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ELEMENTARY MATRICES
Definition:
An n × n matrix is row-elementary if it can be obtained from
the n×n identity matrix In by application of a single elementary
row operation.
Denote the set of all row-elementary matrices by Eρ,n .

An n×n matrix is column-elementary if it can be obtained from
the n×n identity matrix In by application of a single elementary
column operation.
The set of column-elementary matrices is ET

ρ,n = (Eρ,n)T .

A matrix is elementary if it is either row or column elementary.
The set of all elementary matrices is En = Eρ,n ∪ ET

ρ,n .

Each set of elementary matrices is sorted into one of the three
types I,II and III according to the elementary operation involved.



Elementary Operations as multiplications with elementary matrices:
Type I: 1 ≤ i 6= j, k ≤ n, A ∈ Mn, B ∈ Mn×r, 1 ≤ q ≤ r .

If Ã and ÃB denote the matrices obtained by applying the type
I operation rowi ⇔ rowj to A and AB, respectively, then

(ÃB)k q =


(AB)k q =

∑n
p=1 Ak pBp q, if i 6= k 6= j;

(AB)j q =
∑n

p=1 Aj pBp q, if k = i;

(AB)i q =
∑n

p=1 Ai pBp q, if k = j.
(1)

(ÃB)k q =
n∑

p=1

Ãk pBp q =


∑n

p=1 Ak pBp q, if i 6= k 6= j;∑n
p=1 Aj pBp q, if k = i;∑n
p=1 Ai pBp q, if k = j.

(2)

Comparison of equations (1) and (2) yields for type I operations

ÃB = ÃB .



Type II: 1 ≤ i, k ≤ n, c ∈ R, A ∈ Mn, B ∈ Mn×r, 1 ≤ q ≤ r .

If Ã and ÃB denote the matrices obtained by applying the type

II operation rowi ⇒ c · rowi to A and AB, respectively, then

(ÃB)k q =

{
(AB)k q =

∑n
p=1 Ak pBp q, if i 6= k 6= j;

c · (AB)i q = c ·
∑n

p=1 Ai pBp q, if k = i.
(3)

(ÃB)k q =
n∑

p=1

Ãk pBp q =

{ ∑n
p=1 Ak pBp q, if i 6= k 6= j;∑n
p=1 c ·Ai pBp q, if k = i.

(4)

Comparison of equations (3) and (4) yields for type II operations

ÃB = ÃB .



Type III: 1 ≤ i 6= j, k ≤ n, c ∈ R, A ∈ Mn, B ∈ Mn×r, 1 ≤ q ≤ r.

If Ã and ÃB denote the matrices obtained by applying the type

III operation rowi ⇔ rowi + c · rowj to A and AB, respectively,

then

(ÃB)k q =

{
(AB)k q =

∑n
p=1 Ak pBp q, if k 6= i;

(AB)i q =
∑n

p=1 Ai pBp q + c
∑n

p=1 Aj pBp q, if k = i.

(5)

(ÃB)k q =
n∑

p=1

Ãk pBp q =

{ ∑n
p=1 Ak pBp q, if k 6= i;∑n
p=1(Ai p + cAj p)Bp q, if k = i.

(6)

Comparison of equations (5) and (6) yields for type III operations

ÃB = ÃB .



SUMMARY

If Ã and ÃB denote the matrices obtained by applying the same

elementary row operation to A and AB, respectively, then

ÃB = ÃB . (7)

Elementary row operations as multiplications:

In the special case, where A = In and E = Ĩn ∈ Eρ ,n is the

elementary matrix obtained by applying a certain elementary row

operation to In, equation (7) establishes that the result of that

elementary row operation applied to B can be computed as the

matrix product of E and B:

B̃ = ĨnB = ĨnB = EB (8)



All elementary row operations acting on elements of Mn×r are

thus “internalized” to matrix algebra in the form of left-multiplication

by elements of Eρ ,n ⊂ Mn . In particular, if n = r “everything hap-

pens” in Mn .

Let < Eρ ,n > be the set of all finite products of elements from

Eρ ,n .

Similarly < EI
ρ ,n > (resp. < EII

ρ ,n >, < EIII
ρ ,n >) is the set of all

finite products of elements from Eρ ,n of type I (resp. type II,

type III).



Theorem
A, B ∈ Mm×n are row equivalent if and only if there exists C ∈
< Eρ ,n > such that

B = CA . (9)

Theorem
Let E ∈ Eρ ,n .

