Department of Mathematics, University of Wisconsin-Madison Math 101 Test #3 Spring 2010

NAME: _____

INSTRUCTOR: _____

INSTRUCTIONS:

Time: 1 hour 15 minutes You must show your work to receive credit. Problems involving fractions/radicals should be solved using fractions/radicals not decimals. No calculator.

You might need the following formula:

The vertex of a quadratic function is $\left(\frac{-b}{2a}, \frac{4ac-b^2}{4a}\right)$ or $\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right)$

Problem	Value	Score
1	15	
2	24	
3	12	
4	8	
5	16	
6	16	
7	9	
TOTAL	100	

1. (15 points) Simplify as much as possible.

$$(a)\sqrt[3]{-64}$$

(b)
$$9^{\frac{-3}{2}}$$

$$(c) - 4^{\frac{3}{2}}$$

(d)
$$-3\sqrt{72}$$

$$(e)(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})$$

2. (24 points)Write the following expression in simplified form without negative exponents. Assume that all variables represent positive real numbers.

(a) $\sqrt{49w^8}$

(b) $\sqrt[3]{16x^4y^6}$

(c) $(\sqrt{x}+3)^2$

(d) $(\sqrt{3ab^2})(\sqrt{21a^2b})$

(e)
$$2q\sqrt{48q^2} - \sqrt{27q^4}$$

(f)
$$\frac{a^{\frac{5}{2}}a^{-\frac{1}{2}}}{a^{\frac{1}{3}}}$$

3. (12 points) True or False. Circle the right answer. (a) $\sqrt{2}$ and $3\sqrt{2}$ are *like* radicals.

True

False

$$(\mathbf{b})(\sqrt{y} + \sqrt{x})^2 = y + x$$

True

False

 $(c)\sqrt{\sqrt{x}} = x^{\frac{1}{4}}$

True

False

(d) The graph of $Q(x) = x^2 + 3$ is the graph of $y = x^2$ shifted down 3 units.

True

False

(e)The function defined by $f(x) = 2(x-1)^2$ has a minimum value but no maximum value.

True

False

(f) The quadratic equation $x^2 + x + 2 = 0$ has no real solution.

True

False

4. (8 points) Rationalize the denominator and simplify as much as possible.

$$\frac{y-2}{\sqrt{y}-\sqrt{2}}$$

5. (16 points) Solve.

(a)
$$z = \sqrt{-7z + 18}$$

(b)
$$\sqrt[3]{5a+3} - \sqrt[3]{a-13} = 0$$

6. (16 points)

(a) Solve the following quadratic equation by completing the square. $x^2 + 2x - 3 = 0$

(b) Solve the following quadratic equation by using the quadratic formula. $4x^2 = -4x - 1$

7. (9 points) For $y = -x^2 - 2x + 3$

(a) Find the vertex

(b) Find the y-intercept

(c) Find the x-intercept(s)

(d) Use this information to graph the function.