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We present an efficient finite difference method for the approximation of second derivatives, with
respect to system parameters, of expectations for a class of discrete stochastic chemical reaction
networks. The method uses a coupling of the perturbed processes that yields a much lower variance
than existing methods, thereby drastically lowering the computational complexity required to solve a
given problem. Further, the method is simple to implement and will also prove useful in any setting in
which continuous time Markov chains are used to model dynamics, such as population processes. We
expect the new method to be useful in the context of optimization algorithms that require knowledge
of the Hessian. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770052]

I. INTRODUCTION

Stochastic models are commonly used to simulate and
analyze chemical and biochemical systems, in particular
when the abundances of the constituent molecules are small
and ordinary differential equations cease to provide a good
description of system behavior. The most common modeling
choice is to use a continuous time Markov chain (CTMC),
which we represent via the stochastic equation (1), but is of-
ten described in the biology literature via the chemical master
equation, and simulated using Gillespie’s algorithm1, 2 or the
next reaction method.3, 4

Parameter sensitivity analysis is a valuable tool in this
setting as it provides a quantitative method for understand-
ing how perturbations in the parameters affect different re-
sponse functions of interest. Further, often the only means
of determining the parameters for these models is experi-
mentally. If the model provides a reasonable approximation
of the system, the sensitivities can be used to analyze the
identifiability of given parameters.5 They can also suggest
an experimental design in which more resources, which are
often limited, can be spent determining the more sensitive
parameters.

While first derivative sensitivities have been much stud-
ied, less focus has been given to finding reasonable algo-
rithms for the computation of sensitivities of higher order,
particularly in the discrete state setting. Second derivative
sensitivities (the Hessian), however, are also useful. For ex-
ample, they provide concavity information which is neces-
sary for finding roots or extrema of an expectation. Addition-
ally, in a more general optimization setting, the Hessian can
be used to improve upon a simple steepest-descent method.
Newton and quasi-Newton methods, for instance, use an ap-
proximate Hessian to choose the direction in which to step in
the next iterate of the optimization, using curvature to find a
more direct path to a local minimum than can be achieved
by using the gradient alone. When the Hessian is positive
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semi-definite, these methods achieve a fast rate of local con-
vergence. Additionally, trust-region based optimization meth-
ods can also be markedly improved by including a Hessian
estimate.6–9 Developing algorithms that successfully integrate
these optimization methods in the chemical reaction network
and CTMC setting, for example in the context of parameter
estimation, is a topic of current research which depends criti-
cally on having an efficient method for approximating second
derivatives.

We introduce here a method for the computation of the
second order sensitivities of stochastically modeled biochem-
ical reaction networks that is a nontrivial extension of the
coupled finite difference method developed in Ref. 10. The
proposed method produces an estimate with a significantly
lower variance than existing methods, so that it requires much
less central processing unit (CPU) time to produce an ap-
proximation within a desired tolerance level. Additionally, the
paths generated can also be re-used to compute first deriva-
tives of the system for use in any optimization algorithm.
While biochemical reaction networks will be the setting for
this paper, the proposed method is also applicable to a wide
variety of continuous time Markov chain models, such as
those used in queueing theory and the study of population
processes.

The outline of the paper is as follows. In Sec. II, we pre-
cisely describe the model and problem under consideration.
In Sec. III, we present the new method and give a simple al-
gorithm for implementation. In Sec. IV, we provide several
numerical examples to compare the new method with existing
methods, including finite differencing with common random
numbers, finite differencing with the common reaction path
method, and second order likelihood transformations. Finally,
in Sec. V, we provide some conclusions and discuss avenues
for future work.

II. THE FORMAL MODEL

Suppose we have a system of d chemical species un-
dergoing M reactions, each with a given propensity function
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λk : Rd → R≥0 (known as an intensity function in the math-
ematical literature) and reaction vector (transition direction)
ζk ∈ Rd . We can model this system as a continuous
time Markov chain using the random time change
representation11–13

Xt = X0 +
M∑

k=1

Yk

(∫ t

0
λk(Xs)ds

)
ζk, (1)

where the Yk are independent, unit-rate Poisson processes and
X0 is the initial state. We assume, without loss of general-
ity, that the state space S is some subset of Zd

≥0. That is,
the abundances of the constituent species are always non-
negative integers. Note that the chemical master equation (for-
ward equation in the language of probability) for the above
model is

d

dt
PX0 (x, t) =

M∑
k=1

PX0 (x − ζk, t)λk(x − ζk)1{x−ζk∈Zd
≥0}

− PX0 (x, t)
M∑

k=1

λk(x),

where PX0 (x, t) is the probability of being in state x ∈ Zd
≥0 at

time t ≥ 0 given an initial condition of X0.
Intuitively, the random time change representation (1)

can be understood as follows. Let Rk(t) := Yk(
∫ t

0 λk(Xs)ds).
Then Rk(t) counts the number of times the kth reaction has
occurred up to time t, and Rk(t)ζ k is the change in the sys-
tem due to these reactions. The representation (1) then shows
that the process at time t is simply its initial value plus the
total change up to time t due to each of the M reactions. To
understand the counting processes Rk(t) = Yk(

∫ t

0 λk(Xs)ds),
picture a realization of the unit-rate Poisson process Yk as be-
ing determined by points on R≥0 giving the jump times of
Yk.14 For example, we could have

x x x x x

s

where the “X” marks correspond to the jump times of the
Poisson process. At time zero begin at the origin, and as
time increases, travel to the right. At a given time s on the
line, the value Yk(s) is how many points we have passed up
to and including s. For example, in the picture above, Yk(s)
= 4. The propensity function λk then indicates how fast we
travel on this line. If λk(Xs) is very large and t1 > t0, we
expect

∫ t1
0 λk(Xs)ds to be much larger than

∫ t0
0 λk(Xs)ds, so

that Yk(
∫ t1

0 λk(Xs)ds) is much larger than Yk(
∫ t0

0 λk(Xs)ds);
we have traveled past many points along the line between
times t0 and t1, and so were “moving quickly.” At the other
extreme, if λk(Xs) is zero between t0 and t1, then

∫ t1
0 λk(Xs)ds

=∫ t0
0 λk(Xs)ds, so that Yk(

∫ t1
0 λk(Xs)ds)=Yk(

∫ t0
0 λk(Xs)ds);

in this case we did not travel anywhere on the line, but were
“stopped.” For further information, intuition, and a derivation
of this representation, see Refs. 12, 13, and 15.

