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MULTILEVEL MONTE CARLO FOR CONTINUOUS TIME MARKOV
CHAINS, WITH APPLICATIONS IN BIOCHEMICAL KINETICS∗
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Abstract. We show how to extend a recently proposed multilevel Monte Carlo approach to
the continuous time Markov chain setting, thereby greatly lowering the computational complexity
needed to compute expected values of functions of the state of the system to a specified accuracy.
The extension is nontrivial, exploiting a coupling of the requisite processes that is easy to simulate
while providing a small variance for the estimator. Further, and in a stark departure from other
implementations of multilevel Monte Carlo, we show how to produce an unbiased estimator that is
significantly less computationally expensive than the usual unbiased estimator arising from exact
algorithms in conjunction with crude Monte Carlo. We thereby dramatically improve, in a quantifi-
able manner, the basic computational complexity of current approaches that have many names and
variants across the scientific literature, including the Bortz–Kalos–Lebowitz algorithm, discrete event
simulation, dynamic Monte Carlo, kinetic Monte Carlo, the n-fold way, the next reaction method,
the residence-time algorithm, the stochastic simulation algorithm, Gillespie’s algorithm, and tau-
leaping. The new algorithm applies generically, but we also give an example where the coupling
idea alone, even without a multilevel discretization, can be used to improve efficiency by exploiting
system structure. Stochastically modeled chemical reaction networks provide a very important ap-
plication for this work. Hence, we use this context for our notation, terminology, natural scalings,
and computational examples.
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1. Introduction. This paper concerns the efficient computation of expectations
for continuous time Markov chains. Specifically, we extend the multilevel Monte Carlo
(MLMC) approach of Giles [18], with related earlier work by Heinrich [24], to this
setting. We study the wide class of systems that can be written using the random
time change representation of Kurtz [15, Chapter 6], [32] in the form

X(t) = X(0) +

R∑
k=1

Yk

(∫ t

0

λk(X(s))ds

)
ζk,(1)

where the Yk are independent unit-rate Poisson processes, ζk ∈ R
d, and the functions

λk are the associated intensity, or propensity, functions. While such models are used in
nearly all branches of the sciences, especially in the studies of queues and populations,
their use has recently exploded in the biosciences, and we use this application area
for the setting of our work. We will formally introduce these models in section 2;
however, we begin by demonstrating how two different models, one from chemistry
and one from queuing, can be represented via (1).
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First, consider a linear reversible chemical network

S1

κ1

�
κ2

S2,

in which molecules of type S1 convert to molecules of type S2 at rate κ1X1, where X1

is the number of S1 molecules, and molecules of type S2 convert to S1 at rate κ2X2.
Here we are assuming the system satisfies mass action kinetics; see section 2. The
usual stochastic model, written in the framework of (1), is then

X(t) = X(0) + Y1

(∫ t

0

κ1X1(s)ds

)( −1
1

)
+ Y2

(∫ t

0

κ2X2(s)ds

)(
1
−1

)
.

Next, consider an M/M/k queue in which arrivals are happening at a constant
rate λ > 0, and there are k servers, with each serving at a rate μ > 0. Letting X(t)
denote the number of customers in the queue at time t,

X(t) = X(0) + Y1 (λt)− Y2

(
μ

∫ t

0

(X(s) ∧ k) ds)

)
,

where we define a ∧ b
def
= min{a, b}.

There are multiple algorithms available to compute exact sample paths of contin-
uous time Markov chains, and, though they are all only slight variants of each other,
they go by different names depending upon the branch of science within which they
are being applied. These include the Bortz–Kalos–Lebowitz algorithm, discrete event
simulation, dynamic Monte Carlo, kinetic Monte Carlo, the n-fold way, the residence-
time algorithm, the stochastic simulation algorithm, the next reaction method, and
Gillespie’s algorithm, where the final two are the algorithms most commonly referred
to in the biosciences. As the computational cost of exact algorithms scales linearly
with the number of jump events (i.e., reactions), such methods become computation-
ally intense for even moderately sized systems. This issue looms large when many
sample paths are needed in a Monte Carlo setting. To address this, approximate
algorithms, and notably the class of algorithms termed “tau-leaping” methods intro-
duced by Gillespie [21] in the chemical kinetic setting, have been developed with the
explicit aim of greatly lowering the computational complexity of each path simulation
while controlling the bias [3, 5, 6, 27, 34, 35].

A common task in the study of stochastic models, and the main focus of this
paper, is to approximate Ef(X(T )), where f is a scalar-valued function of the state
of the system which gives a measurement of interest. For example, the function f
could be

1. f(X(T )) = Xi(T ), yielding estimates for mean values, or
2. f(X(T )) = Xi(T )Xj(t), which can be used with estimates for the mean values

to provide estimates of variances (when i = j) and covariances (when i �= j),
or

3. f(X(T )) = 1{X(T )∈B}, the indicator function giving 1 if the state is in some
specified set. Such functions could also be used to construct histograms, for
example, since Ef(X(T )) = P{X(T ) ∈ B}.

Suppose we use an exact simulation algorithm to approximate Ef(X(T )) to O(ε)
accuracy in the sense of confidence intervals. To do so, we need to generate n = O(ε−2)
paths so that the standard deviation of the usual Monte Carlo estimator,

μn =
1

n

n∑
j=1

f(X[j](T )),
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where X[j] are independent realizations generated via an exact algorithm, is O(ε). If

we let N > 0 be the order of magnitude of the number of computations needed to
produce a single sample path using an exact algorithm, then the total computational
complexity becomes O(Nε−2). (Here, and throughout, we work in terms of expected
computational complexity.)

When N � 1, which is the norm as opposed to the exception in many settings,
it may be desirable to make use of an approximate algorithm. Suppose Ef(X(T ))−
Ef(Zh(T )) = O(h), where Zh is an approximate path generated from a time dis-
cretization with a magnitude of h (i.e., we have a weakly order one method). We first
make the trivial observation that the estimator

(2) μn =
1

n

n∑
j=1

f(Zh,[j](T )),

where Zh,[j] are independent paths generated via the approximate algorithm with a
step-size of h, is an unbiased estimator of Ef(Zh(T )) and not Ef(X(T )). However,
noting that

(3) Ef(X(T ))− μn =
[
Ef(X(T ))− Ef(Zh(T ))

]
+
[
Ef(Zh(T ))− μn

]
,

we see that choosing h = O(ε), so that the first term on the right is O(ε), and
n = O(ε−2), so that the standard deviation is O(ε), delivers the desired accuracy.
With a fixed cost per time-step, the computational complexity of generating a single
such path is O(ε−1) and we find that the total computational complexity is O(ε−3).
Second order methods lower the computational complexity to O(ε−2.5), as h may be
chosen to be O(ε1/2).

The discussion above suggests that the choice between exact or approximate path
computation should depend upon whether ε−1 or N is the larger value, with an exact
algorithm being beneficial when N < ε−1. It is again worth noting, however, that the
estimators built from approximate methods are biased, and while analytic bounds can
be provided for that bias [5, 6, 34], these are typically neither sharp nor computable
and hence of limited practical value. The exact algorithm, on the other hand, trivially
produces an unbiased estimator, so it may be argued that ε−1 � N is necessary before
it is worthwhile to switch to an approximate method.

In the diffusive setting the MLMC approach has the remarkable property of low-
ering the standard O(ε−3) cost of computing an O(ε) accurate Monte Carlo estimate
of Ef(X(T )) down to O(ε−2 log(ε)2) [18]. Here, we are assuming that a weak order
one and strong order 1/2 discretization method, such as Euler–Maruyama, is used.
Further refinements have appeared in [19, 20, 25, 28, 30], and the same ideas have
been applied to partial differential equations [9, 13]. A key motivation for MLMC is
that optimizing the overall expected value computation is a different, and typically
more relevant, goal than optimizing along each path. Computing an expectation using
only an exact algorithm (or an algorithm with a very fine time-step) can require a
large number of paths and an extremely large number of random variables and state
updates. In general, the total number of paths cannot be reduced. The computational
benefits of MLMC arise because the number of random variables and state updates
needed to approximate the expectation can be drastically reduced by averaging over
a very carefully chosen combination of coordinated realizations, many of which are
much cheaper to compute than an exact realization.

In this paper we extend the multilevel approach to the continuous time Markov
chain setting, and especially the stochastic chemical kinetic setting. The extension
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involves a nontrivial coupling of the requisite processes that is easy to simulate while
providing a very small variance for the estimator. In fact, showing the practical
importance of the coupling (found in this paper in both equations (18) and (22)),
which was first used in [33] and later in [5] as an analytical tool and subsequently
in [1] toward the problem of computing parameter sensitivities, could be viewed as
the most important contribution of this paper. Further, and in a stark departure
from other implementations of MLMC, we provide a second MLMC algorithm which
exploits the representation (1) to produce an unbiased estimator giving the desired
accuracy with significantly less computational complexity than an exact algorithm
alone. The authors believe that this unbiased MLMC will become a standard, generic
algorithm for approximating expected values of continuous time Markov chains, and
especially stochastically modeled chemical reaction networks.

We emphasize that the gains in computational efficiency reported in this work
apply to generic models and do not rely on any specific structural properties. However,
the ideas have the potential to be fine-tuned further in appropriate cases, for example,
by exploiting known analytical results or multiscale partitions. We provide such an
example in section 9. We also emphasize that our complexity analysis purposefully
does not involve asymptotic limits. In particular, we do not consider infinitely large
system size, where stochastic effects vanish, or infinitesimally small discretization
time-steps, where the benefits of an approximate method evaporate.

The outline of the remainder of the paper is as follows. In section 2, we consider
stochastically modeled chemical reaction networks, which is our main application area,
discussing how such models can be represented via (1). In section 3, we introduce an
equivalent model to (1) that incorporates the natural temporal and other quantitative
scales. Consideration of such a scaled model is critical for realistic quantitative com-
parisons of accuracy versus cost for computational methods, though it plays no role
in the actual simulations. In section 4, we briefly review Euler’s method, often called
tau-leaping in the chemical kinetic setting. In section 5, we review the original MLMC
method. In section 6, we extend MLMC to the continuous time Markov chain setting
in two different ways. In the first, exact algorithms are not used and we are led to an
efficient method with an unquantified bias. In the second, exact algorithms play a key
role and allow us to develop unbiased estimators. In both cases, we quantify precisely
the generic computational efficiencies obtained, relative to standard Monte Carlo. In
section 7, we provide the delayed proofs of the main analytical results of section 6.
In section 8, we briefly discuss some implementation issues. In section 9, we provide
computational examples demonstrating our main results. Finally, in section 10 we
provide some brief conclusions.

2. The basic stochastic model for chemical reaction networks. In this
section we discuss how the basic stochastic model for chemical reaction networks can
be represented via (1) for suitable choices of λk and ζk. A chemical reaction network
consists of the interaction of multiple species, {S1, . . . , Sd}, through different possible
reactions. If we denote by ζk ∈ R

d the change to the state of the system after each
occurrence of the kth reaction, then we have

X(t) = X(0) +
∑
k

Rk(t)ζk,

where Xi(t) gives the number of molecules of Si at time t and Rk(t) is the number of
times the kth reaction has taken place up until time t. To model Rk, each reaction
channel is assumed to have an associated intensity, or propensity, function, λk : Rd →
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R≥0, and for the standard Markov chain model the number of times that the kth
reaction occurs by time t can then be represented by the counting process

Rk(t) = Yk

(∫ t

0

λk(X(s))ds

)
,

where the Yk are independent unit-rate Poisson processes; see, for example, [32], [15,
Chapter 6], or the recent survey [7]. The state of the system then satisfies (1). This
formulation is termed a “random time change representation” and is equivalent to the
“chemical master equation representation” found in much of the biology and chemistry
literature.

