2.3 Elementary Matrices; Finding A^{-1} 2.4 Equivalent Matrices

25 September 2007

ELEMENTARY MATRICES

Definition:

An $n \times n$ matrix is **row-elementary** if it can be obtained from the $n \times n$ identity matrix I_n by application of a single elementary row operation.

Denote the set of all row-elementary matrices by $\mathcal{E}_{\rho,n}$.

An $n \times n$ matrix is **column-elementary** if it can be obtained from the $n \times n$ identity matrix I_n by application of a single elementary column operation.

The set of column-elementary matrices is $\mathcal{E}_{\rho,n}^T = (\mathcal{E}_{\rho,n})^T$.

A matrix is **elementary** if it is either row or column elementary. The set of all elementary matrices is $\mathcal{E}_n = \mathcal{E}_{\rho,n} \cup \mathcal{E}_{\rho,n}^T$.

Each set of elementary matrices is sorted into one of the three types I,II and III according to the elementary operation involved.

Elementary Operations as multiplications with elementary matrices: $\underline{\text{Type I}: 1 \leq i \neq j, k \leq n, A \in M_n, B \in M_{n \times r}, 1 \leq q \leq r.}$ If \widetilde{A} and \widetilde{AB} denote the matrices obtained by applying the type I operation $row_i \Leftrightarrow row_j$ to A and AB, respectively, then

$$(\widetilde{AB})_{kq} = \begin{cases} (AB)_{kq} = \sum_{p=1}^{n} A_{kp} B_{pq}, & \text{if } i \neq k \neq j; \\ (AB)_{jq} = \sum_{p=1}^{n} A_{jp} B_{pq}, & \text{if } k = i; \\ (AB)_{iq} = \sum_{p=1}^{n} A_{ip} B_{pq}, & \text{if } k = j. \end{cases}$$
(1)

$$(\widetilde{A}B)_{kq} = \sum_{p=1}^{n} \widetilde{A}_{kp} B_{pq} = \begin{cases} \sum_{p=1}^{n} A_{kp} B_{pq}, & \text{if } i \neq k \neq j; \\ \sum_{p=1}^{n} A_{jp} B_{pq}, & \text{if } k = i; \\ \sum_{p=1}^{n} A_{ip} B_{pq}, & \text{if } k = j. \end{cases}$$
(2)

Comparison of equations (1) and (2) yields for type I operations

$$\widetilde{AB} = \widetilde{AB}.$$

<u>Type II</u>: $1 \le i, k \le n, c \in \mathbb{R}, A \in M_n, B \in M_{n \times r}, 1 \le q \le r$. If \widetilde{A} and \widetilde{AB} denote the matrices obtained by applying the type II operation $row_i \Rightarrow c \cdot row_i$ to A and AB, respectively, then

$$(\widetilde{AB})_{kq} = \begin{cases} (AB)_{kq} = \sum_{p=1}^{n} A_{kp} B_{pq}, & \text{if } i \neq k \neq j; \\ c \cdot (AB)_{iq} = c \cdot \sum_{p=1}^{n} A_{ip} B_{pq}, & \text{if } k = i. \end{cases}$$
(3)

$$(\widetilde{A}B)_{kq} = \sum_{p=1}^{n} \widetilde{A}_{kp} B_{pq} = \begin{cases} \sum_{p=1}^{n} A_{kp} B_{pq}, & \text{if } i \neq k \neq j; \\ \sum_{p=1}^{n} c \cdot A_{ip} B_{pq}, & \text{if } k = i. \end{cases}$$
(4)

Comparison of equations (3) and (4) yields for type II operations

$$\widetilde{AB} = \widetilde{AB}.$$

<u>Type III</u>: $1 \le i \ne j, k \le n, c \in \mathbb{R}, A \in M_n, B \in M_{n \times r}, 1 \le q \le r$. If \widetilde{A} and \widetilde{AB} denote the matrices obtained by applying the type III operation $row_i \Leftrightarrow row_i + c \cdot row_j$ to A and AB, respectively, then

$$(\widetilde{AB})_{kq} = \begin{cases} (AB)_{kq} = \sum_{p=1}^{n} A_{kp} B_{pq}, & \text{if } k \neq i; \\ (AB)_{iq} = \sum_{p=1}^{n} A_{ip} B_{pq} + c \sum_{p=1}^{n} A_{jp} B_{pq}, & \text{if } k = i. \end{cases}$$