Now we suppose that the propensities are dependent on
some vector of parameters θ ; for instance, θ may represent a
subset of the system’s mass action kinetics constants. We then

consider a family of models Xt(θ ), parameterized by θ , with
stochastic equations

Xt (θ ) = X0(θ ) +
M∑

k=1

Yk

(∫ t

0
λk(θ,Xs(θ ))ds

)
ζk. (2)

Letting f be some function of interest, for example, the abun-
dance of some molecule, we define

J (θ ) := Ef (θ,Xt (θ )).

This paper is concerned with finding an efficient computa-
tional method for the approximation of the second partial
derivatives of J,

∂2

∂θj ∂θi

J (θ ).

There are several existing methods for the approxima-
tion of such sensitivities. The likelihood ratio (LR) method
proceeds analytically by moving the derivative inside the
expectation.6, 16 The variance of such estimators, however, is
often prohibitive. In Sec. IV, we include numerical results
from the LR method for comparison. The general method
of infinitesimal perturbation (IP) also proceeds by moving
the derivative inside the expectation.17 However, the usual IP
methods do not in general apply for any stochastically mod-
eled chemical reaction network in which the firing of one re-
action can prevent the firing of another. For example, consider
the reaction pair

A → ∅, A → B,

when only one A molecule is present. See Ref. 18 or the
Appendix of Ref. 17.

Finite difference methods for approximating these sensi-
tivities start with the simple observation that for smooth func-
tions J, we may approximate second partial derivatives by
perturbing the parameter vector in both relevant directions,
so that

∂2

∂θj ∂θi

J (θ )

= J (θ + (ei + ej )ε) − J (θ + eiε) − J (θ + ej ε) + J (θ )

ε2

+O(ε), (3)

where ei is the vector with a 1 in the ith position and 0 else-
where. Thus, for second derivatives, finite difference methods
require up to four simulated paths to produce one estimate,
as opposed to the LR method, which requires only one path
per estimate. When coupling methods are used with the finite
difference, however, the variance of the estimates produced
are usually significantly lower than LR, as demonstrated in
Sec. IV, so that finite different methods often provide much
more effective estimators.

In our setting, Eq. (3) suggests an approximation of the
form



224112-3 E. S. Wolf and D. F. Anderson J. Chem. Phys. 137, 224112 (2012)

∂2

∂θj ∂θi

J (θ ) ≈ E

(
f (θ,Xt (θ + (ei + ej )ε)) − f (θ,Xt (θ + eiε)) − f (θ,Xt (θ + ej ε)) + f (θ,Xt (θ ))

ε2

)
. (4)

The Monte Carlo estimator for (4) with R estimates is then

DR(ε) = 1

R

R∑
�=1

d[�](ε), (5)

where

d[�](ε)

:= ε−2
[
f (θ,Xt,[�](θ + (ei + ej )ε)) − f (θ,Xt,[�](θ + eiε))

− f (θ,Xt,[�](θ + ej ε)) + f (θ,Xt,[�](θ ))
]
,

where, for example, Xt, [�](θ ) is the �th path simulated with pa-
rameter choice θ . Note that if the four relevant processes are
computed independently, which we will call the independent
random numbers (IRN) method, the variance of the estimator
DR(ε) is R−1Var(d(ε)) = O(R−1ε−4). The goal of any cou-
pling method in this context is to lower the variance of d(ε)
by correlating the relevant processes.

We will demonstrate via example that the method pre-
sented here lowers the variance of the numerator of d(ε) to
O(ε), thereby lowering the variance of d(ε) to O(ε−3), yield-
ing Var(DR(ε)) = O(R−1ε−3). The proof of this fact follows
from work in Ref. 10. For several non-trivial examples, how-
ever, the method gives even better performance, lowering the
variance of d(ε) another order of magnitude to O(ε−2). In con-
trast, every other coupling method we attempted19 yielded an
asymptotic variance for d(ε) of O(ε−3) at best, and in general
were much less efficient than the method being proposed here.
Theoretical work, and a discussion of conditions on the model
guaranteeing the faster rate of convergence, will be presented
in a follow-up paper.

For ease of exposition and notation, we have described
finite differences using the forward difference (4). Our formal
construction will also use the forward difference. In practice,
however, it is no more difficult to use the central second dif-
ference,

ε−2[f (θ,Xt (θ+(ei + ej )ε/2))−f (θ,Xt (θ + (ei − ej )ε/2))

− f (θ,Xt (θ+(ej − ei)ε/2))+f (θ,Xt (θ − (ei + ej )ε/2))],
(6)

which has a bias of only O(ε2); this is what we have imple-
mented in our numerical examples.

III. COUPLING THE FINITE DIFFERENCE

The goal of any coupling of the finite difference is to re-
duce the variance of the estimator produced by somehow en-
suring that the four paths needed in (3) remain close together.
The common random numbers (CRN) coupling achieves this
goal by reusing the uniform random numbers in an imple-
mentation of Gillespie’s direct algorithm.2 Implicit in Eq. (2)
is the common reaction path (CRP) coupling,20 which assigns

a stream of random numbers to each Yk which are then used to
produce the required realizations of the stochastic processes.

The method presented here, on the other hand, forces
the paths to share reactions; often two or more of the four
paths have the same reaction occur at the same point in time.
Further, the method often naturally “recouples” the processes
during the course of a simulation.10 These facts allow the
paths to remain closer than is possible by only sharing ran-
dom numbers, and so the method consistently produces an
estimate with lower variance, often significantly so. We pro-
vide numerical evidence for this comparison of methods in
Sec. IV; we also briefly revisit this discussion at the end of
Sec. III B.

A. Review of first derivatives

The main idea of the method presented here is most eas-
ily seen in the context of first derivatives, where only corre-
lated pairs of runs are required to approximate the first finite
difference

ε−1(J (θ + eiε) − J (θ )).