A common choice of intensity function for chemical reaction systems, and the one
we adopt throughout, is that of mass action kinetics. Under mass action kinetics, the
intensity function for the kth reaction is

(4) λk(x) = κk

d∏
i=1

xi!

(xi − νki)!
1{xi≥νki},

where νki denotes the number of molecules of Si required for one instance of the
reaction. Note that λk(x) = 0 whenever xi ≤ 0 and νki �= 0. We note that none of
the core ideas of this paper depend upon the fact that λk are mass action kinetics
and the assumption is made for analytical convenience and historical consistency.

This model is a continuous time Markov chain in Z
d with generator

(Af)(x) =
∑
k

λk(x)(f(x + ζk)− f(x)),

where f : Z
d → R. Kolmogorov’s forward equation, termed the chemical master

equation in much of the biology literature, for this model is

d

dt
P (x, t|π) =

∑
k

λk(x− ζk)1{x−ζk∈Z
d
≥0

}P (x− ζk, t|π)−
∑
k

λk(x)P (x, t|π),

where for x ∈ Z
d
≥0, P (x, t|π) represents the probability that X(t) = x, conditioned

upon the initial distribution π.
Example 1. To solidify notation, we consider the network

S1

κ1

�
κ2

S2, 2S2
κ3→ S3,

where we have placed the rate constants κk above or below their respective reactions.
For this example, (1) is

X(t) = X(0) + Y1

(∫ t

0

κ1X1(s)ds

)⎡⎣ −11
0

⎤⎦+ Y2

(∫ t

0

κ2X2(s)ds

)⎡⎣ 1
−1
0

⎤⎦
+ Y3

(∫ t

0

κ3X2(s)(X2(s)− 1)ds

)⎡⎣ 0
−2
1

⎤⎦ .

Using ζ1 = [−1, 1, 0]T , ζ2 = [1,−1, 0]T , and ζ3 = [0,−2, 1]T , the generator A satisfies

(Af)(x) = κ1x1(f(x+ζ1)−f(x))+κ2x2(f(x+ζ2)−f(x))+κ3x2(x2−1)(f(x+ζ3)−f(x)).
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3. Scaled models. To quantify the relative computational complexity of dif-
ferent methods, it is important that the natural scalings of a model be taken into
account. However, we stress that such a change to the representation of the model
does not change the simulation—we simulate the unscaled model but analyze the
methods on an appropriately scaled version.

Letting N be some natural parameter of the system, which is usually taken to
be the abundance of the most abundant component, we scale the model by setting
XN

i = N−αiXi, where αi ≥ 0 is chosen so that XN
i = O(1). The general form of such

a scaled model is

(5) XN (t) = XN(0) +
∑
k

Yk

(
Nγ

∫ t

0

N ckλk(X
N(s))ds

)
ζNk ,

where γ and ck are scalars, |ζNk | = O(N−ck), and both XN and λk(X
N) are of

order one. Note that we are explicitly allowing for |ζNk | to be smaller than N−ck ,
a point made explicit in and around (7). We note that we should write λN

k as the
resulting intensity function may depend upon N , though we drop the superscript N
for notational convenience. It is now natural to take

N = Nγ
∑
k

N ck

as the order of magnitude for the number of computations required to generate a
single path using an exact algorithm. We will demonstrate how to arrive at such a
scaled model for chemical systems below; however, we first discuss the parameter γ.

The parameter γ should be interpreted as being related to the natural time-scale
of the model. That is, if γ > 0, then the shortest time-scale in the problem is much
smaller than 1, while if γ < 0 it is much larger. The analysis in this paper is most
applicable in the case that γ ≤ 0, for otherwise the error bounds grow quite rapidly.
However, as will be demonstrated in the examples section, the methods developed can
still behave very well even when γ > 0, pointing out that the present analysis does
not fully capture the behavior of the methods.

We will show how to derive a model of the form (5) in the case of chemical reaction
networks with mass action kinetics. Let N � 1, where N is the abundance of the
most abundant species or some other large parameter. Suppose we have a model of
the form

X(t) = X(0) +
∑
k

Yk

(∫ t

0

λ′
k(X(s))ds

)
ζk,

where the λ′
k are of the form

λ′
k(x) = κ′

k

∏
i

xi!

(xi − νki)!
.

For each species, define the normalized abundance by XN
i (t)

def
= N−αiXi(t), where

αi ≥ 0 should be selected so that XN
i = O(1). Here XN

i may be the species number
(αi = 0), the species concentration, or something else. Since the rate constants may
also vary over several orders of magnitude, we write κ′

k = κkN
βk , where the βk are

selected so that κk = O(1). Under the mass action kinetics assumption, we have that
λ′
k(X(s)) = Nβk+νk·αλk(X

N(s)), where λk is deterministic mass action kinetics with



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

152 DAVID F. ANDERSON AND DESMOND J. HIGHAM

parameter κk [29], and we recall that νk is the source vector of the kth reaction. Our
model has therefore become

XN(t) = XN(0) +
∑
k

Yk

(∫ t

0

Nβk+νk·αλk(X
N (s))ds

)
ζNk ,

where ζNki
def
= ζki/N

αi (so ζNk is the scaled reaction vector). Define γ ∈ R via

γ
def
= max

{i,k : ζN
ki �=0}

{βk + νk · α− αi}.

Then, for each k define

(6) ck
def
= βk + νk · α− γ.

With these definitions, our chemical model becomes (5).
Returning to the general setting of (5), for each k we define

(7) ρk
def
= min{αi : ζNki �= 0},

so that |ζNk | ≈ N−ρk , and define ρ
def
= min{ρk}. We have that ρ ≥ 0, and by the choice

of γ we have ck − ρk ≤ 0 for all k. Further, we point out that γ is chosen so that
ck = 0 for at least one k. Also, if ‖∇f‖∞ is bounded, then

N ck(f(x+ ζNk )− f(x)) = O(N ck−ρk)

with ck − ρk = 0 for at least one k. Finally, it is worth explicitly noting that the
classical scaling holds if and only if ck ≡ ρk ≡ 1 and γ = 0 [5, 31].

Remark 1. We emphasize that the models (1) and (5) are equivalent in that XN

is the scaled version of X . The scaling is essentially an analytical tool as now both
XN and λk(X

N (·)) are O(1), and in section 7 it will be shown how the representation
(5) is useful in the quantification of the behavior of different computational methods.
However, we stress that the scaling itself plays no role in the actual simulation of the
processes, with the small exception that it can inform the decision for the size of the
time-step of an approximate method.

Example 2. To solidify notation, consider the reversible isometry

S1

100

�
100

S2

with X1(0) = X2(0) = 10,000. In this case, it is natural to take N = 10,000 and
α1 = α2 = 1. As the rate constants are 100 =

√
10,000, we take β1 = β2 = 1/2 and

find that γ = 1/2 and ρ1 = ρ2 = 1. The normalized process XN
1 satisfies

XN
1 (t) = XN

1 (0)− Y1

(
N1/2N

∫ t

0

XN
1 (s)ds

)
1

N
+ Y2

(
N1/2N

∫ t

0

(2−XN
1 (s))ds

)
1

N
,

where we have used that XN
1 +XN

2 ≡ 2.
Example 3. We provide a deterministic example to further explain the use of the

scalings. Consider the ordinary differential equation (ODE)

ẋ(t) = λN − μx(t),
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where λ, μ = O(1), N � 1, and x0 = O(N). Of course, the solution to this system is

x(t) =
λN

μ
−
(
λN

μ
− x0

)
e−μt.

However, defining xN = N−1x, we see that xN satisfies

ẋN (t) = λ− μxN (t)

with xN
0 = O(1). Solving yields

xN (t) =
λ

μ
−
(
λ

μ
− xN

0

)
e−μt.

Note, then, that solving for either x or xN automatically yields the other after scaling.
Also note the important property that in the ODE governing x, the driving force, λN ,
was an extremely large value. However, the forcing function of xN , which is simply
λ, was O(1).

Example 3 points out an important feature: the functions λk of (5), together
with their derivatives, are much better behaved in terms of their magnitude than
the intensity functions of the original model (1). Therefore, after possibly redefining
the kinetics by multiplication with a cutoff function (see, for example, [5, 6]), it is
reasonable to assume that each λk is, in fact, a globally Lipschitz function of XN .
We formalize this assumption here.

Running assumption. Throughout, we assume that the functions λk of (5) are
globally Lipschitz.

4. A review of Euler’s method in the current setting. We briefly review
Euler’s method, termed tau-leaping in the chemical kinetic literature [21], as applied
to the models (1) and equivalently (5). The basic idea of tau-leaping is to hold the
intensity functions fixed over a time interval [tn, tn + h] at the values λk(X(tn)),
where X(tn) is the current state of the system and, under this assumption, compute
the number of times each reaction takes place over this period. As the waiting times
for the reactions are exponentially distributed, this leads to the following algorithm,
which simulates up to a time of T > 0. Below and in what follows, for x ≥ 0 we will
write Poisson(x) to denote a sample from the Poisson distribution with parameter
x, with all such samples being independent of each other and of all other sources of
randomness used.

Algorithm 1 (Euler tau-leaping). Fix h > 0. Set Zh(0) = x0, t0 = 0, n = 0
and repeat the following until tn = T :
(i) Set tn+1 = tn + h. If tn+1 ≥ T , set tn+1 = T and h = T − tn.
(ii) For each k, let Λk = Poisson(λk(Zh(tn))h).
(iii) Set Zh(tn+1) = Zh(tn) +

∑
k Λkζk.

(iv) Set n← n+ 1.
Several improvements and modifications have been made to the basic algorithm

described above over the years. Some concern adaptive step-size selection along a
path [11, 22]. Others focus on ensuring nonnegative population values [3, 10, 12, 37].
The latter issue is easily dealt with in our context; for example, it is sufficient to
return a value to zero if it ever goes negative in the course of a simulation. This is
discussed further in subsection 6.2.
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Analogously to (1), a pathwise representation of Euler tau-leaping defined for all
t ≥ 0 can be given through a random time change of Poisson processes:

(8) Zh(t) = Zh(0) +
∑
k

Yk

(∫ t

0

λk(Zh ◦ η(s))ds
)
ζk,

where the Yk are as before and η(s)
def
=
⌊ s
h

⌋
h. Thus, Zh ◦ η(s) = Zh(tn) if tn ≤ s <

tn+1. Noting that∫ tn+1

0

λk(Zh ◦ η(s))ds =

n∑
i=0

λk(Zh(ti))(ti+1 − ti)

explains why this method is called Euler tau-leaping. Following (5), for each i ∈
{1, . . . , d} we let ZN

h,i
def
= N−αiZh,i, so the scaled version of (8) is

(9) ZN
h (t) = ZN

h (0) +
∑
k

Yk

(
Nγ

∫ t

0

N ckλk(Z
N
h ◦ η(s))ds

)
ζNk ,

where all other notation is as before. We again stress that the models (8) and (9)
are equivalent with (8) giving the counts of each component and (9) providing the
normalized abundances.

