 0.
- (c) $y = (x-3)^2 1 \Rightarrow y+1 = (x-3)^2$ $\Rightarrow \pm \sqrt{y+1} = x-3$ Because the domain of f is $(-\infty, 3]$, we should only consider $-\sqrt{y+1}$. So, $-\sqrt{y+1} = x-3 \Rightarrow -\sqrt{y+1}+3=x$ So, $f^{-1}(y) = -\sqrt{y+1}+3$.
- (d) The range of f^{-1} is the domain of f: So it is $(-\infty, 3]$ and the domain of f^{-1} is the range of f: So it is $[-1, \infty]$.

6. (Absolute Values)

- (a) Find all x such that |x 3| + |x + 1| = 5.
- (b) Using the geometrical interpretation of $|\cdot|$ explain why none of your answers were in the interval [-1,3].

Solution:

(a) Since |x - a| represents the distance between a and x, we are looking for a point such that its distance to 3 plus its distance to -1 add to 5.

First, we know that the distance between 3 and -1 is 4, then the number cannot be between -1 and 3 (there, the sum is always 4).

Now, if $x \le -1$ then its distance to 3 is going to be the distance it has to -1 plus the remaining distance it has to 3 in other words:

$$|x-3| + |x+1| = |x-3| + |x-(-1)| =$$
$$|x-(-1)| + |3-(-1)| + |x-(-1)| = 4 + 2|x-(-1)|.$$

So we are looking for an x such that twice its distance to -1 plus 4 is 5, or such that twice its distance to -1 is 5-4=1. Therefore, the number we're looking for has a distance of $\frac{1}{2}$ from -1 and it is less than it. It has to be $-1-\frac{1}{2}=-\frac{3}{2}$.

If $x \ge 3$ we can follow similar reasoning, so we will need a number bigger that 3 such that its distance to 3 is $\frac{1}{2}$. This number is $3 + \frac{1}{2} = \frac{7}{2}$.

- (b) We know that the distance between 3 and -1 is 4, so |x-3|+|x+1| cannot take the value 5 between -1 and 3, for every number in that interval, |x-3|+|x+1|=4
- 7. (Distance/Lines/Quadratics) What point on the graph of y = 2x + 1 is closest to (0, -4)? Compute that distance.

Solution: The closest point to (0, -4) on the line y = 2x + 1 is the one that is the intersection between y = 2x + 1 and a perpendicular line to it going through (0, -4).

We know that the perpendicular line must have slope $\frac{-1}{2}$, so we have the equation

$$\frac{-1}{2} = \frac{y - (-4)}{x - 0}$$

solving for y we got $y = \frac{-1}{2}x - 4$.

Now, to find the intersection, we set the line equations equal. Then

$$2x + 1 = \frac{-1}{2}x - 4$$
; $2x + \frac{1}{2}x = -4 - 1$; $\frac{5}{2}x = -5$; $x = -5 \cdot \frac{2}{5} = -2$.

Since x = -2 we have that y = 2(-2) + 1 = -3.

Finally, the distance between the two points is

$$\sqrt{(0-(-2))^2+(-4-(-3))^2} = \sqrt{(2)^2+(-1)^2} = \sqrt{4+1} = \sqrt{5}$$