The main idea of the coupling presented in this paper is il-
lustrated in the following toy example. Suppose we wish to
study the difference between two Poisson processes Z1, Z2

with rates 13.1 and 13, respectively. One way would be to use
independent, unit rate Poisson processes Y1, Y2 and write

Z1(t) = Y1(13.1t) and Z2(t) = Y2(13t). (7)

Then E(Z1(t) − Z2(t)) = 0.1t and Var(Z1(t) − Z2(t))
= Var(Y1(13.1t)) + Var(Y2(13t)) = 26.1t.

We would like to lower this variance: instead, write

Z1(t) = Y1(13t) + Y2(0.1t) and Z2(t) = Y1(13t).

Then we still have E(Z1(t) − Z2(t)) = EY2(0.1t) = 0.1t as
needed, but now Var(Z1(t) − Z2(t)) = Var(Y2(0.1t)) = 0.1t

instead.
In general, we want to consider the difference of two pro-

cesses Z1, Z2 with intensities A and B (the intensities may be
functions of time, but this is not important to the main idea).
In this case, we would write

Z1 = Y1 + Y2 and Z2 = Y1 + Y3,

where Y1, Y2, and Y3 are independent unit-rate Poisson pro-
cesses that have intensities

m := min{A,B}, A − m, and B − m,

respectively. In other words, we have split the counting pro-
cesses Z1 and Z2 into three sub-processes. One of these, Y1,
is shared between Z1 and Z2, so that at the time at which
Y1 jumps, both of the original processes jump. These shared
jumps lower the variance of the difference Z1 − Z2 to only A
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+ B − 2m = |A − B|, rather than the A + B which would
result from using only two processes similarly to (7).

This is precisely the idea needed for the computation
of first derivatives, as in Ref. 10, which is discussed in
Sec. III C in more detail. This idea will also serve as the basis
for our coupling method for second derivatives.

B. Construction of the coupling

For the computation of second derivatives, rather than
correlated pairs of runs, correlated quartets of runs are used.
We suppose we have the four CTMCs of (4), with i, j ∈ {1,
. . . , M} fixed, which for convenience of exposition we order
as

Xt (θ + (ei + ej )ε), Xt (θ + eiε), Xt (θ + ej ε), Xt (θ ). (8)

We also assume that their initial conditions are equal (i.e., they
are equal at t = 0), to some value X0(θ ). For each of the four
processes above, there is an associated propensity for each of
the M reaction channels. For example, the propensity of the
kth reaction channel of the first process (the one with param-
eter choice θ + (ei + ej)ε) is

λk,1 := λk(θ + (ei + ej )ε,Xt (θ + (ei + ej )ε)).

Similarly rename the propensity of the kth reaction channel
of the second process (parameter choice θ + eiε) by λk,2, the
third process as λk,3, and the fourth process as λk,4, as per our
ordering (8). Note that these propensities are dependent on θ

and Xt(θ ), but we will drop either or both of these dependen-
cies in our notation when they are not relevant to the current
discussion.

Next, we introduce a coupling of these four processes that
will produce an estimator (5) with low variance. The main
idea is similar to that in Sec. III A as well as in Ref. 10 in that
it rests on splitting a counting process into sub-processes, to
be shared among the four CTMCs (8). With this goal in mind,
we create a sub-process to allow the 1st and 2nd processes of
(8) to jump simultaneously, one to allow the 1st and 3rd to
jump simultaneously, one for the 2nd and 4th, and one for the
3rd and 4th. Additionally, we create a sub-process that allows
all four to jump simultaneously. As in the first derivative set-
ting, the rates of these sub-processes will involve minimums
of the original CTMCs. Finally, we also require four addi-
tional sub-processes to make up any “leftover” propensity of
the original CTMCs.

Formally, define Rk,[b1,b2,b3,b4] as a counting process,
where b� ∈ {0, 1}. A jump of Rk,[b1,b2,b3,b4] indicates that the
�th process in the ordering (8) jumps by reaction k if and only
if b� = 1, for � ∈ {1, 2, 3, 4}. For example, Rk,[1,1,0,0](t) counts
the number of times the kth reaction has fired simultaneously
for the first and second processes of (8) (but the third and
fourth did not fire), whereas Rk,[1,0,1,0](t) counts the number
of times the kth reaction has fired simultaneously for the first
and third processes of (8) (but the second and fourth did not
fire). Define the propensity of Rk,[b1,b2,b3,b4] by �k,[b1,b2,b3,b4],

so that in the random time change representation (2),

Rk,[b1,b2,b3,b4](t) = Yk,[b1,b2,b3,b4]

(∫ t

0
�k,[b1,b2,b3,b4](s)ds

)
,

(9)
where the Y ’s are independent unit-rate Poisson processes and
where the propensities are

�k,[1,1,1,1] = λk,1 ∧ λk,2 ∧ λk,3 ∧ λk,4,

�k,[1,1,0,0] = λk,1 ∧ λk,2 − �k,[1,1,1,1],

�k,[0,0,1,1] = λk,3 ∧ λk,4 − �k,[1,1,1,1],

�k,[1,0,1,0] = (λk,1 − λk,1 ∧ λk,2) ∧ (λk,3 − λk,3 ∧ λk,4),

�k,[0,1,0,1] = (λk,2 − λk,1 ∧ λk,2) ∧ (λk,4 − λk,3 ∧ λk,4),
(10)

�k,[1,0,0,0] = (λk,1 − λk,1 ∧ λk,2) − �k,[1,0,1,0],

�k,[0,1,0,0] = (λk,2 − λk,1 ∧ λk,2) − �k,[0,1,0,1],

�k,[0,0,1,0] = (λk,3 − λk,3 ∧ λk,4) − �k,[1,0,1,0],

�k,[0,0,0,1] = (λk,4 − λk,3 ∧ λk,4) − �k,[0,1,0,1],

where we define the notation a ∧ b := min {a, b}. The pro-
posed coupling is then given by the following:

Xt (θ + (ei + ej )ε)

= X0(θ ) +
∑

k

ζk(Rk,[1,1,1,1](t) + Rk,[1,1,0,0](t)

+Rk,[1,0,1,0](t) + Rk,[1,0,0,0](t)),

Xt (θ + eiε)

= X0(θ ) +
∑

k

ζk(Rk,[1,1,1,1](t) + Rk,[1,1,0,0](t)

+Rk,[0,1,0,1](t) + Rk,[0,1,0,0](t)),
(11)

Xt (θ + ej ε)

= X0(θ ) +
∑

k

ζk(Rk,[1,1,1,1](t) + Rk,[0,0,1,1](t)

+Rk,[1,0,1,0](t) + Rk,[0,0,1,0](t)),

Xt (θ ) = X0(θ ) +
∑

k

ζk(Rk,[1,1,1,1](t) + Rk,[0,0,1,1](t)

+Rk,[0,1,0,1](t) + Rk,[0,0,0,1](t)).