Remark 2. Historically, the time discretization parameter for the methods de-
scribed in this paper has been τ , leading to the name “τ -leaping methods.” We choose
to break from this tradition so as not to confuse τ with a stopping time, and we denote
our time-step by h to be consistent with much of the numerical analysis literature.

5. A review of MLMC. Given a stochastic process, X(·), let f : Rd → R be a
function of the state of the system which gives a measurement of interest. Our task
is to approximate Ef(X(T )) efficiently. As discussed in section 1, using the “crude
Monte Carlo” estimator (2) with a weakly first order method will provide an estimate
with an accuracy of O(ε), in the sense of confidence intervals, at a computational cost
of O(ε−3).

In MLMC paths of varying step-sizes are generated and are coupled in an intelli-
gent manner so that the computational complexity is reduced to O(ε−2(log ε)2) [18].
Sometimes even the log(ε) terms can be reduced further [17]. Suppose we have an
approximate method, such as Euler’s method in the diffusive setting, which is known
to be first order accurate in a weak sense and 1/2 order accurate in a strong L2 sense.
The MLMC estimator is then built in the following manner. For a fixed integer M ,
and � ∈ {0, 1, . . . , L}, where L is to be determined, let h	 = TM−	. Reasonable
choices for M include 2, 3, and 4. We will denote Z	 as the approximate process
generated using a step-size of h	. Choose L = O(ln(ε−1)), so that hL = O(ε) and
Ef(X(T )) − Ef(ZL(T )) = O(ε), and the bias (i.e., the first term on the right-hand
side of (3)) is of the desired order of magnitude. We then have

Ef(ZL(T )) = E[f(Z0(T ))] +

L∑
	=1

E[f(Z	(T ))− f(Z	−1(T ))],(10)

where the telescoping sum is the key feature to note. We will now denote the estimator
of E[f(Z0(T ))] using n0 paths by Q̂0 and the estimator of E[f(Z	(T ))− f(Z	−1(T ))]
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using n	 paths as Q̂	. That is,

Q̂0
def
=

1

n0

n0∑
i=1

f(Z0,[i](T )) and Q̂	
def
=

1

n	

n�∑
i=1

(f(Z	,[i](T ))− f(Z	−1,[i](T ))),(11)

where the important point is that both Z	,[i](T ) and Z	−1,[i](T ) are generated using
the same randomness but are constructed using different time discretizations. (See
[18, 26] for details on how to do this in the diffusive setting.) We then let

(12) Q̂
def
=

L∑
	=0

Q̂	

be the unbiased estimator for E[f(ZL(T ))]. Assuming that we can show Var(f(Z	(T ))−
f(Z	−1(T ))) = O(h	), which follows if the method has a strong error of order 1/2 and
f is Lipschitz, we may set

n	 = O(ε−2Lh	),

which yields Var(Q̂) = O(ε2), but with a total computational complexity of O(ε−2

(log ε)2). We make the following observations:
1. The gains in computational efficiency come about for two reasons. First, a

coordinated sequence of simulations are being done, with nested step-sizes,
and the simulations with larger step-size are much cheaper than those with
very fine step-sizes. Second, while we do still require the generation of paths
with fine step-sizes, the variance of f(Z	) − f(Z	−1) will be small, thereby

requiring significantly fewer of these expensive paths in the estimation of Q̂	

of (11).
2. For the analysis in [18], it is necessary to know both the weak (for the choice

of hL) and the strong (for the variance of Q̂	) behavior of the numerical
method, even though we are only solving the weak approximation problem.

3. The estimator (12) is a biased estimator of Ef(X(T )), and the number of
levels L was chosen to ensure that the bias is within the desired tolerance.

6. MLMC for continuous time Markov chains. We now consider the prob-
lem of estimating Ef(XN(T )), where XN satisfies the general system (5). We again
stress that asXN of (5) is equivalent to the processX of (1), efficiently approximating
values of the form Ef(XN (T )) for suitable f is equivalent to efficiently approximating
values of the form Eg(X(T )) for suitable functions g. The scaled systems are easier to
analyze because the temporal and other quantitative scales have been made explicit.

Recall that N = Nγ
∑

k N
ck gives the order of magnitude of the number of

steps needed to generate a single path using an exact algorithm. As discussed in
section 1, to approximate Ef(XN(T )) to an order of accuracy of ε > 0 using an exact
algorithm (such as Gillespie’s algorithm or the next reaction method) combined with
the crude Monte Carlo estimator, we need to generate ε−2 paths. Thus, we have a
total computational complexity of O(Nε−2) .

We will now extend the core ideas of MLMC as described in section 5 to the
continuous time Markov chain setting with Euler tau-leaping, given in (9), as our
approximation method. We again fix an integer M > 0, and for � ∈ {�0, . . . , L},
where both �0 and L are to be determined, let h	 = TM−	. We then denote by ZN

	

the approximate process (9) generated with a step-size of h	. By [6], for suitable f

Ef(XN(T ))− Ef(ZN
	 (T )) = O(h	).
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Choose L = O(ln(ε−1)), so that hL = O(ε) and the bias is of the desired order of
magnitude. We then introduce another telescoping sum

Ef(ZN
L (T )) = E[f(ZN

	0 (T ))] +

L∑
	=	0+1

E[f(ZN
	 (T ))− f(ZN

	−1(T ))].(13)

We will again denote the estimator of E[f(ZN
	0
(T ))] using n0 paths by Q̂0 and the

estimator of E[f(ZN
	 (T ))− f(ZN

	−1(T ))] using n	 paths by Q̂	. That is,

Q̂0
def
=

1

n0

n0∑
i=1

f(ZN
	0,[i]

(T )), and Q̂	
def
=

1

n	

n�∑
i=1

(f(ZN
	,[i](T ))− f(ZN

	−1,[i](T ))),(14)

where we hope that ZN
	,[i] and ZN

	−1,[i] can be generated in such a way that Var(Q̂	) is
small. We will then let

(15) Q̂
def
= Q̂0 +

L∑
	=	0+1

Q̂	

be the unbiased estimator for E[f(ZN
L (T ))]. The choices for n	 will depend upon the

variances of Q̂	.
The main requirements for effectively extending MLMC to the current setting

now come into focus. First, we must be able to simulate the paths ZN
	 and ZN

	−1

simultaneously in a manner that is efficient and produces small variances between
the paths. Second, we must be able to quantify this variance in order to control
the variance of the associated Q̂	 terms of (14). Both requirements demand a good
coupling of the processes ZN

	 and ZN
	−1.

We motivate our choice of coupling by first treating two simpler tasks. First,
consider the problem of trying to understand the difference between Z1(t) and Z2(t),
where Z1, Z2 are Poisson processes with rates 13.1 and 13, respectively. A simple
approach is to let Y1 and Y2 be independent, unit-rate Poisson processes, set

Z1(t) = Y1(13.1t) and Z2(t) = Y2(13t),

and consider Z1(t)−Z2(t). Using this representation, these processes are independent
and, hence, not coupled. Further, the variance of their difference is the sum of their
variances, and so

Var(Z1(t)− Z2(t)) = Var(Z1(t)) + Var(Z2(t)) = 26.1t.

Another choice is to let Y1 and Y2 be independent unit-rate Poisson processes and set

Z1(t) = Y1(13t) + Y2(0.1t) and Z2(t) = Y1(13t),

where we have used the additivity property of Poisson processes. The important
point to note is that both Z1 and Z2 are using the process Y1(13t) to generate
simultaneous jumps. The process Z1 then uses the auxiliary process Y2(0.1t) to
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jump the extra times that Z2 does not. The processes Z1 and Z2 will jump to-
gether the vast majority of times and hence are tightly coupled; by construction
Var(Z1(t) − Z2(t)) = Var(Y2(0.1t)) = 0.1t. More generally, if Z1 and Z2 are instead
inhomogeneous Poisson processes with intensities f(t) and g(t), respectively, then we
could let Y1, Y2, and Y3 be independent, unit-rate Poisson processes and define

Z1(t) = Y1

(∫ t

0

f(s) ∧ g(s)ds

)
+ Y2

(∫ t

0

f(s)− (f(s) ∧ g(s)) ds

)
,

Z2(t) = Y1

(∫ t

0

f(s) ∧ g(s)ds

)
+ Y3

(∫ t

0

g(s)− (f(s) ∧ g(s)) ds

)
,

where we are using that, for example,

Y1

(∫ t

0

f(s) ∧ g(s)ds

)
+ Y2

(∫ t

0

f(s)− (f(s) ∧ g(s)) ds

)
D
= Y

(∫ t

0

f(s)ds

)
,

where Y is a unit rate Poisson process and we recall that a ∧ b
def
= min{a, b}.

We now return to the main problem of coupling the processes ZN
	 and ZN

	−1, each

satisfying (9) with their respective step-sizes. We couple the processes ZN
	 and ZN

	−1

in the following manner, which is similar to a coupling originally used in [33], later
in [5] as an analytical tool, and subsequently in [1] toward the problem of computing
parameter sensitivities:

ZN
	 (t) = ZN

	 (0) +
∑
k

Yk,1

(
NγN ck

∫ t

0

λk(Z
N
	 ◦ η	(s)) ∧ λk(Z

N
	−1 ◦ η	−1(s))ds

)
ζNk

+
∑
k

Yk,2

(
NγN ck

∫ t

0

λk(Z
N
	 ◦ η	(s))

− λk(Z
N
	 ◦ η	(s)) ∧ λk(Z

N
	−1 ◦ η	−1(s))ds

)
ζNk ,

(16)

ZN
	−1(t) = ZN

	−1(0) +
∑
k

Yk,1

(
NγN ck

∫ t

0

λk(Z
N
	 ◦ η	(s)) ∧ λk(Z

N
	−1 ◦ η	−1(s))ds

)
ζNk

+
∑
k

Yk,3

(
NγN ck

∫ t

0

λk(Z
N
	−1 ◦ η	−1(s))

− λk(Z
N
	 ◦ η	(s)) ∧ λk(Z

N
	−1 ◦ η	−1(s))ds

)
ζNk ,

(17)

where the Yk,i, i ∈ {1, 2, 3}, are independent, unit-rate Poisson processes, and for

each �, we define η	(s)
def
= �s/h	�h	. Note that we essentially used the coupling of the

simpler examples above (pertaining to Z1 and Z2) for each of the reaction channels.
The paths of the coupled processes can easily be computed simultaneously and

the distributions of the marginal processes are the same as the usual scaled Euler
approximate paths (9) with similar step-sizes. More precisely, the system (16)–(17)
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is the scaled version of, and is hence equivalent to, the system

Z	(t) = Z	(0) +
∑
k

Yk,1

(∫ t

0

λk(Z	 ◦ η	(s)) ∧ λk(Z	−1 ◦ η	−1(s))ds

)
ζk

+
∑
k

Yk,2

(∫ t

0

λk(Z	 ◦ η	(s))− λk(Z	 ◦ η	(s)) ∧ λk(Z	−1 ◦ η	−1(s))ds

)
ζk,

Z	−1(t) = Z	−1(0) +
∑
k

Yk,1

(∫ t

0

λk(Z	 ◦ η	(s)) ∧ λk(Z	−1 ◦ η	−1(s))ds

)
ζk

+
∑
k

Yk,3

(∫ t

0

λk(Z	−1 ◦ η	−1(s))− λk(Z	 ◦ η	(s))

∧ λk(Z	−1 ◦ η	−1(s))ds

)
ζk,

(18)

where now the marginal processes are distributionally equivalent to the approximate
processes (8) with similar step-sizes and all notation is as before. The natural algo-
rithm to simulate the representation (18) (and hence (16)–(17)) to a time T > 0 is
the following.