$$(\widetilde{AB})_{kq} = \sum_{p=1}^{n} A_{ip} B_{pq} + c \sum_{p=1}^{n} A_{jp} B_{pq}, & \text{if } k \neq i; \end{cases}$$

$$(5)$$

$$(\tilde{A}B)_{kq} = \sum_{p=1}^{\infty} \tilde{A}_{kp} B_{pq} = \begin{cases} \sum_{p=1}^{p=1}^{n} A_{kp} D_{pq}, & \text{if } k \neq i, \\ \sum_{p=1}^{n} (A_{ip} + cA_{jp}) B_{pq}, & \text{if } k = i. \end{cases}$$
(6)

Comparison of equations (5) and (6) yields for type III operations

$$\widetilde{AB} = \widetilde{AB}.$$

<u>SUMMARY</u> If \tilde{A} and \tilde{AB} denote the matrices obtained by applying the same elementary row operation to A and AB, respectively, then

$$\widetilde{AB} = \widetilde{AB}. \tag{7}$$

Elementary row operations as multiplications:

In the special case, where $A = I_n$ and $E = \tilde{I_n} \in \mathcal{E}_{\rho,n}$ is the elementary matrix obtained by applying a certain elementary row operation to I_n , equation (7) establishes that the result of that elementary row operation applied to B can be computed as the **matrix product** of E and B:

$$\widetilde{B} = \widetilde{I_n B} = \widetilde{I_n} B = EB \tag{8}$$

All elementary row operations acting on elements of $M_{n\times r}$ are thus "internalized" to matrix algebra in the form of left-multiplication by elements of $\mathcal{E}_{\rho,n} \subset M_n$. In particular, if n = r "everything happens" in M_n .

Let $\langle \mathcal{E}_{\rho,n} \rangle$ be the set of all **finite** products of elements from $\mathcal{E}_{\rho,n}$. Similarly $\langle \mathcal{E}_{\rho,n}^{I} \rangle$ (resp. $\langle \mathcal{E}_{\rho,n}^{II} \rangle$, $\langle \mathcal{E}_{\rho,n}^{III} \rangle$) is the set of all **finite** products of elements from $\mathcal{E}_{\rho,n}$ of type I (resp. type II, type III). <u>Theorem</u>

 $A, B \in M_{m \times n}$ are **row equivalent** if and only if there exists $C \in \langle \mathcal{E}_{\rho,n} \rangle$ such that

$$B = CA. (9)$$

Theorem

Let $E \in \mathcal{E}_{\rho,n}$. Then E^{-1} exists and is in $\mathcal{E}_{\rho,n}$ of the same type as E.

(Type I) If *E* interchanges $row_i \Leftrightarrow row_j$ where $i \neq j$, then $E^{-1} = E$. (Type II) If *E* multiplies row_i by $c \neq 0$, then E^{-1} multiplies row_i by $c^{-1} \neq 0$. (Type III) If *E* adds $c \cdot row_j$ to row_i where $i \neq j$, then E^{-1} adds $(-c) \cdot row_j$ to row_i .

Nonsingular Matrices

The set of all **nonsingular** matrices in M_n is called the **general linear group** (in dimension n) and is denoted by GL_n .

<u>Theorem</u>

$$GL_n = <\mathcal{E}_{\rho,n} > . \tag{10}$$

<u>PROOF</u>:

By the previous theorem $\langle \mathcal{E}_{\rho,n} \rangle \subseteq GL_n$.

Let $A \in GL_n$ have the RREF B, so that there exists $F \in \langle \mathcal{E}_{\rho,n} \rangle$ with A = FB. Because A is nonsingular $kerA = \{0\}$ and there are no zero rows in B. It follows that there are n leading ones in B and $B = I_n$. Hence $A = FB = BI_n = F$ and $GL_n \subseteq \langle \mathcal{E}_{\rho,n} \rangle$. Thus, $GL_n = \langle \mathcal{E}_{\rho,n} \rangle$. QED Existence and uniqueness of solutions to Ax = b

If $A \in GL_n$ the equation Ax = b has the unique solution $x = A^{-1}b$ for arbitrary $b \in M_{n \times 1}$.