A few comments are in order. First, note that, for example,
the marginal process Xt(θ + (ei + ej)ε) above involves all
the counting processes in which b1 = 1. Second, each of
these marginal processes Xt( · ) have the same distribution as
the original, uncoupled, processes since the transition rates of
the marginal processes have remained unchanged. This can be
checked by simply summing the rates of the relevant count-
ing processes, which are all those �k,[b1,b2,b3,b4] in which a
given b� = 1. Third, if f is linear, for example if we are
estimating the abundance of a particular molecule, many of
the Rk,[b1,b2,b3,b4] are completely cancelled if we now con-
struct the difference (4). An example of this will be shown in
Sec. IV A. Fourth, even if i = j, the coupling requires two dif-
ferent copies of the process Xt(θ + eiε), one taking the role of
Xt(θ + eiε, t) and the other Xt(θ + ejε).
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As discussed at the beginning of this section, the CRN
and CRP methods attempt to reduce the variance of the es-
timator (5) by reusing random numbers for each of the four
nominal processes. However, as discussed in Ref. 10 in the
setting of first derivatives, this will often lead to a decoupling
over long enough time periods. Hence, the variance of the
CRN and CRP estimators will often eventually converge to a
variance of the same order of magnitude as the estimator con-
structed using independent samples. This behavior is demon-
strated by example in the current setting of second derivatives
in Sec. IV. The double coupled method presented here re-
couples the four relevant processes every time they are near
each other, which, by contrast, does not occur in either CRN
or CRP. We refer the interested reader to Ref. 10, Sec. 3.1 for
a more thorough discussion of this idea.

C. An alternative derivation

The coupling described in Sec. III B can be derived in
an alternate way, which explains why the method is termed
“double coupled.” We could first couple the first and second
processes of (8) using the coupled finite difference method,10

and then couple the third and fourth in the same manner. For
example, using the λk,� as defined in Sec. III B, the first two
processes in (8) are constructed as

X(θ + (ei + ej )ε, t) = X0(θ ) +
∑

k

(Rk,[1,1] + Rk,[1,0])ζk,

(12)
X(θ + eiε, t) = X0(θ ) +

∑
k

(Rk,[1,1] + Rk,[0,1])ζk,

where Rk,[b1,b2] = Yk,[b1,b2](
∫ t

0 �k,[b1,b2](s)ds) are defined
analogously to (9) and where

�k,[1,1](s) = λk,1(s) ∧ λk,2(s),

�k,[1,0](s) = λk,1(s) − λk,1(s) ∧ λk,2(s),

�k,[0,1](s) = λk,2(s) − λk,1(s) ∧ λk,2(s).

As in (11), the processes defined in (12) jump together
as often as possible: they share the sub-processes Rk,[1,1], each
of which runs at a propensity equal to the minimum of the
respective propensities of the two original processes. We then
expect the variance of the first finite difference [f(θ , Xt(θ + (ei

+ ej)ε)) − f(θ , Xt(θ + eiε))]ε−1 to be small since the two pro-
cesses of (12) will remain approximately the same whenever
they jump simultaneously via Rk,[1,1].

Now note that, together, the two processes (12) can be
viewed as a new CTMC with dimension 2d, twice that of
that of the original process. The third and fourth processes
in (8) can be similarly coupled, giving us two 2d-dimensional
CTMCs. Finally, we couple these new processes into a sin-
gle CTMC of dimension 4d, in precisely the same manner of
Ref. 10. This construction leads to the same process as given
in (11). The details are left to the interested reader.

D. Algorithms for simulation of (11)

We present two algorithms for the pathwise simulation of
Eq. (11). The first corresponds to the next reaction method of

Ref. 4, whereas the second corresponds to an implementation
of Gillespie’s direct method.1, 2 As usual, it will be problem
specific as to which algorithm is most efficient.

Below, rand(0,1) indicates a uniform[0,1] random vari-
able, independent from all previous random variables. Recall
that if U ∼ rand(0,1), then ln (1/U)/λ is exponentially dis-
tributed with parameter λ > 0. Also recall that even if i and
j are equal, the processes X(θ + eiε) and X(θ + ejε) are still
constructed separately. Define the set

B :={[1, 1, 1, 1], [1, 1, 0, 0], [0, 0, 1, 1], [1, 0, 1, 0],

[0,1,0,1], [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]}

and note that it will often be convenient to use a for loop, from
1 to 9, to enumerate over the vectors in B.

ALGORITHM—Modified next reaction method applied
to (11).

Initialization: Set X(θ + (ei + ej)ε) = X(θ + eiε)
= X(θ + ejε) = X(θ ) = X0 and t = 0; for each k ∈ {1, . . . ,
M} and each b ∈ B, set Tk,b = 0 and Pk,b = ln (1/uk,b) for uk,b

∼ rand(0,1).
Repeat the following steps:

(i) For each k, set

λk,1 = λk(θ + (ei + ej )ε,X(θ + (ei + ej )ε)),

λk,2 = λk(θ + eiε,X(θ + eiε)),

λk,3 = λk(θ + ej ε,X(θ + ej ε)),

λk,4 = λk(θ,X(θ )),

and use to set each of the nine variables �k,b as above in
(10).

(ii) For each k and b ∈ B, set

	tk,b =
{

(Pk,b − Tk,b)/�k,b , if �k,b > 0
∞ , else

.