Algorithm 2 (simulation of the representation (18)). Fix an integer M ≥ 2.
Fix h	 > 0 and set h	−1 = M × h	. Set Z	(0) = Z	−1(0) = x0, t0 = 0, n = 0. Repeat
the following steps until tn ≥ T :
(i) For j = 0, . . . ,M − 1,

(a) Set
• Ak,1 = λk(Z	(tn + j × h	)) ∧ λk(Z	−1(tn)).
• Ak,2 = λk(Z	(tn + j × h	))−Ak,1.
• Ak,3 = λk(Z	−1(tn))−Ak,1.

(b) For each k, let
• Λk,1 = Poisson(Ak,1h	).
• Λk,2 = Poisson(Ak,2h	).
• Λk,3 = Poisson(Ak,3h	).

(c) Set
• Z	(tn + (j + 1)× h	) = Z	(tn + j × h	) +

∑
k(Λk,1 + Λk,2)ζk.

• Z	−1(tn + (j + 1)× h	) = Z	−1(tn + j × h	) +
∑

k(Λk,1 + Λk,3)ζk.
(ii) Set tn+1 = tn + h	−1.
(iii) Set n← n+ 1.

We make the following observations. First, while Algorithm 2 formally simulates
the representation (18), the scaled version of the process generated via Algorithm 2
satisfies (16)–(17). Second, we do not need to update λk(Z	−1) during the workings of
the inner loop of j = 0, . . . ,M−1. Third, at most one of A2, A3 will be nonzero during
each step with both being zero whenever λk(Z	(tn)) = λk(Z	−1(tn)). Therefore, at
most two Poisson random variables will be required per reaction channel at each step
and not three. Fourth, the above algorithm, and hence the couplings (18) and/or
(16)–(17), is no harder to simulate, from an implementation standpoint, than the
usual Euler tau-leaping. Fifth, while two paths are being generated, it should be
the case that max{A2, A3} is small for each step. Hence the work in computing the
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Poisson random variables will fall on Λk,1,
1 which is the same amount of work as

would be needed for the generation of a single path of Euler tau-leaping.
In section 7 we will prove the following theorem, which is one of our main ana-

lytical results.
Theorem 1. Suppose (ZN

	 , ZN
	−1) satisfy (16) and (17) with ZN

	 (0) = ZN
	−1(0).

Then there exist functions C1, C2 that do not depend on h	 such that

sup
t≤T

E|ZN
	 (t)− ZN

	−1(t)|2 ≤ C1(N
γT )N−ρ(Nγh	) + C2(N

γT )(Nγh	)
2.

In particular, for γ ≤ 0 the values C1(N
γT ) and C2(N

γT ) may be bounded above
uniformly in N .

Remark 3. The specific forms of C1(N
γT ) and C2(N

γT ) for Theorems 1 and
2 below are given in section 7. However, we note here that if γ > 0, the factors
C1(N

γT ) and C2(N
γT ) could be huge, leading to upper bounds in Theorems 1 and

2 of no practical use. So we henceforth assume that γ ≤ 0 and thus regard C1(N
γT )

and C2(N
γT ) as constants independent of N . We note that the classical chemical

kinetics scaling, with γ = 0, satisfies this assumption. However, good performance
is observed in section 9 with γ > 0, suggesting that further analysis may extend the
range of validity for this method.

Note that Theorem 1 together with f Lipschitz give us the estimate

∣∣Var (f(ZN
	 (t))

) − Var
(
f(ZN

	−1(t))
)∣∣ ≤ E

∣∣f(ZN
	 (t))− f(ZN

	−1(t))
∣∣2

≤ CE|ZN
	 (t)− ZN

	−1(t)|2
≤ C

[
C1(N

γT )N−ρ(Nγh	) + C2(N
γT )(Nγh	)

2
]
,(19)

which we will use to control the variance of Q̂	 in (14).
Before further exploring MLMC in the current setting, we present a coupling

of the exact process XN and the approximate process ZN
	 . We will later use this

coupling to produce an unbiased MLMC estimator. We define XN and ZN
	 via

XN (t) = XN(0) +
∑
k

Yk,1

(
NγN ck

∫ t

0

λk(X
N(s)) ∧ λk(Z

N
	 ◦ η	(s))ds

)
ζNk

+
∑
k

Yk,2

(
NγN ck

∫ t

0

λk(X
N(s)) − λk(X

N(s)) ∧ λk(Z
N
	 ◦ η	(s))ds

)
ζNk ,

(20)

ZN
	 (t) = ZN

	 (0) +
∑
k

Yk,1

(
NγN ck

∫ t

0

λk(X
N (s)) ∧ λk(Z

N
	 ◦ η	(s))ds

)
ζNk

+
∑
k

Yk,3

(
NγN ck

∫ t

0

λk(Z
N
	 ◦ η	(s))− λk(X

N (s)) ∧ λk(Z
N
	 ◦ η	(s))ds

)
ζNk ,

(21)

where all notation is as before. Note that the distributions of the marginal processes

1The cost of generating a Poisson random variable generally increases with the size of the mean.
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XN and ZN
	 are equal to those of (5) and (9). The unscaled processes satisfy

X(t) = X(0) +
∑
k

Yk,1

(∫ t

0

λk(X(s)) ∧ λk(Z	 ◦ η	(s))ds
)
ζk

+
∑
k

Yk,2

(∫ t

0

λk(X(s))− λk(X(s)) ∧ λk(Z	 ◦ η	(s))ds
)
ζk,

Z	(t) = Z	(0) +
∑
k

Yk,1

(∫ t

0

λk(X(s)) ∧ λk(Z	 ◦ η	(s))ds
)
ζk

+
∑
k

Yk,3

(∫ t

0

λk(Z	 ◦ η	(s))− λk(X(s)) ∧ λk(Z	 ◦ η	(s))ds
)
ζk,

(22)

which is equivalent to (20) and (21) and whose marginal processes have the same
distributions as (1) and (8).

The natural algorithm to simulate (22), and hence (20)–(21), is the next reac-
tion method [2, 16], where the system is viewed as having dimension 2d with state
(XN , ZN

	 ), and each of the “next reactions” must be calculated over the Poisson pro-
cesses Yk,1, Yk,2, Yk,3. See [2] for a thorough explanation of how the next reaction
method is equivalent to simulating representations of the forms considered here. Be-
low, we will denote a uniform[0, 1] random variable by rand(0, 1), and we remind the
reader that if U ∼ rand(0, 1), then ln(1/U) is an exponential random variable with a
parameter of one. All random variables generated are assumed to be independent of
each other and all previous random variables.

Algorithm 3 (simulation of the representation (22)). Initialize. Fix h	 > 0.

Set X(0) = Z	(0) = x0 and t = 0. Set Z̃	 = Z	(0). Set Ttau = h	. For each
k ∈ {1, . . . , R} and i ∈ {1, 2, 3}, set Pk,i = ln(1/rk,i), where rk,i is rand(0, 1), and
Tk,i = 0.
(i) For each k, set

• Ak,1 = λk(X(t)) ∧ λk(Z̃	).
• Ak,2 = λk(X(t))−Ak,1.

• Ak,3 = λk(Z̃	)−Ak,1.
(ii) For each k ∈ {1, . . . , R} and i ∈ {1, 2, 3}, set

Δtk,i =

{
(Pk,i − Tk,i)/Ak,i if Ak,i �= 0

∞ if Ak,i = 0.

(iii) Set Δ = mink,i{Δtk,i}, and let μ ≡ {k, i} be the indices where the minimum is
achieved.

(iv) If t+Δ ≥ Ttau,

(a) Set Z̃	 = Z	(t).
(b) For each k ∈ {1, . . . , R} and i ∈ {1, 2, 3}, set Tk,i = Tk,i +Ak,i × (Ttau − t).
(c) Set t = Ttau.
(d) Set Ttau = Ttau + h	.
(e) Return to step (i) or quit.

(v) Else,
(a) Update. For {k, i} = μ, where μ is from (iii),

• If i = 1, set X(t+Δ) = X(t) + ζk and Z	(t+Δ) = Z	(t) + ζk.
• If i = 2, set X(t+Δ) = X(t) + ζk.
• If i = 3, set Z	(t+Δ) = Z	(t) + ζk.
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(b) For each k ∈ {1, . . . , R} and i ∈ {1, 2, 3}, set Tk,i = Tk,i +Ak,i ×Δ.
(c) Set Pμ = Pμ + ln(1/r), where r is rand(0, 1), and μ is from (iii).
(d) Set t = t+Δ.
(e) Return to step (i) or quit.

The following theorem, which should be compared with Theorem 1, is proved in
section 7 and is our second main analytical result.

Theorem 2. Suppose (XN , ZN
	 ) satisfy (20) and (21) with XN(0) = ZN

	 (0).
Then there exist functions C1, C2 that do not depend on h	 such that

sup
t≤T

E|XN(t)− ZN
	 (t)|2 ≤ C1(N

γT )N−ρ(Nγh	) + C2(N
γT )(Nγh	)

2.

Moreover, for γ ≤ 0 the values C1(N
γT ) and C2(N

γT ) may be bounded above uni-
formly in N .

We are now in a position to develop MLMC in the stochastic chemical kinetic
setting. Recall our assumption that γ ≤ 0, so C1 and C2 in Threorems 1 and 2 are
bounded. We return to the Q̂	 terms in (14). Supposing that the test function f
is uniformly Lipschitz in our domain of interest (note that this is automatic for any
reasonable f in the case when mass is conserved), then for � > �0 we know from (19)
that

Var(Q̂	) ≤ C
1

n	

[
C1(N

γT )N−ρ(Nγh	) + C2(N
γT )(Nγh	)

2
]
.

Note that if N−ρ ≤ h	, the leading order of the error is the h2
	 term. As a heuristic

argument for this behavior, note that if N−ρ ≤ h	 and N is large while h	 is small,
then the processes are nearing a scaling regime in which deterministic dynamics would
be a good approximation for the model XN . In this case, one should expect that the
squared difference between two Euler paths should behave like the usual order one
error, squared.

We may now conclude that the variance of the estimator Q̂ defined in (15) satisfies

Var(Q̂) = Var(Q̂	0) +

L∑
	=	0+1

Var(Q̂	)

≤ K0

n0
+

L∑
	=	0+1

C
1

n	

[
C1(N

γT )N−ρ(Nγh	) + C2(N
γT )(Nγh	)

2
]
,

where K0 = Var(f(ZN
	0
(T ))). For h > 0 we define

(23) A(h)
def
= N−ρ(Nγh) + (Nγh)2.