Conversely, supposing that the equation Ax = 0 has a unique solution it follows that $kerA = \{0\}$ and that the RREF of A has no zero rows. Hence $A \in <\mathcal{E}_{\rho,n}>=GL_n$.

A is **nonsingular**

if and only if

the equation Ax = b has a unique solution for every $b \in M_{n \times 1}$.

<u>SUMMARY</u>

The following are equivalent statements regarding $A \in M_n$:

- 1. A is nonsingular.
- 2. Ax = 0 has only the trivial solution.
- 3. The RREF of A is I_n .
- 4. The equation Ax = b has a unique solution for every $b \in M_{n \times 1}$.

5. A is in $\langle \mathcal{E}_n \rangle$.

Singular square matrices

The following are equivalent statements regarding $A \in M_n$:

- 1. A is singular.
- 2. Ax = 0 has a solution $x \neq 0$.
- 3. The RREF of A has $row_n = 0$.
- 4. The equation Ax = b either does not have a solution or the solution is not unique.
- 5. A is not in $\langle \mathcal{E}_n \rangle$.

Computation of A^{-1} by row reduction:

For a given $A \in M_n$ let B be its RREF. Then there exists $F \in < \mathcal{E}_{\rho,n} >$ with FA = B. Either $B = I_n$ and $A^{-1} = F$ or $B \neq I_n$ and A^{-1} does not exist.

Multiplying the matrix $[A \mid I_n] \in M_{n \times 2n}$ on the left by $F \in \langle \mathcal{E}_{\rho,n} \rangle$ results in the matrix $[B \mid F]$. If A is nonsingular then the "right half" of this matrix is A^{-1} . Also, if $F = E_k E_{k-1} \dots E_2 E_1$ with $E_s \in \mathcal{E}_{\rho,n}$, $1 \leq s \leq k$, then $F^{-1} = E_1^{-1} E_2^{-1} \dots E_{k-1}^{-1} E_k^{-1}$ and $A = F^{-1}B$.

<u>Theorem</u> If $A, B \in M_n$ satisfy either $AB = I_n$ or $BA = I_n$ then $B = A^{-1}$ and $B^{-1} = A$.

Proof:

We may assume that $AB = I_n$ since the conclusion is symmetric in A and B and an interchange of A and B will lead to this hypothesis. If A were singular it could be written in the form A = FC with $F \in \langle \mathcal{E}_{\rho,n} \rangle$ and C in RREF and having its last row equal to the zero row. Then CB has its last row equal to the zero row and there exists a nonzero $0 \neq x \in M_{n \times 1}$ with CBx = 0. Then $0 \neq x = I_n x = ABx = (FC)Bx = F(CB)x = F0 = 0$. This contradiction proves that the hypothesis of A being singular is untenable and A^{-1} exists. Then $A^{-1} = A^{-1}I_n = A^{-1}(AB) =$ $(A^{-1}A)B = I_nB = B$. QED Equivalent matrices

Definition:

Two $m \times n$ matrices A and B are **equivalent** if there exist $F \in \mathcal{E}_{\rho,n} >$ and $G \in \mathcal{E}_{\rho,n}^T >$ such that

$$A = FBG. \tag{11}$$

<u>Remark</u>: This is an **equivalence relation** in the sense that it has the following three properties

Refexivity: Any *A* is equivalent to itself.

Symmetry: If A is equivalent to B, then B is equivalent to A.

Transitivity: If A is equivalent to B, and B is equivalent to C, then A is equivalent to C.

Theorem

Any nonzero $m \times n$ matrix A is equivalent to a matrix of the form

$$\begin{bmatrix} I_r & 0_{r,n-r} \\ 0_{m-r,r} & 0_{m-r,n-r} \end{bmatrix} \text{ where } 1 \le r \le \min(m,n).$$
 (12)

Theorem

Two $m \times n$ matrices A and B are equivalent if and only if there exist $P \in GL(m)$ and $Q \in GL(n)$ such that

$$A = PBQ. \tag{13}$$

<u>Theorem</u>

An $n \times n$ matrix A is nonsingular if and only if it is equivalent to I_n .