(iii) Set 	 = min k,b{	tk,b} and let μ := k and ν := b
= [b1, b2, b3, b4] be the indices where the minimum is
achieved.

(iv) Set t = t + 	.
(v) Update state vector variables X(θ + (ei + ej)ε),

X(θ + eiε), X(θ + ejε), X(θ ) by adding ζμ to the �th
process if and only if b� = 1 in ν.

(vi) For each k and b ∈ B, set Tk,b = Tk,b + 	 · �k,b.
(vii) Set Pμ,ν = Pμ,ν + ln (1/u) where u ∼ rand(0,1).

(viii) Return to (i) or quit.

ALGORITHM—Gillespie’s direct method applied to
(11).

Initialization: Set X(θ + (ei + ej)ε) = X(θ + eiε)
= X(θ + ejε) = X(θ ) = X0 and t = 0.
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Repeat the following steps:

(i) For each k, set

λk,1 = λk(θ + (ei + ej )ε,X(θ + (ei + ej )ε)),

λk,2 = λk(θ + eiε,X(θ + eiε)),

λk,3 = λk(θ + ej ε,X(θ + ej ε)),

λk,4 = λk(θ,X(θ )),

and use to set each of the nine variables �k,b as above
in (10).

(ii) Let �0 = ∑
k
∑

b�k, b and u ∼ rand(0, 1), and set

	 = ln(1/u)/�0.

(iii) Set t = t + 	.
(iv) Let u ∼ rand(0, 1) and use to select (μ, ν) ∈ {(k, b) : k

∈ {1, . . . , M}, b ∈ B} where each pair (k, b) is selected
with probability λk,b/�0.21

(v) Update state vector variables X(θ + (ei + ej)ε),
X(θ + eiε), X(θ + ejε), X(θ ) by adding ζμ to the �th
process if and only if b� = 1 in ν.

(vi) Return to (i) or quit.

IV. NUMERICAL EXAMPLES

In this section, we compare the double coupled method
with the following existing methods:

(a) the usual independent random numbers estimator in
which the processes of (4) are simulated independently,
also referred to as the crude Monte Carlo method,

(b) the common random numbers approach in which the
processes of (4) are simulated given the same stream of
random numbers using Gillespie’s direct algorithm,22

(c) the common reaction path method of Ref. 20 in which
the processes of (4) are coupled by reusing each Yk

of (2),
(d) the double coupled method proposed here (CFD2, where

the CFD stands for “coupled finite difference”) which
implements the coupling (11),

(e) a Girsanov transformation or likelihood ratio method in
which the computed weight function is used as a con-
trol variate (see Ref. 16 and Chapters V.2 and VII.3 of
Ref. 6).

All methods except (b) were simulated using the next reac-
tion algorithm, modified as necessary. We also note that the
first four methods use the second finite difference, which has
some bias (see Sec. II); recall that to reduce this bias we ac-
tually simulate the centered difference (6), which is accom-
plished in the same way as the forward difference but with
the parameters shifted. The LR method is the only one of the
four methods we use here that is unbiased; its high variance,
however, typically makes the method unusable. Finally, when
discussing performance, we will refer to R of (5) as the num-
ber of estimates.

A. A simple birth process

Consider a pure birth process A → 2A. Here, ζ = 1, and
denoting by Xt the number of A molecules at time t, we as-
sume a propensity function λ(θ , Xt(θ )), so that in the random
time change representation,

Xt (θ ) = X0 + Y

(∫ t

0
λ(θ,Xs(θ ))ds

)
,

where, as usual, Y is a unit-rate Poisson process.
Suppose we are interested in the second derivative of EXt

with respect to θ (so that f(θ , x) = x). We double couple the
processes as in (11), noting that we are in the special case
when i = j. This does not change the main idea of the double
coupling, but it requires us to distinguish the two nominal pro-
cesses with the same parameter value θ + ε; we label them as
X1

t (θ + ε) and X2
t (θ + ε). Ordering as in (8), and noting that

since there is only one reaction we may drop the subscript k,
we find that

λ1 = λ(θ + 2ε,Xt (θ + 2ε)),

λ2 = λ(θ + ε,X1
t (θ + ε)),

λ3 = λ(θ + ε,X2
t (θ + ε)),

λ4 = λ(θ,Xt (θ )),

and use these to define the �’s as given in (10). The double
coupled processes are then given as

Xt (θ + 2ε) =X0(θ ) + R[1,1,1,1](t) + R[1,1,0,0](t)

+ R[1,0,1,0](t) + R[1,0,0,0](t),

X1
t (θ + ε) =X0(θ ) + R[1,1,1,1](t) + R[1,1,0,0](t)

+ R[0,1,0,1](t) + R[0,1,0,0](t),

X2
t (θ + ε) =X0(θ ) + R[1,1,1,1](t) + R[0,0,1,1](t)

+ R[1,0,1,0](t) + R[0,0,1,0](t),

Xt (θ ) =X0(θ ) + R[1,1,1,1](t) + R[0,0,1,1](t)

+ R[0,1,0,1](t) + R[0,0,0,1](t).

Now that we have coupled the processes, note that when we
consider the second difference (4) for the given f, which is
linear, most of the sub-processes cancel. For example, since
R[1,1,0,0] is present in both Xt(θ + 2ε), which is positive in the
difference, and in X1

t (θ + ε), which is negative, R[1,1,0,0] is not
present in the second difference. One can easily check that the
numerator of the difference (4) simplifies in this case to

Xt (θ + 2ε) − X1
t (θ + ε) − X2

t (θ + ε) + Xt (θ )

= R[1,0,0,0](t) − R[0,1,0,0](t) − R[0,0,1,0](t) + R[0,0,0,1](t).
(13)

Note that the rates of the four remaining counting processes of
(13) are usually relatively small; in fact, at any given time at
least two of the four must have zero propensity, as can be seen
by considering the possible values of the minima involved.

Suppose that λ(θ , Xt(θ )) = θXt(θ ) is simply a constant
times the population at time t. We choose to estimate ∂2EXt

∂θ2
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TABLE I. Confidence intervals (95%) and computation time for each of the
five methods, after 100 000 estimates, on the simple birth model of Sec. IV A
(with linear propensity). An ε of 1/50 was used for the three finite difference
methods. Actual value: 304.6.

