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ELEMENTARY MATRICES

Definition:

An n X n matrix is row-elementary if it can be obtained from
the n x n identity matrix I, by application of a single elementary
row operation.

Denote the set of all row-elementary matrices by &, n .

An nxn matrix is column-elementary if it can be obtained from
the n x n identity matrix I, by application of a single elementary
column operation.

The set of column-elementary matrices is Eg:n = (8p,n)T :

A matrix is elementary if it is either row or column elementary.
The set of all elementary matrices is &, = &ppn U 6’gjn.

Each set of elementary matrices is sorted into one of the three
types I,II and III according to the elementary operation involved.



Elementary Operations as multiplications with elementary matrices:
Typel: 1<i1#j5, k<n, Ae My, B€ Mpx,, 1 <qg<r.

If A and AB denote the matrices obtained by applying the type

I operation row; < row; to A and AB, respectively, then

(AB)q =1 (AB)jq=2Xp=14pBpq, T k=7 (1)
\ (AB)iq — ZZ:]_ A’ipBPQ7 if £ =j.

~ no [ Yp—1AkpBpq, i 17 k#j;
(AB)gq = Z AppBpg = < ZZ:]_ AjpBpg, It k=1; (2)

Comparison of equations (1) and (2) yields for type I operations

—_— ~

AB = AB.



Typell: 1<, k<n, ceR, Ae My, BE Muyxr, 1<q<r.
If A and AB denote the matrices obtained by applying the type
IT operation row; = c-row; to A and AB, respectively, then

kq c-(AB)jg=c-Y0_1 AipBpg, Ifk=1i.
e _ e _ Zp:lAkpBPQ7 |f’l;#k#],
(AB)kg = 2 ArpBra= { Sy et AjpBpg, if k=1, (4)

p=1

Comparison of equations (3) and (4) yields for type II operations

—_— ~

AB = AB.



Type II: 1<i#jk<n, ceR, A€ My, BE Myyr, 1<q<r
If A and AB denote the matrices obtained by applying the type
III operation row; < row; + ¢ - row; to A and AB, respectively,

then

(A‘B) — (AB)kq — Zg:l Akpoq, if k 75 1
ka (AB)zq — Zg:]_ Aipoq+CZZ:1 AjpBPQ7 if k=1.
(5)

n

p=1

Z;QL:]_(Aip + CAjp)qu, if £k =1.
(6)

Comparison of equations (5) and (6) yields for type III operations

—_— o~

AB = AB.



SUMMARY
If A and AB denote the matrices obtained by applying the same
elementary row operation to A and AB, respectively, then

— ~

AB = AB. (7)

Elementary row operations as multiplications:

In the special case, where A = I, and E = I, € Epm IS the
elementary matrix obtained by applying a certain elementary row
operation to I, equation (7) establishes that the result of that
elementary row operation applied to B can be computed as the
matrix product of £ and B:

~ —_—— —

B=1I1,B=1,B=EB (8)



All elementary row operations acting on elements of M, «, are
thus “internalized” to matrix algebra in the form of left-multiplication
by elements of £, n C My . In particular, if n = r “everything hap-
pens’ in M, .

Let < &, n > be the set of all finite products of elements from
Eoom -

Similarly < &, > (resp. < &, >, < gLl >) is the set of all
finite products of elements from &, » of type I (resp. type II,
type III).



T heorem

A, B € M,,xn are row equivalent if and only if there exists C €
< &Ep.n > such that

B=CA. (9)

T heorem
Let £ €& n.
Then E—1 exists and is in Ep n Of the same type as F.

(Type I) If E interchanges row; < row; where ¢ # j,
then E-1 = E.

(Type II) If E multiplies row; by ¢ # 0O,

then E—1 multiplies row; by ¢=1 £ 0.

(Type III) If £ adds c-row; to row; where i # j,
then E—1 adds (—c¢) - row; to row; .



Nonsingular Matrices

The set of all nonsingular matrices in M, is called the
general linear group (in dimension n)

and is denoted by GL,,.

T heorem

PROOF:

By the previous theorem < &, n >C GLy, .

Let A € GL, have the RREF B, so that there exists FF €< &, n >
with A = F'B. Because A is nonsingular kerA = {0} and there
are no zero rows in B. It follows that there are n leading ones in
B and B=1,. Hence A= FB = Bl, = F and GL, C< &, n > .
Thus, GL,=<&,n>. QED




Existence and uniqueness of solutions to Ax = b

If A ¢ GL, the equation Az = b has the unique solution x = A~ 1p
for arbitrary b € M,,«1 .

Conversely, supposing that the equation Ax = O has a unique
solution it follows that kerA = {0} and that the RREF of A has
no zero rows. Hence A €< &y n >= GLn.

A is nonsingular

if and only if
the equation Ax = b has a unique solution for every b € M, «1 .



SUMMARY
The following are equivalent statements regarding A € M,,:

1. A is nonsingular.

2. Ax = 0 has only the trivial solution.

3. The RREF of A is I,,.

4. The equation Ax = b has a unique solution for every b €
Mnxl .

5. Aisin <&, > .



Singular square matrices
The following are equivalent statements regarding A € M,,:

1. A is singular.

2. Ax = 0 has a solution =z # 0.

3. The RREF of A has rown, = 0.

4. The equation Ax = b either does not have a solution or the
solution is not unique.

5. Aisnotin <&, > .



Computation of A1 by row reduction:

For a given A € M,, let B be its RREF. Then there exists F €<
£, n > With FA = B. Either B=1, and A~! = F or B # I, and
A~1 does not exist.

Multiplying the matrix [A | In] € M,,«2, On the left by

F e< &, n > results in the matrix [B | F]. If A is nonsingular then
the “right half” of this matrix is A—1.

Also, if ' = E bk, 1...EoF7] with Eg € Epn, 1 < s < k, then
Fl=pr'E;t . E Y E Y and A=F1B.



T heorem
If A, B € M, satisfy either AB = 1,, or BA = I, then
B=A"1and Bl =4.

Proof:

We may assume that AB = I,, since the conclusion is symmetric
in A and B and an interchange of A and B will lead to this
hypothesis. If A were singular it could be written in the form
A= FC with F €< &, » > and C in RREF and having its last row
equal to the zero row. Then CB has its last row equal to the
zero row and there exists a nonzero O #= x € M,,«1 with CBx = 0.
Then 0 #2x = Ipx = ABx = (FC)Bx = F(CB)x = FO=0. This
contradiction proves that the hypothesis of A being singular is
untenable and A~1 exists. Then A=l = A-11, = A-1(4B) =
(A-'A)B=1,B=B. QED



Equivalent matrices

Definition:

Two m X n matrices A and B are equivalent if there exist
Fe<&n>and Ge<&L, > such that

A= FBG. (11)

Remark: This is an equivalence relation in the sense that it
has the following three properties

Refexivity: Any A is equivalent to itself.

Symmetry: If A is equivalent to B, then B is equivalent to A.

Transitivity: If A is equivalent to B, and B is equivalent to C,
then A is equivalent to C'.



T heorem
Any nonzero m x n matrix A is equivalent to a matrix of the form

Iy Or, n—r

Om—'r, T Om—r, n—r

where 1 <r < min(m,n). (12)

T heorem
Two m x n matrices A and B are equivalent if and only if there
exist P € GL(m) and Q € GL(n) such that

A= PBQ. (13)



T heorem
An n X n matrix A is nonsingular if and only if it is equivalent to
I, .