Letting n0 = O(ε−2), and for � > �0 letting

n	 = O
(
ε−2(L− �0)A(h	)

)
,

we see that

Var(Q̂) = O(ε2).

As the computational complexity of generating a single path of the coupled processes
(ZN

	 , ZN
	−1) is O(h−1

	 ), we see that the total computational complexity of the method



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

162 DAVID F. ANDERSON AND DESMOND J. HIGHAM

with these choices of n	 is of order

n0h
−1
	0

+

L∑
	=	0+1

n	h
−1
	 = ε−2h−1

	0
+

L∑
	=	0+1

ε−2(L − �0)A(h	)h
−1
	

= ε−2

(
h−1
	0

+ (L − �0)
L∑

	=	0+1

(N−ρNγ + h	N
2γ)

)

≤ ε−2

(
h−1
	0

+ ln(ε)2N−ρNγ + ln(ε−1)
1

M − 1
h	0N

2γ

)
,(24)

where we used that

(25)

L∑
	=	0+1

h	 ≤ h	0

∞∑
	=1

1

M 	
= h	0

1

M − 1
.

A more careful choice of n	 can potentially reduce the ln(ε) terms further (see, for ex-
ample, [18]), but in the present case, the computational complexity will be dominated
by ε−2h−1

	0
in most nontrivial examples. Further, as will be discussed in section 8, the

n	 can be chosen algorithmically by optimizing for a given problem.

6.1. An unbiased MLMC. We now build an unbiased MLMC estimator for
Ef(XN(T )) in a similar manner as before with a single important difference: at the
finest scale, we couple XN with ZN

L . That is, we use the identity

Ef(XN(T )) = E[f(XN (T ))− f(ZN
L (T ))] +

L∑
	=	0+1

E[f(ZN
	 )− f(ZN

	−1)] +Ef(ZN
	0 (T )).

For appropriate choices of n0, n	, and nE, we define the estimators for the three terms
above via

Q̂E
def
=

1

nE

nE∑
i=1

(f(XN
[i](T ))− f(ZN

L,[i](T ))),

Q̂	
def
=

1

n	

n�∑
i=1

(f(ZN
	,[i](T ))− f(ZN

	−1,[i](T ))) for � ∈ {�0 + 1, . . . , L},

Q̂0
def
=

1

n0

n0∑
i=1

f(ZN
	0,[i]

(T ))

and note that

(26) Q̂
def
= Q̂E +

L∑
	=	0+1

Q̂	 + Q̂0

is an unbiased estimator for Ef(XN (T )). Applying both Theorems 1 and 2 yields

Var(Q̂E) ≤ K1(N
γT )

1

nE
A(hL),

Var(Q̂	) ≤ K2(N
γT )

1

n	
A(h	) for � ∈ {�0 + 1, . . . , L},
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where K1(N
γT ) and K2(N

γT ) are independent of h	 and, under our assumption that
γ ≤ 0, can be bounded uniformly in N . It follows that the choice

nE = O(ε−2A(hL)),

n	 = O
(
ε−2(L− �0)A(h	)

)
for � ∈ {�0, . . . , L},

n0 = O(ε−2)

(27)

gives us

Var(Q̂) = Var(Q̂E) +

L∑
	=	0+1

Var(Q̂	) + Var(Q̂0)

= O(ε2) +

L∑
	=	0+1

O(ε2(L− �0)
−1) +O(ε2)

= O(ε2).

The computational complexity is now of order

nEN +

L∑
	=	0+1

n	h
−1
	 + n0h

−1
	0

= Nε−2A(hL) +
L∑

	=	0+1

ε−2(L− �0)A(h	)h
−1
	 + ε−2h−1

	0

= ε−2

(
NA(hL) + (L − �0)

L∑
	=	0

(N−ρNγ + h	N
2γ) + h−1

	0

)

≤ ε−2

(
NA(hL) + h−1

	0
+ ln(ε)2N−ρNγ + ln(ε−1)

1

M − 1
h	0N

2γ

)
,(28)

where we again made use of the inequality (25).

6.2. Some observations. A few observations are in order. First, in the above
analysis of the unbiased MLMC estimator, the weak error of the process ZN

h plays no
role. Thus, there is no reason to choose hL = O(ε) for a desired accuracy of ε > 0.
Without having to worry about the bias, we have the opportunity to simply choose hL

“small enough” for Var(XN (·)−ZN
L (·)) to be small, which can be approximated with

a few preliminary simulations before the full MLMC is carried out. (See section 8 for
more implementation details.)

Second, one of the main impediments to the use of tau-leaping methods has
been the possibility for paths to leave the nonnegative orthant. In fact, there have
been multiple papers written on the subject of how to enforce nonnegativity of species
numbers with [3, 10, 12, 37] representing just a sample. We note that for the unbiased
MLMC estimator (26) it almost does not matter how, or even if, nonnegativity is
enforced. So long as the processes are well defined on all of Z

d, for example, by
defining the intensity functions λk in some reasonable way, and so long as we can
still quantify the relations given in Theorems 1 and 2, everything above still holds.
The cost to the user of poorly defining what happens if Zh leaves the positive orthant
will simply be the need for the generation of more paths to reduce the variance of
the (still unbiased) estimator. Of course, this cost could be quite high as negativity
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of population numbers can lead to instability if they have not defined the intensity
functions outside the positive orthant in a reasonable manner. However, in section 8
we discuss how intelligent implementation of the method can greatly reduce this cost
by ensuring that the approximate paths remain stable with high probability.

Third, inspecting (24) and (28) shows that the unbiased MLMC estimator (26)
has an additional term of O(NA(hL)ε

−2) in its computational complexity bound, as
compared with the biased MLMC estimator (15). The authors feel that NA(hL)ε

−2

would have to be quite substantial to warrant not using the unbiased version.
Fourth, note that we always have the following:

Computational complexity of unbiased MLMC

= O
(
ε−2(NA(hL) + h−1

	0
+ log term)

)
� O

(
ε−2N

)
=

Computational complexity of exact algorithm
with crude Monte Carlo.

(29)

Thus, under our standing assumption γ ≤ 0, the unbiased MLMC estimator should be
the method of choice over using an exact algorithm alone together with crude Monte
Carlo, which is by far the most popular method today. For example, consider the case
when the system satisfies the classical scaling, for which ρ = 1, γ = 0, and ck ≡ 1. In
this case, N = N and, as there is little reason to use an approximate method with
a time-step that is smaller than the order of magnitude of the wait time between
jumps for an exact method, we may assume that hL > 1/N = N−ρ. Therefore, in
this specific case, A(hL) = O(h2

L) and the computational speedup predicted by (28)
and/or (29) is of the order

Speed-up factor ≈ ε−2N

ε−2(Nh2
L + h−1

	0
+ log(ε))

=
N

Nh2
L + h−1

	0
+ log(ε)

.

Thus we have

Speed-up factor � min
(
h−2
L , Nh	0

)
.

Therefore, even though the method is unbiased, the computational burden has been
shifted from the exact process to that of an approximate process with a crude time-
step. This behavior is demonstrated in an example found in section 9, though on a
system not satisfying the classical scaling.

Note also that (29) holds even if N , the approximate cost of computing a single
path, is not extremely large. For example, even if the cost is only in the hundreds, or
maybe thousands, of steps per exact path, the above analysis points out that if great
accuracy is required (so that ε−2 is very large), the unbiased MLMC estimator will
still decrease the computational complexity substantially. It should be pointed out
that in these cases of moderate N , we will typically have γ ≤ 0 and so the analysis
will hold.

The conclusion of this analysis, backed up by the examples in section 9, is that
MLMC methods with processes coupled via the representations (18) and (22), and the
unbiased MLMC in particular, produce substantial gains in computational efficiency
and could become standard algorithms in the sciences. Further attention, however,
needs to be given to the case γ > 0, and this will be a focus for future work.
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7. Delayed proofs of Theorems 1 and 2. We begin by focussing on the proof
of Theorem 2, which is restated here for completeness.

Theorem 2. Suppose (XN , ZN
	 ) satisfy (20) and (21) with XN(0) = ZN

	 (0).
Then there exist functions C1, C2 that do not depend on h	 such that

sup
t≤T

E|XN(t)− ZN
	 (t)|2 ≤ C1(N

γT )N−ρ(Nγh	) + C2(N
γT )(Nγh	)

2.

Moreover, for γ ≤ 0 the values C1(N
γT ) and C2(N

γT ) may be bounded above uni-
formly in N .

We start with the following lemma.
Lemma 3. Suppose (XN , ZN

	 ) satisfy (20) and (21) with XN(0) = ZN
	 (0). Then

there exist positive constants c1, c2, independent of N , γ, and T , such that for t ≥ 0

E|XN (t)− ZN
	 (t)| ≤ c1

(
ec2N

γt − 1
)
(Nγh	).

Proof. Note that

E|XN (t)− ZN
	 (t)|

= E

∣∣∣∣∑
k

Yk,2

(
NγN ck

∫ t

0

λk(X
N(s))− λk(X

N(s)) ∧ λk(Z
N
	 ◦ η	(s))ds

)
ζNk

−
∑
k

Yk,3

(
NγN ck

∫ t

0

λk(Z
N
	 ◦ η	(s))− λk(X

N (s)) ∧ λk(Z
N
	 ◦ η	(s))ds

)
ζNk

∣∣∣∣
≤
∑
k

|ζNk |
[
EYk,2

(
NγN ck

∫ t

0

λk(X
N (s))− λk(X

N (s)) ∧ λk(Z
N
	 ◦ η	(s))ds

)

+ EYk,3

(
NγN ck

∫ t

0

λk(Z
N
	 ◦ η	(s))− λk(X

N (s)) ∧ λk(Z
N
	 ◦ η	(s))ds

)]
=
∑
k

|ζNk |NγN ck

∫ t

0

E|λk(X
N(s)) − λk(Z

N
	 ◦ η	(s))|ds

≤ NγC

∫ t

0

E|XN (s)− ZN
	 ◦ η	(s)|ds,

where C > 0 is some constant and we use that the λk are assumed to be Lipschitz.
Adding and subtracting the obvious terms yields

E|XN (t)−ZN
	 (t)| ≤NγC

∫ t

0

E|ZN
	 (s)− ZN

	 ◦ η	(s)|ds +NγC

∫ t

0

E|XN (s)− ZN
	 (s)|ds.

(30)

The integrand of the first term on the right-hand side of (30) satisfies

E|ZN
	 (s)− ZN

	 ◦ η	(s)| ≤
∑
k

|ζNk |NγN ckE

∫ s

η�(s)

λk(Z
N
	 (η	(r))dr ≤ C̃Nγh	,(31)

where C̃ > 0 is a constant, and we recall that λ is O(1) in our region of interest.
Collecting the above yields

E|XN (t)− ZN
	 (t)| ≤ Ĉ1N

2γth	 + Ĉ2N
γ

∫ t

0

E|XN (s)− ZN
	 (s)|ds
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for some positive constants Ĉ1, Ĉ2 that are independent of N , γ, and T . The result
now follows from Gronwall’s inequality.

We note that Lemma 3 is a worst case scenario due to the appearance of the

term Nγ in the exponent. However, considering the network S1
Nγ→ 2S1 (exponen-

tial growth) shows this to be a sharp estimate. A future research direction will be
classifying those networks for which this upper bound can be decreased substantially.