Method Estimates Approximation No. of updates CPU time (s)

IRN 100 000 307 ± 447 ≈3.7 × 106 38
CRP 100 000 315 ± 24 ≈3.7 × 106 49
CRN 100 000 282 ± 24 ≈3.3 × 106 32
LR 100 000 311 ± 20 ≈1.1 × 106 37
CFD2 100 000 296 ± 12 ≈1.2 × 106 22

at t = 5 and θ = 1/2, with X0(θ ) = 1. We use ε = 1/50 for
the finite difference methods. For simple examples such as
this, one can solve for the derivative explicitly; in this case
the actual value is 304.6.

As can be seen in the data in Table I, manifested in the
width of the confidence interval, the variance of the double
coupled estimator is smaller than that of the estimators given
by the other methods. For instance, for the same number of
estimates it gives a confidence interval of half the width of the
CRP and CRN methods, which for this single-reaction model,
though implemented differently, give equivalent estimators.
Here and throughout, confidence intervals are constructed as
±1.96

√
v where v is the variance of the estimator (5).

For each method, we also include the CPU time that was
required for the simulation, as well as the number of updates
made to the system state (the number of times a reaction vec-
tor is added to the state vector). The latter is a useful com-
parison tool, as it provides a measure of the amount of work
the method requires, but is not influenced by differences in
implementation (such as use of Gillespie vs next reaction
algorithms). These differences, on the other hand, often af-
fect CPU time. We do not also provide a random number
count for each method, but note here that except for CRN
this number is equal to the number of system updates. For
CRN, which uses Gillespie’s algorithm, two random num-
bers are used per system update. Finally, the CPU time will
certainly vary by machine; all tests described in this section
were run in MATLAB on a Windows machine with a 1.6 GHz
processor.

B. mRNA transcription and translation

We now examine the performance of the proposed
method on a more realistic model. In the following model
of gene transcription and translation, mRNA is being created,
and then translated into protein, while both the mRNA and the
protein may undergo degradation (where here the constants
are in the sense of mass action kinetics, so, for example, pro-
tein is being created at a rate of γ times the number of mRNA
molecules):

∅
2
�
θ

M
γ→ M + P, P

1→ ∅.

We assume initial concentrations of zero mRNA and pro-
tein molecules. The stochastic equation for this model is

X(θ, t) = Y1(2t)

(
1
0

)
+ Y2

(∫ t

0
θXM (θ, s)ds

) (−1
0

)

+Y3

(∫ t

0
γXM (θ, s)ds

) (
0
1

)

+Y4

(∫ t

0
XP (θ, s)ds

) (
0

−1

)
,

where X = (
XM

XP
) gives the numbers of the mRNA and pro-

tein molecules respectively. Note that we have moved the pa-
rameter t from the subscript for notational convenience.

In Subsection IV B 1, we compute the second derivative
of the expected number of protein molecules with respect to
θ , while in Subsection IV B 2, we compute the mixed par-
tial of this same quantity with respect to both θ and γ . In
Subsection IV B 3, we compute the second derivative of the
square of the expected number of protein molecules with re-
spect to θ .

1. Second derivative of protein abundance
with respect to θ

Suppose we would like to estimate the second derivative
of the expected number of protein molecules with respect to θ

at a time of t = 30 and θ = 1
4 . Additionally, we fix γ = 10 and

X0 = 0. One can analytically find that ∂2

∂θ2 EXP (30) = 2496.
First, Table II gives simulation data as in the previous ex-

amples, with two different perturbations, ε, of θ used. Note

TABLE II. Confidence intervals (95%) for each of the finite difference methods for the computation in the mRNA and protein model of Subsection IV B 1.
Note that the bias of the second finite difference can be seen when ε = 1/20 (the actual value is 2496). Also note that, though for a fixed number of estimates
the CFD2 method is not the fastest method, it achieves a much smaller confidence interval. The number of updates and computational time for a fixed number
of estimates are essentially independent of ε and so the reported values, here and throughout, are the average of the values for the two choices of ε.

Method Estimates ε = 1/20 ε = 1/100 No. of updates CPU time (s)

CRN 1000 2682 ± 1192 5950 ± 19 123 ≈1.26 × 107 46
CRP 1000 2758 ± 569 −2630 ± 9268 ≈1.27 × 107 70
CFD2 1000 2655 ± 129 2640 ± 1001 ≈4.68 × 106 48
CRN 10 000 2453 ± 369 1505 ± 6120 ≈1.27 × 108 457
CRP 10 000 2783 ± 179 2627 ± 2937 ≈1.27 × 108 672
CFD2 10 000 2601 ± 40 2352 ± 282 ≈4.68 × 107 483
CRN 40 000 2386 ± 188 1069 ± 2984 ≈5.07 × 108 1829
CRP 40 000 2745 ± 89 3593 ± 1468 ≈5.07 × 108 2739
CFD2 40 000 2582 ± 20 2512 ± 147 ≈1.87 × 108 1931
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TABLE III. Confidence intervals (95%) for the LR method (d) for
the computation in the mRNA transcription model computation of
Subsection IV B 1. Even though this method is fastest per estimate, note
that the variance (and so the width of the confidence interval) is large.

Estimates Approximation No. of updates CPU time (s)

1000 2150 ± 2258 ≈4.20 × 106 14
10 000 2429 ± 729 ≈4.19 × 107 135
40 000 2176 ± 404 ≈1.68 × 108 540

the trade-off between bias and precision: a larger epsilon im-
plies the second finite difference has a larger bias, but, since
there is an ε2 in the denominator of the estimator, the variance
of the estimator is smaller; for small epsilon it is vice versa.
Table III shows the relevant data for the LR method.

Perhaps more illustrative is Table IV, which compares the
numbers of estimates and system updates as well as the time
required to achieve a 95% confidence interval of a set width.
These data give a good idea of the efficiency of the meth-
ods, as often one desires the estimate within a given tolerance.
We can see that the double coupled method is approximately
25 times faster than CRP, 73 times faster than the often used
CRN method, over 100 times faster than the LR method, and
over 125 times faster than IRN. Note also that the double cou-
pled method requires drastically fewer estimates to achieve
the same confidence, so that, even though the computation of
one double coupled estimate requires more time than most of
the other methods, as can be seen in Table II, the lower vari-
ance leads to very large time savings.