Then E−1 exists and is in Eρ ,n of the same type as E .

(Type I) If E interchanges rowi ⇔ rowj where i 6= j,
then E−1 = E .

(Type II) If E multiplies rowi by c 6= 0,
then E−1 multiplies rowi by c−1 6= 0 .

(Type III) If E adds c · rowj to rowi where i 6= j,
then E−1 adds (−c) · rowj to rowi .



Nonsingular Matrices
The set of all nonsingular matrices in Mn is called the
general linear group (in dimension n)
and is denoted by GLn .

Theorem

GLn =< Eρ ,n > . (10)

PROOF:
By the previous theorem < Eρ ,n >⊆ GLn .

Let A ∈ GLn have the RREF B, so that there exists F ∈< Eρ ,n >

with A = FB . Because A is nonsingular kerA = {0} and there
are no zero rows in B . It follows that there are n leading ones in
B and B = In . Hence A = FB = BIn = F and GLn ⊆< Eρ ,n > .

Thus, GLn =< Eρ ,n > . QED



Existence and uniqueness of solutions to Ax = b

If A ∈ GLn the equation Ax = b has the unique solution x = A−1b

for arbitrary b ∈ Mn×1 .

Conversely, supposing that the equation Ax = 0 has a unique

solution it follows that kerA = {0} and that the RREF of A has

no zero rows. Hence A ∈< Eρ ,n >= GLn .

A is nonsingular

if and only if

the equation Ax = b has a unique solution for every b ∈ Mn×1 .



SUMMARY
The following are equivalent statements regarding A ∈ Mn:

1. A is nonsingular.

2. Ax = 0 has only the trivial solution.

3. The RREF of A is In .

4. The equation Ax = b has a unique solution for every b ∈
Mn×1 .

5. A is in < En > .



Singular square matrices
The following are equivalent statements regarding A ∈ Mn:

1. A is singular.

2. Ax = 0 has a solution x 6= 0 .

3. The RREF of A has rown = 0 .

4. The equation Ax = b either does not have a solution or the
solution is not unique.

5. A is not in < En > .



Computation of A−1 by row reduction:

For a given A ∈ Mn let B be its RREF. Then there exists F ∈<

Eρ ,n > with FA = B . Either B = In and A−1 = F or B 6= In and

A−1 does not exist.

Multiplying the matrix [A | In] ∈ Mn×2n on the left by

F ∈< Eρ ,n > results in the matrix [B | F ] . If A is nonsingular then

the “right half” of this matrix is A−1 .

Also, if F = EkEk−1 . . . E2E1 with Es ∈ Eρ ,n, 1 ≤ s ≤ k, then

F−1 = E−1
1 E−1

2 . . . E−1
k−1E−1

k and A = F−1B .



Theorem
If A, B ∈ Mn satisfy either AB = In or BA = In then
B = A−1 and B−1 = A .

Proof:
We may assume that AB = In since the conclusion is symmetric
in A and B and an interchange of A and B will lead to this
hypothesis. If A were singular it could be written in the form
A = FC with F ∈< Eρ ,n > and C in RREF and having its last row
equal to the zero row. Then CB has its last row equal to the
zero row and there exists a nonzero 0 6= x ∈ Mn×1 with CBx = 0 .

Then 0 6= x = Inx = ABx = (FC)Bx = F (CB)x = F0 = 0 . This
contradiction proves that the hypothesis of A being singular is
untenable and A−1 exists. Then A−1 = A−1In = A−1(AB) =
(A−1A)B = InB = B . QED



Equivalent matrices
Definition:
Two m× n matrices A and B are equivalent if there exist
F ∈< Eρ ,n > and G ∈< ET

ρ ,n > such that

A = FBG . (11)

Remark: This is an equivalence relation in the sense that it
has the following three properties

Refexivity: Any A is equivalent to itself.

Symmetry: If A is equivalent to B, then B is equivalent to A .

Transitivity: If A is equivalent to B, and B is equivalent to C,
then A is equivalent to C .



Theorem

Any nonzero m×n matrix A is equivalent to a matrix of the form[
Ir 0r, n−r

0m−r, r 0m−r, n−r

]
where 1 ≤ r ≤ min(m, n) . (12)

Theorem

Two m× n matrices A and B are equivalent if and only if there

exist P ∈ GL(m) and Q ∈ GL(n) such that

A = PBQ . (13)



Theorem

An n× n matrix A is nonsingular if and only if it is equivalent to

In .