We are now in position to prove Theorem 2.
Proof of Theorem 2. We have

XN(t)− ZN
	 (t) = MN(t) +

∫ t

0

FN (XN (s))− FN (ZN
	 ◦ η	(s))ds,

where

MN (t)
def
=
∑
k

[
Yk,2

(
NγN ck

∫ t

0

λk(X
N(s)) − λk(X

N(s)) ∧ λk(Z
N
	 ◦ η	(s))ds

)

−NγN ck

∫ t

0

λk(X
N (s))− λk(X

N (s)) ∧ λk(Z
N
	 ◦ η	(s))ds

]
ζNk

−
∑
k

[
Yk,3

(
NγN ck

∫ t

0

λk(Z
N
	 ◦ η	(s))− λk(X

N (s)) ∧ λk(Z
N
	 ◦ η	(s))ds

)

+NγN ck

∫ t

0

λk(Z
N
	 ◦ η	(s))− λk(X

N (s)) ∧ λk(Z
N
	 ◦ η	(s))ds

]
ζNk

is a martingale and

FN (x) =
∑
k

NγN ckλk(x)ζ
N
k .

Note that based upon our assumptions, we have that

(32) |FN (x)− FN (y)| ≤ CNγ |x− y|,

where C > 0 is a constant that does not depend upon N or γ. The quadratic
covariation matrix of MN is

[MN ](t) =
∑
k

ζNk (ζNk )T (JN
k,2(t) + JN

k,3(t)),

where

JN
k,2(t)

def
= Yk,2

(
NγN ck

∫ t

0

λk(X
N(s))− λk(X

N(s)) ∧ λk(Z
N
	 ◦ η	(s))ds

)
JN
k,3(t)

def
= Yk,3

(
NγN ck

∫ t

0

λk(Z
N
	 ◦ η	(s))− λk(X

N(s)) ∧ λk(Z
N
	 ◦ η	(s))ds

)
.

Thus,

E[MN ](t) =
∑
k

ζNk (ζNk )TNγN ckE

∫ t

0

∣∣λk(X
N (s))− λk(Z

N
	 ◦ η	(s))

∣∣ ds
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and, in particular,

E[MN ]ii(t) =
∑
k

(ζNik )
2NγN ckE

∫ t

0

∣∣λk(X
N(s)) − λk(Z

N
	 ◦ η	(s))

∣∣ ds.(33)

We note that

|XN (t)− ZN
	 (t)|2 ≤ 2|MN(t)|2 + 2

∣∣∣∣∫ t

0

FN (XN (s))− FN (ZN
	 ◦ η	(s))ds

∣∣∣∣2 ,(34)

and we may handle the two terms on the right-hand side of the above equation sepa-
rately.

First, by (33) and the Burkholder–Davis–Gundy inequality,

E[|MN (t)|2] ≤
∑
i

∑
k

(ζNik )
2NγN ckE

∫ t

0

∣∣λk(X
N (s))− λk(Z

N
	 ◦ η	(s))

∣∣ ds
=
∑
k

|ζNk |2NγN ckE

∫ t

0

∣∣λk(X
N (s))− λk(Z

N
	 ◦ η	(s))

∣∣ ds
≤ 2CNγN−ρ

E

∫ t

0

∣∣XN (s)− ZN
	 ◦ η	(s)

∣∣ ds,
(35)

where C is a constant independent of N , t, and γ. After adding and subtracting
ZN
	 (s), using (31), and applying Lemma 3, we conclude that for t ≤ T

(36) E[|MN (t)|2] ≤ (c1N
γTec2N

γT )N−ρ(Nγh	)

for some constants c1, c2 that do not depend upon T , γ, or N and which will change
during the course of the proof.

Turning to the second term on the right-hand side of (34), making use of (32) we
have for some C > 0 independent of T , γ, and N ,

E

(∫ t

0

|FN (XN(s))− FN (ZN
	 ◦ η	(s))|ds

)2

(37)
≤ CN2γ

E

(∫ t

0

|ZN
	 ◦ η	(s)− ZN

	 (s)|ds
)2

+ CN2γ
E

(∫ t

0

|XN(s)− ZN
	 (s)|ds

)2

.

The expected value in the first term on the right-hand side of (37) can be bounded
via

E

(∫ T

0

|ZN
	 ◦ η	(s)− ZN

	 (s)|ds
)2

≤ TE

∫ T

0

|ZN
	 ◦ η	(s)− ZN

	 (s)|2ds

= T

n∑
i=1

∫ ti+h

ti

E|ZN
	 ◦ η	(s)− ZN

	 (s)|2ds.
(38)

We have that

E|ZN
	 ◦ η	(s)− ZN

	 (s)|2 ≤
∑
k

|ζNk |2
[
NγN ckE

∫ s

η�(s)

λk(Z
N
	 ◦ η	(r))dr

+N2γN2ckE

(∫ s

η�(s)

λk(Z
N
	 ◦ η	(r))dr

)2]
≤ CNγN−ρh	 + CN2γh2

	

(39)
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for some constant C > 0. Combining (38) and (39) shows

(40) E

(∫ T

0

|ZN
	 ◦ η	(s)− ZN

	 (s)|ds
)2

≤ T 2(CNγN−ρh	 + CN2γh2
	).

Combining (40) with (37) then yields

E

(∫ t

0

|FN(XN (s))− FN (ZN
	 ◦ η	(s))|ds

)2

≤ c1N
2γT 2N−ρ(Nγh	) + c2T

2N2γ(Nγh	)
2 + c3tN

2γ

∫ t

0

E|XN(s)− ZN
	 (s)|2ds

(41)

for some constants c1, c2, c3 that do not depend upon T , N , or γ. Equations (34),
(36), and (41) yield

E[|XN(t)− ZN
	 (t)|2] ≤ (c1N

γTec2N
γT )N−ρ(Nγh	) + c1N

2γT 2N−ρ(Nγh	)

+ c2T
2N2γ(Nγh	)

2 + c3tN
2γ

∫ t

0

E|XN (s)− ZN
	 (s)|2ds.

The result now follows from Gronwall’s inequality.
We turn our focus to the proof of Theorem 1, which is restated here for complete-

ness.
Theorem 1. Suppose (ZN

	 , ZN
	−1) satisfy (16) and (17) with ZN

	 (0) = ZN
	−1(0).

Then there exist functions C1, C2 that do not depend on h	 such that

sup
t≤T

E|ZN
	 (t)− ZN

	−1(t)|2 ≤ C1(N
γT )N−ρ(Nγh	) + C2(N

γT )(Nγh	)
2.

In particular, for γ ≤ 0 the values C1(N
γT ) and C2(N

γT ) may be bounded above
uniformly in N .

Proof of Theorem 1. A direct proof can be written along the lines of that for
Theorem 2. A separate, cruder, proof would simply add and subtract XN(t) to
|ZN

	 (t)− ZN
	−1(t)|2 and use Theorem 2 combined with the triangle inequality.

8. Implementation issues. The analysis in sections 6 and 7 specified an order
of magnitude for the number of paths n	 to be used at each level to attain the desired
accuracy. This was needed to prove that the computational complexity can be greatly
reduced with an appropriate choice of the n	. However, the analysis does not tell us
what the n	 should be with precision, nor does it tell us that these are the optimal
n	, which, of course, will depend on the function f and the model itself.

Letting V	 denote the variance of Q̂	 for a given n	 and letting CPU	 be the CPU
time needed to generate n	 paths, we know that

CPU	 ≈ K	

V	

for some K	 as both CPU	 and 1/V	 scale linearly with n	. Further, for a given
tolerance ε we need

(42) Var(Q̂) =
∑
	

V	 = (ε/1.96)2

for, say, a 95% confidence interval (where the quantity 1.96 will be changed depending
upon the size of the confidence interval desired). We may approximate each K	 with
a number of preliminary simulations (not used in the full implementation) and then
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minimize ∑
	

K	

V	
,

subject to the constraint (42). This will give us target variances V	 for each level and
an estimate on the time needed until the computation is completed. We may then
simulate each level until enough paths have been generated for the variance of the
estimator at that level to be below the target V	. Note that this is similar to the
strategy proposed in [18].

We make the important observation that with such an optimizing precomputation,
we can choose both L and �0, that is, the finest and crudest levels, before attempting
the full calculation. This reduces the probability of the approximate processes becom-
ing negative, or nonphysical in other ways, during the course of a simulation. This, in
turn, helps keep the approximate processes stable, which leads to increased efficiency.
Further, if we find during such a precomputation that no choice of levels and num-
ber of paths will be significantly faster than using an exact algorithm combined with
crude Monte Carlo, then we should simply revert to solely using an exact algorithm.
We may conclude, therefore, that the developed method will never, for any example,
be appreciably slower than using an exact algorithm with crude Monte Carlo. As will
be demonstrated in the next section, however, the method will often, even in cases
not yet predicted by the analysis, be significantly faster.

Finally, we note that in each of the examples in section 9, and each method tested,
we use MATLAB’s built in Poisson random number generator. Further, we produce
the necessary approximate paths in batches ranging from the 100s to 10s of thousands
to reduce the number of separate calls to the Poisson random number generator.

9. Examples. We present three examples to demonstrate the performance of
the proposed method.

Example. We begin by considering a model of gene transcription and translation
also used in [6]:

G
25→ G+M, M

1000→ M + P, P + P
0.001→ D, M

0.1→ ∅, P
1→ ∅.

Here, a single gene is being transcribed into mRNA, which is then being translated
into proteins, and finally the proteins produce stable dimers. The final two reactions
represent degradation of mRNA and proteins, respectively. We suppose the system
starts with one gene and no other molecules, so X(0) = (0, 0, 0), where X1, X2, X3

give the molecular counts of the mRNA, proteins, and dimers, respectively. Finally,
we suppose that we want to estimate the expected number of dimers at time T = 1 to
an accuracy of ±1 with 95% confidence. Thus, we want the variance of our estimator
to be smaller than (1/1.96)2 ≈ .2603. We will also estimate the second moment of the
number of dimers, which could be used in conjunction with the mean to estimate the
variance. For comparison purposes, we will use each method discussed in this paper
to approximate the mean and will use an exact method combined with crude Monte
Carlo and the unbiased MLMC method to approximate the second moment.

While ε = 1 for the unscaled version of this problem, the simulation of just a few
paths of the system shows that there will be approximately 23 mRNA molecules, 3,000
proteins, and 3,500 dimers at time T = 1. Therefore, for the scaled system, we are
asking for an accuracy of ε̃ = 1/3500 ≈ 0.0002857. Also, a few paths (100 is sufficient)
shows that the order of magnitude of the variance of the normalized number of dimers
is approximately 0.11. Thus, the approximate number of exact sample paths we will
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Table 1

Performance of an exact algorithm with crude Monte Carlo. The mean number of dimers at
time 1 is reported with 95% a confidence interval. The approximated variance of the number of
dimers is provided for completeness. An estimate of the second moment is also provided with a 95%
confidence interval.

Mean Variance EX2
3 (1) # paths CPU time # updates

3714.2 ± 1.0 ≈ 1,232,418 1.5035 ×107 ± 8 ×103 4,740,000 1.49 ×105 CPU s 8.27 ×1010

Table 2

Performance of Euler tau-leaping with crude Monte Carlo for the computation of the first
moment of X3, the number of dimers. The bias of the method is apparent.