Finally, in Figure 1 we include a plot of the variance of
the different estimators versus time. Note that the scales on
the plots are very different. The plots corresponding to finite
difference methods all appear to converge; the limiting value
for the double coupled method, however, is over 20 times
smaller than the CRP method, and over 170 times smaller
than the CRN and IRN methods. Note also that, as time in-
creases, the CRN variance tends to the same value as the IRN
method; this is expected, since we expect the processes to de-
couple. The variance for CRP behaves similarly, converging
to a number of approximately the same order of magnitude
as the IRN method, though the value itself is significantly
lower in this four-reaction model. The plot for the LR method
scales quadratically, as is expected by the form of the estima-
tor (see Chapter VII.3 of Ref. 6). This shows that, for mod-
erate and large times, the double coupled method quickly be-
comes much more efficient then the other estimators.

TABLE IV. Required estimates, updates, and computational time needed for
95% confidence intervals of ±120 for all five methods on the computation of
the mRNA transcription model computation of Subsection IV B 1. An ε of
1/20 was used for the finite difference methods.

Method Estimates Approximation No. of updates CPU time (s)

LR 495 000 2506 ± 120 ≈2.1 × 109 6619
IRN 190 000 2617 ± 120 ≈2.4 × 109 7657
CRN 98 100 2572 ± 120 ≈2.6 × 108 4489
CRP 22 200 2532 ± 120 ≈2.8 × 108 1533
CFD2 1150 2565 ± 120 ≈5.8 × 106 61
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FIG. 1. Variance versus time of the estimators of the five different methods,
applied to the calculation of ∂2

∂θ2 EXP (θ, t) in the mRNA transcription model
of Subsection IV B 1. Note that the scales are vastly different.

2. Mixed partial derivative of protein abundance

We compare the five methods in the estimation of
∂2

∂γ ∂θ
EXP (30) at θ = 1/4 and γ = 10, which can be calcu-

lated exactly to be −31.8. Table V shows the approximations
and computational complexity of these methods using 5000
estimates.

Note that in this example, the LR method outperforms
all methods, except CFD2, with respect to computation time.
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TABLE V. Confidence intervals (95%) and computational complexity for
all five methods, after 5000 estimates, for the computation of the mixed par-
tial derivative in the mRNA transcription model as in Subsection IV B 2. An ε

of 1/25 was used for the finite difference methods. Additionally, results from
the LR method with CPU time approximately that of CFD2 are included for
comparison. Actual value: −31.8.

Method Estimates Approximation No. of updates CPU time (s)

IRN 5000 607 ± 923 ≈8.43 × 107 264
CRN 5000 191.5 ± 330 ≈8.42 × 107 273
CRP 5000 21.0 ± 96 ≈8.41 × 107 365
CFD2 5000 − 33.8 ± 4 ≈2.25 × 107 238
LR 5000 − 15.4 ± 113 ≈2.10 × 107 73
LR 17 000 − 61.8 ± 68 ≈6.72 × 107 234

Thus, for comparison, we have also included the results of a
test using the LR method in which the CPU time is approx-
imately the same as CFD2; note that the confidence interval
for the CFD2 method is much smaller. Figure 2 shows vari-
ance plots of the CRN and CRP, and CFD2 methods over time
in simulation.

3. Second derivative of the square of protein
abundance with respect to θ

We also calculate, from the mRNA transcription model
of Example 4.1, ∂2

∂θ2 E(XP (t)2) at t = 5 and θ = 1
4 , with

γ = 10 and X0 = 0. Note here we are considering a function
f of the state space which is nonlinear.

In Figure 3, we plot the log of the variance of the numer-
ator of the estimator (6) versus the log of epsilon. Since we
expect, for the double coupled CFD2 method, that this vari-
ance V (ε) should scale like Cεp for some constants C and p,
we see that the slope of log(V (ε)) = log(C) + p log(ε) from
our simulations will suggest the value of p. This plot suggests
that p = 2; since the numerator of the estimator is then divided
by ε2 in d(ε), this suggests a final variance of O(R−1ε−2) for
the estimator (5) as discussed in Sec. II.

For comparison, the slope of this log-log plot for the
IRN method is zero, as the variance of the numerator does
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FIG. 3. This log-log plot of variance versus epsilon (100 000 estimates) for
the mRNA transcription model computation of Subsection IV B 3 suggests
that the CFD2 method gives an estimator of O(ε−2) even though the function
f of the system state is nonlinear: the slope of the best fit line is 1.98.

not depend on epsilon, giving a final variance of O(R−1ε−4).
The slopes for the associated log-log plots for the CRN and
CRP estimators will vary with time (discussed further in
Subsection IV D 1).

The general behavior of the variances over time for the
IRN, CRN, and CRP methods can be seen in Figure 4.

C. Quadratic decay

In order to demonstrate that the O(ε2) convergence rate
seen in the previous examples does not universally hold, we
consider a pure decay process of a population Xt, so that the
sole reaction has ζ = −1 and quadratic propensity λ(θ , Xt(θ ))
= θXt(θ )(Xt(θ ) − 1), and calculate ∂2EXt (θ)

∂θ2 with θ = 1 and
with initial population X0(θ ) = 2000. Figure 5 gives a log-log
plot of variance versus epsilon at time 0.001. Since it suggests
p = 1, this demonstrates that, in this case, the double coupled
method provides only O(R−1ε−3) convergence as discussed in
Sec. II, showing that rate to be sharp.
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FIG. 2. Plots of variance over time for the CRN and CRP methods, and the CFD2 method, in computing the mixed partial derivative of the mRNA transcription
model of Subsection IV B 2. Note the very different scales. For comparison, the IRN method plateaus at a variance of approximately 5 × 106.
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FIG. 4. Plot of variance over time for 5000 estimates of the IRN, CRN,
and CRP methods for the mRNA transcription model computation of
Subsection IV B 3. The variance of the CFD2 method is too small to be
seen at this scale; at time 200 it is approximately 3.5 × 108.