Step-size Mean # paths CPU time # updates

h = 3−7 3,712.3 ± 1.0 4,750,000 13,374.6 s 6.2× 1010

h = 3−6 3,707.5 ± 1.0 4,750,000 6,207.9 s 2.1× 1010

h = 3−5 3,693.4 ± 1.0 4,700,000 2,803.9 s 6.9× 109

h = 3−4 3,655.2 ± 1.0 4,650,000 1,219.0 s 2.6× 109

need to generate can be found by solving

1

n
Var(normalized # dimers) = (ε̃/1.96)2 =⇒ n = 5.18× 106.

Therefore, we will need approximately 5 million independent sample paths generated
via an exact algorithm.

We also note that with the rough orders of magnitude computed above for the
different molecular counts at time T = 1, we have N ≈ 3,500, α1 ≈ .38, and α2 =
α3 ≈ 1. Therefore, we have that Nγ ≈ 23, 000/3, 000 = 7.6 =⇒ γ ≈ 0.2485 for
this problem (where we chose the “stiffest” reaction for this calculation, which is that
of M → M + P ). However, we note that the parameter γ changes throughout the
simulation and is quite a bit higher near t ≈ 0.

Implementing the modified next reaction method, which produces exact sample
paths [2], on our machine2 (using MATLAB), each path takes approximately 0.03
CPU seconds to generate. Therefore, the approximate amount of time to solve this
particular problem will be 155,000 CPU seconds, which is about 43 hours. The
outcome of such a simulation is detailed in Table 1, where “# updates” refers to
the total number, over all paths, of steps and is used as a crude quantification for the
computational complexity of the different methods under consideration.

Next, we solve the problem using Euler tau-leaping with various step-sizes, com-
bined with a crude Monte Carlo estimator. The results of these simulations are
detailed in Table 2. Note that the bias of the approximate algorithm has become
apparent.3 We then implement the biased version of MLMC with various step-sizes.
The results of these simulations are detailed in Table 3, where the approximations
and CPU times should be compared with those of Euler tau-leaping. The CPU times
stated include the time needed to solve the embedded optimization problem discussed
in section 8. Note that the gain in computational complexity, as quantified by the
# updates, over straight tau-leaping with a finest level of hL = 3−7 is 56-fold, with
straight tau-leaping taking 17.1 times longer. Also note that the bias of the approxi-
mation method is still apparent.

2We used an Apple machine with 8 GB RAM and an i7 chip.
3This data also appears in [6].
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Table 3

Performance of biased MLMC with M = 3, �0 = 2, and L ranging from 7 to 5. The reported
times include the time needed for the precomputations used to choose the number of paths per level
as discussed in section 8.

Step-size parameters Mean CPU time # updates

M = 3, L = 7 3,712.6 ± 1.0 781.8 s 1.1 ×109

M = 3, L = 6 3,708.5 ± 1.0 623.9 s 7.9 ×108

M = 3, L = 5 3,694.5 ± 1.0 546.9 s 6.6 ×108

Table 4

Performance of unbiased MLMC with �0 = 2, and M and L detailed above. The reported times
include the time needed for the precomputations used to choose the number of paths per level as
discussed in section 8.

Step-size parameters Mean CPU time Var. of estimator # updates

M = 3, L = 6 3,713.9 ± 1.0 1,063.3 s 0.2535 1.1 ×109

M = 3, L = 5 3,714.7 ± 1.0 1,114.9 s 0.2565 9.4 ×108

M = 3, L = 4 3,714.2 ± 1.0 1,656.6 s 0.2595 1.0 ×109

M = 4, L = 4 3714.2 ± 1.0 1,334.8 s 0.2580 1.1 ×109

M = 4, L = 5 3,713.8 ± 1.0 1,014.9 s 0.2561 1.1 ×109

Finally, we implement the unbiased version of MLMC with various step-sizes.
The results of these simulations are detailed in Table 4. As in the biased MLMC case,
the CPU times stated include the time needed to solve the embedded optimization
problem discussed in section 8. We see that the unbiased MLMC estimator behaves
as the analysis predicts: there is no bias for any choice of M or L, and the required
CPU times are analogous to Euler’s method with a course time-step. Further, the
exact algorithm with crude Monte Carlo, by far the most commonly used method in
the literature, demanded approximately 80 times more updates and 140 times more
CPU time than our unbiased MLMC estimator, with the precise speedups depending
upon the choice of M and L.

We feel it is instructive to give more details to at least one choice of M and L
for the unbiased MLMC estimator. For the case with M = 3, L = 5, and �0 = 2, we
provide in Table 5 the relevant data for the different levels. As already stated in Table
4, the total time with the optimization problem was 1,114.9 CPU seconds, more than
the total CPU time reported in Table 5, which does not include the time needed to
solve the optimization problem. Note that most of the CPU time was taken up at
the coarsest level, as is common with MLMC methods and predicted by the analysis.
Also, while the exact algorithm with crude Monte Carlo demanded the generation of
almost 5 million exact sample paths, we needed only 3,900 such paths at our finest
level. This difference is the main reason for the dramatic reduction in CPU time. Of
course, we needed more than 8 million paths at the coarsest level, but these paths
are very cheap to generate. Finally, we note that the optimization problem divided
up the total desired variance into nonuniform sizes with the more computationally
intensive levels generally being allowed to have a higher variance.

In Table 6 we provide the data pertaining to the estimate of the second moment
using the unbiased version of MLMC with M = 3 and L = 5 that appears in the
second row of Table 4. The 95% confidence interval for the second moment is 1.5031
×107 ± 9 ×103, which should be compared with the confidence interval generated
using an exact method.

Example. We turn now to a simple example that allows us to study how the
behavior of the developed methods depends upon the parameter γ. Consider the
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Table 5

Details of the different levels for the implementation of the unbiased MLMC method with M = 3,
L = 5, and �0 = 2. By (X,Z3−5 ) we mean the level in which the exact process is coupled to the
approximate process with h = 3−5, and by (Z3−� , Z3−�+1) we mean the level with Z3−� coupled to
Z3−�+1 .

Level # paths Mean Var. estimator CPU time # updates

(X,Z3−5 ) 3,900 20.1 0.0658 279.6 s 6.8 ×107

(Z3−5 , Z3−4 ) 30,000 39.2 0.0217 49.0 s 8.8 ×107

(Z3−4 , Z3−3 ) 150,000 117.6 0.0179 71.7 s 1.5 ×108

(Z3−3 , Z3−2 ) 510,000 350.4 0.0319 112.3 s 1.7 ×108

Euler, h = 3−2 8,630,000 3,187.4 0.1192 518.4 s 4.7 ×108

Totals N.A. 3,714.7 0.2565 1031.0 s 9.5 ×108

Table 6

Details of the different levels for the implementation of the unbiased MLMC method with M = 3,
L = 5, and �0 = 2 for the approximation of the second moment.

Level Estimate Var. of estimator 95% Confidence inteval

(X,Z3−5 ) 157,000 5.8 ×106 N.A.

(Z3−5 , Z3−4 ) 303,000 2.0 ×106 N.A.

(Z3−4 , Z3−3 ) 894,000 2.2 ×106 N.A.

(Z3−3 , Z3−2 ) 2.4888 ×106 4.2 ×106 N.A.

Euler, h = 3−2 1.1188 ×107 5.7 ×106 N.A.

Totals 1.5031 ×107 2.0 ×107 1.5031 ×107 ± 9 ×103

family of models indexed by θ,

A
θ
�
θ
B,

with

XA(0) = XB(0) = �1,000θ−1�,
where �x� is the greatest integer less than or equal to x. The stochastic equation
governing XA, giving the number of A molecules, is

XA(t) = XA(0) + Y1

(∫ t

0

θ(2, 000θ−1 −XA(s))ds

)
− Y2

(∫ t

0

θXA(s)ds

)
with the Euler approximation given by

ZA(t) = ZA(0) + Y1

(∫ t

0

θ(2, 000θ−1 − ZA ◦ η(s))ds
)
− Y2

(∫ t

0

θZA ◦ η(s)ds
)
.

Letting N = XA(0), we see that θ = Nγ , implying

γ = ln(θ)/ ln(N).

Note in particular that γ > 0 ⇐⇒ θ > 1 with γ being a strictly increasing function
of θ. Therefore, we may test the dependence of the behavior of the MLMC method on
this model by varying the single parameter θ. We will let θ range from 0.1 to 1, 000
and for each θ use both an exact method with crude Monte Carlo and the unbiased
MLMC method developed here to estimate the mean number of A molecules at time
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Table 7

Approximation of XA(1) with 95% confidence intervals. Note that the speedup factor decreases
as θ increases, with MLMC becoming less efficient than an exact method when θ = 1,000.

θ Method Estimate of XA(1) CPU time # Paths Speedup
.1 Crude MC 9,999.97 ± 0.20 1,476.9 s 164,800 N.A.
.1 MLMC: M = 3, L = 4, �0 = 0 10,000.07 ± 0.19 6.5 s N.A. 227.2

.5 Crude MC 1,999.90 ± 0.16 1,110.9 s 124,100 N.A.

.5 MLMC: M = 3, L = 4, �0 = 1 2,000.10 ± 0.16 15 s N.A. 74.1

1 Crude MC 999.96 ± 0.11 1,464.4 s 163,800 N.A.
1 MLMC: M = 3, L = 5, �0 = 2 999.99 ± 0.11 28 s N.A. 52.3

2 Crude MC 500.01 ± 0.11 739.9 s 82,700 N.A.
2 MLMC: M = 6, L = 6, �0 = 3 499.96 ± 0.11 21 N.A. 35.2

10 Crude MC 99.983 ± 0.044 900.2 s 100,600 N.A.
10 MLMC: M = 3, L = 6, �0 = 5 99.965 ± 0.044 65 s N.A. 13.8

25 Crude MC 40.012 ± 0.028 898.0 s 100,500 N.A.
25 MLMC: M = 3, L = 6, �0 = 6 39.996 ± 0.028 98 s N.A. 9.2

50 Crude MC 20.008 ± 0.0139 1,789.0 s 200,200 N.A.
50 MLMC: M = 3, L = 7, �0 = 7 20.005 ± 0.0138 360 s N.A. 5.0

100 Crude MC 10.002 ± 0.0139 892.6 s 100,100 N.A.
100 MLMC: M = 3, L = 7, �0 = 7 9.988 ± 0.0138 250 s N.A. 3.6

200 Crude MC 4.9996 ± 0.0088 1,120.3 s 125,400 N.A.
200 MLMC: M = 3, L = 7, �0 = 7 4.9958 ± 0.0087 486 s N.A. 2.3

500 Crude MC 2.0029 ± 0.0044 1,781.6 s 199,400 N.A.
500 MLMC: M = 3, L = 7, �0 = 7 1.9953 ± 0.0044 1,625.9 s N.A. 1.1

1,000 Crude MC 1.0038 ± 0.0043 897.2 100,200 N.A.
1,000 MLMC: M = 3, L = 7, �0 = 7 1.0015 ± 0.0044 1,412.3 s N.A. 0.64

1. We choose different values for our tolerance parameter ε for different values of θ.
The results of these computations can be found in Table 7.

The analysis of this paper predicts that as θ increases, MLMC should progressively
lose its computational advantage over an exact algorithm, and this is borne out in the
data provided in Table 7. Note, however, that the unbiased version of MLMC remains
significantly more efficient than an exact algorithm until θ = 1, 000, in which case
XA(0) = 1. Having θ = 1,000 is arguably the worst case scenario for an approximate
algorithm such as tau-leaping, and the coupling method performs slightly worse than
using an exact method with crude Monte Carlo. As discussed in section 8, we would
normally in this case simply use the exact method alone. However, we report the
MLMC data for the sake of comparison. Further, it is extremely encouraging that
there were still large gains in efficiency even when θ ∈ {25, 50, 100}, something not
predicted by the current analysis. Interestingly, the speedup factor of MLMC over
an exact method appears for this example to be a function of θ. Specifically, as
demonstrated by the log-log plot in Figure 1, we observed the relation

Speedup factor ≈ 54.6 θ−0.62.

Example. We finish with a model of viral kinetics first developed in [36] by
Srivastava et al. and subsequently studied by Haseltine and Rawlings in [23], Ball et
al. in [8], and E, Liu, and Vanden-Eijnden in [14]. One reason the interest in this model
has been so high from the biological, engineering, and mathematical communities is
that it exemplifies a feature of many stochastic models arising in the biosciences: a
separation of time scales. We will use this model to demonstrate that one of the main
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Fig. 1. Log-log plot for the speedup factor of unbiased MLMC over an exact method. The best
fit line, not shown, is 4− 0.62x.

ideas of this paper, the coupling, is not restricted to the use of approximate methods
defined using time discretizations.

The model includes four time-varying “species”: the viral genome (G), the viral
structural protein (S), the viral template (T ), and the secreted virus itself (V ). We
denote these as species 1, 2, 3, and 4, respectively, and let Xi(t) denote the number
of molecules of species i in the system at time t. The model involves six reactions,

R1 : T
κ1→ T +G, κ1 = 1,

R2 : G
κ2→ T, κ2 = 0.025,

R3 : T
κ3→ T + S, κ3 = 1000,

R4 : T
κ4→ ∅, κ4 = 0.25,

R5 : S
κ5→ ∅, κ5 = 2,

R6 : G+ S
κ6→ V, κ6 = 7.5× 10−6,

where the units of time are in days. The stochastic equations for this model are

X1(t) = X1(0) + Y1

(∫ t

0

X3(s)ds

)
− Y2

(
0.025

∫ t

0

X1(s)ds

)
− Y6

(
7.5× 10−6

∫ t

0

X1(s)X2(s)ds

)
,

X2(t) = X2(0) + Y3

(
1000

∫ t

0

X3(s)ds

)
− Y5

(
2

∫ t

0

X2(s)ds

)
− Y6

(
7.5× 10−6

∫ t

0

X1(s)X2(s)ds

)
,

X3(t) = X3(0) + Y2

(
0.025

∫ t

0

X1(s)ds

)
− Y4

(
0.25

∫ t

0

X3(s)ds

)
,

X4(t) = X4(0) + Y6

(
7.5× 10−6

∫ t

0

X1(s)X2(s)ds

)
.
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Following [14], we assume an initial condition of X(0) = (0, 0, 10, 0)t. We see that
whenever the number of viral templates is positive, that is, whenever X3 > 0, the
rates of the third and fifth reactions will be substantially larger than the others. At
the times when X3 > 0 and X2 = O(1), we have that γ � 1 with γ remaining large
until X2 = O(1000). However, even when X2 = O(1000), the natural time-scale of
the problem is O(1/1000), whereas the time-scale in which we would like to answer
questions is O(1).

Instead of implementing our MLMC method directly, we take an alternative ap-
proach that makes use of the idea of the coupling, though not the multilevel aspect
of the paper. That is, we will build an approximate process Z that will be used as
a control variate for X . Toward that end, note that when the number of templates
is positive, reactions 3 and 5 are much faster than the others. Ignoring the other
reactions, we see that when X3 > 0, the “system” governing the dynamical behavior
of S is

∅
1000X3(t)

�
2

S,

which has an equilibrium distribution that is Poisson with a parameter of 500X3(t);
see [4]. Believing that we may use this mean value of X2(s) in the integrated intensity
of reaction 6, that is,

(43)

∫ t

0

X1(s)X2(s)ds ≈
∫ t

0

X1(s)(500X3(s))ds,

we hope a good approximate model for G, T , and V , which we denote by Z =
(Z1, Z3, Z4) so as to remain consistent with the enumeration of X , is

Z1(t) = X1(0) + Y1

(∫ t

0

Z3(s)ds

)
− Y2

(
0.025

∫ t

0

Z1(s)ds

)
− Y6

(
3.75× 10−3

∫ t

0

Z1(s)Z3(s)ds

)
,

Z3(t) = X3(0) + Y2

(
0.025

∫ t

0

Z1(s)ds

)
− Y4

(
0.25

∫ t

0

Z3(s)ds

)
,

Z4(t) = X4(0) + Y6

(
3.75× 10−3

∫ t

0

Z1(s)Z3(s)ds

)
.

(44)

Note that while Z is an approximate model of X , it is still a valid continuous time
Markov chain satisfying the natural nonnegativity constraints. In particular, there
is no time discretization parameter in Z, which is where many technical problems
related to tau-leaping (stability concerns, negativity of molecular counts, etc.) arise.

We will now couple the two processes in a manner similar to (22) and build our
estimator. Let ζk denote the reaction vector for the kth reaction. Let λ6(X) =
7.5 × 10−6X1X2 and Λ6(Z) = 3.75 × 10−3Z1Z3. For arbitrary f , we can estimate
Ef(X(T )) via

Ef(X(T )) = E(f(X(T ))− f(Z(T ))) + Ef(Z(T )),(45)

where Ef(Z(T )) is estimated by crude Monte Carlo using the representation (44),
which is relatively cheap to simulate, and we estimate E(f(X(T )) − f(Z(T ))) using
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independent realizations from the coupled processes (X,Z) below,

X(t) = X(0) + Y1,1

(∫ t

0

min{X3(s), Z3(s)}ds
)
ζ1

+ Y1,2

(∫ t

0

X3(s)−min{X3(s), Z3(s)}ds
)
ζ1

+ Y2,1

(
0.025

∫ t

0

min{X1(s), Z1(s)}ds
)
ζ2

+ Y2,2

(
0.025

∫ t

0

X1(s)−min{X1(s), Z1(s)}ds
)
ζ2

+ Y3

(
1000

∫ t

0

X3(s)ds

)
ζ3

+ Y4,1

(
0.25

∫ t

0

min{X3(s), Z3(s)}(s)ds
)
ζ4

+ Y4,2

(
0.25

∫ t

0

X3(s)−min{X3(s), Z3(s)}(s)ds
)
ζ4

+ Y5

(
2

∫ t

0

X2(s)ds

)
ζ5

+ Y6,1

(∫ t

0

min{λ6(X(s)),Λ6(Z(s))}ds
)
ζ6

− Y6,2

(∫ t

0

λ6(X(s))−min{λ6(X(s)),Λ6(Z(s))}ds
)
ζ6,

Z(t) = Y1,1

(∫ t

0

min{X3(s), Z3(s)}ds
)
ζ1

+ Y1,3

(∫ t

0

Z3(s)−min{X3(s), Z3(s)}ds
)
ζ1

+ Y2,1

(
0.025

∫ t

0

min{X1(s), Z1(s)}ds
)
ζ2

+ Y2,3

(
0.025

∫ t

0

Z1(s)−min{X1(s), Z1(s)}ds
)
ζ2

+ Y4,1

(
0.25

∫ t

0

min{X3(s), Z3(s)}(s)ds
)
ζ4

+ Y4,3

(
0.25

∫ t

0

Z3(s)−min{X3(s), Z3(s)}(s)ds
)
ζ4

+ Y6,1

(∫ t

0

min{λ6(X(s)),Λ6(Z(s))}ds
)
ζ6

− Y6,3

(∫ t

0

Λ6(Z(s)) −min{λ6(X(s)),Λ6(Z(s))}ds
)
ζ6,

(46)

where the Yk,i’s are independent, unit-rate Poisson processes. Note that we have
coupled the process through the reaction channels 1, 2, 4, and 6, in the usual way,
though not through 3 or 5, which are not incorporated in the model for Z. Simulation
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Table 8

Details of the approximated expected virus level at time 20 using crude Monte Carlo with an
exact algorithm and a control variate approach using the coupling (46).

Method Approximation # paths CPU time # updates

Crude Monte Carlo 13.85 ± 0.07 75,000 24,800 CPU s 1.45× 1010

Coupling 13.91 ± 0.07 N.A. 1,118.5 CPU s 2.41 × 108

of the coupled processes, which is itself just a continuous time Markov chain in Z6
≥0,

may proceed by any exact algorithm. Here we use the next reaction method [2, 16].
Supposing we want to estimate EX4(20), giving the mean number of virus mole-

cules at time 20, we calculate this value using both a naive application of the next
reaction method with crude Monte Carlo and the control variate approach of (45)
with the coupling (46). The details of the two computations are found in Table 8.
We see that the crude Monte Carlo implementation required 60 times more updates
and 22 times more CPU seconds than the control variate/coupling approach, again
demonstrating the usefulness of the core ideas of this paper.

10. Conclusions. This work focused on the Monte Carlo approach to estimating
expected values of continuous time Markov chains. In this context there is a trade-off
between the accuracy and the cost of each Monte Carlo sample. Exact samples are
available, but these are typically very expensive, especially in our target application
of biochemical kinetics. Approximate samples can be computed by tau-leaping, with
the bias governed by a discretization parameter, h. A realistic analysis of the cost
of tau-leaping must acknowledge the importance of system scaling. In particular,
for a fixed system, in the limit h → 0 tau-leaping becomes infinitely more expensive
than exact sampling, since it needlessly refines the waiting times between reactions.
In this work, we studied tau-leaping in a general setting that incorporates system
scaling without taking asymptotic limits. Motivated by the work of Giles [18] on
diffusion processes, we then introduced a new multilevel version of the algorithm that
combines coordinated pairs of tau-leaping paths at different h resolutions. The two
main conceptual advances in this work were (a) pointing out the practical benefits of
a coupling process that had previously been introduced solely as a theoretical tool,
and (b) exploiting the availability of an exact sampling algorithm to give an unbiased
estimator. Our theoretical analysis of the computational complexity showed that the
new algorithm dramatically outperforms the existing state of the art in a wide range
of scaling regimes, including the classical scaling arising in chemical kinetics. The
new algorithm is straightforward to summarize and implement, and numerical results
confirm that the predicted benefits can be seen in practice.

There are several avenues for future work in this area:
• Use quasi Monte Carlo sampling to improve practical performance.
• Customize the method in the context of multiscale or hybrid models, where
it is possible to exploit special structure in the form of fast/slow reactions or
species, or where the discrete space Markov chain is coupled to diffusion or
ODE models.
• Extend the theoretical analysis to the γ > 0 regime in order to explain why
we continued to observe excellent results in practice.
• Use the coupling idea without discretization to obtain a control variate method
that exploits specific problem structure, as illustrated in the third example
of section 9.
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