As demonstrated in Table VI and in Figure 6, however,
the double coupled method is still significantly more efficient
than existing methods on this model.

D. Genetic toggle switch

Finally, we consider a model of a genetic toggle switch
that also appeared in Refs. 20 and 10,

∅
λ1

�
1

A, ∅
λ2

�
1

B,

where

λ1(t) = b

1 + XB(t)β
and λ2(t) = a

1 + XA(t)α
,
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FIG. 5. This log plot of variance versus epsilon (each point computed to the
first of 300 000 estimates or a confidence of ±10) for the decay model of
Subsection IV C suggests that the CFD2 method gives an estimator of only
O(ε−3): the slope of the best fit line is approximately 0.97. While the CRN
and CRP methods also give an estimator of this same rate (the slope of the
best fit lines are both ≈0.99, and in fact the lines are on top of each other),
the variance of the estimates from CRN and CRP are significantly higher than
those from the CFD2 method, as can be seen by the wide gap between the
above curves.

TABLE VI. Estimates, ε used, and updates and computational time needed

for the given 95% confidence intervals for all methods for ∂2EXt (θ)
∂θ2 at

t = 0.001 for the quadratic decay model of Subsection IV C. The upper half
of the table shows the relevant results after the simulation of 10 000 esti-
mates. The lower half of the table shows the results of simulations run until
the estimate had a confidence interval of a desired width. The IRN and LR
methods were unable to achieve these precisions due to memory constraints.
Note again the equivalence of the CRN and CRP methods on a single reaction
model.

Method ε Estimates Approximation No. of updates CPU time (s)

LR n/a 10 000 1240 ± 1070 ≈1.3 × 107 9
IRN 1/20 10 000 555 ± 218 ≈4.8 × 107 35
CRN 1/20 10 000 585 ± 52 ≈4.0 × 107 30
CRP 1/20 10 000 584 ± 52 ≈4.0 × 107 30
CFD2 1/20 10 000 592 ± 5 ≈1.4 × 107 90
CRN 1/20 272 000 588 ± 10 ≈1.1 × 109 813
CRP 1/20 271 000 589 ± 10 ≈1.1 × 109 862
CFD2 1/20 1950 592 ± 10 ≈2.7 × 106 17
CRN 1/50 169 500 543 ± 50 ≈6.8 × 108 511
CRP 1/50 169 000 515 ± 50 ≈6.8 × 108 510
CFD2 1/50 1800 605 ± 50 ≈2.5 × 106 16

and where XA(t) and XB(t) denote the number of gene prod-
ucts from two interacting genes. Note that each gene product
inhibits the growth of the other.

We take parameter values of b = 50, β = 2.5, a = 16 and
will differentiate with respect to α. Note that this model does
not follow mass action kinetics, or have linear propensities. In
Subsection IV D 1, we consider a second derivative of EXB

at a fixed time, while in Subsection IV D 2, we consider a
second derivative of the expected time average of XA up to a
given time, which is a functional of the path of XA rather than
simply XA at some terminal time.

1. Second derivative of abundance of B
with respect to α

We estimate ∂2EXB (α,t)
∂α2 at α = 1 and at two times, 5 and

400. In Figure 7, we plot the log of the variance of the numer-
ator of the estimator (6), using CFD2, versus the log of the
perturbation epsilon. As in Subsection IV B 2, the plot clearly
suggests that p = 2. We also plot the same quantity using
CRP and CRN. These slopes, on the other hand, vary with
time. For small times both slopes are close to one, but as time
increases the slopes decrease, until, for very large times, they
are close to zero. This corresponds with the fact that for large
times the variances of the CRP and CRN estimates converge
to values on the order of the IRN estimate variance, which,
as previously noted, is independent of the value of epsilon.
The general behavior of the variances over time can be seen
in Figure 8, where it is seen that CFD2 has a variance that is
16 times lower than CRN and 36 times lower than CRP. Fur-
ther, we note that for this model the CRP method outperforms
the CRN method for small times, while for larger times CRN
outperforms CRP.
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FIG. 6. The behavior over time of the variance of the estimates of the CRN, CRP, and CFD2 methods on the quadratic decay model of Subsection IV C. Note
that the variance for the CFD2 method is 100 times smaller than the other two methods, which, as expected, act the same on this model. An ε of 1/20 was used
and 10 000 estimates were run. The plot of the IRN variance is similar in shape but with a peak variance of 3.1× 104.
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FIG. 7. These log-log plots (25 000 estimates) of variance versus epsilon for computation on the gene toggle model as in Subsection IV D 1, at two different
times, suggest that the double coupled method gives an estimator of O(ε−2) even though two of the intensities are nonlinear: the slope of the best fit line for
the CFD2 method is approximately 2 (=1.97) at both times. The slope for the CRP and CRN methods, on the other hand, are approximately 0.74 and 0.90
respectively at time 5, but are only around 0.03 and 0.49 at time 400.
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224112-12 E. S. Wolf and D. F. Anderson J. Chem. Phys. 137, 224112 (2012)

TABLE VII. Confidence intervals (95%) and computational complexity for
each of the methods, after 100 000 estimates, for the time average computa-
tion at t = 30 on the gene toggle model of Subsection IV D 2. An ε of 1/50
was used.

Method Estimates Approximation CPU time (s)

IRN 100 000 −13.8 ± 621 2240
CRN 100 000 −274 ± 146 1441
CRP 100 000 −215 ± 107 3035
CFD2 100 000 −222 ± 26 2722

2. Second derivative of time average of abundance
of A with respect to α

Finally, while this was not discussed in the paper, we in-
clude an example computing a sensitivity of a path functional.
That is, the quantity we wish to study is a function of the
path of the process X(s) for s ≤ t, rather than just the terminal
value X(t). The only difference in implementation is the need
to compute this quantity during the simulation of the path (or
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FIG. 9. At top, a plot of variance over time for 5000 estimates for the finite
difference methods for the path functional computation on the gene toggle
model in Subsection IV D 2. The value of the CFD2 variance at time 200
is approximately 19 000, while the CRN variance is approximately 282 000.
At bottom, a log-log plot (2000 estimates) of variance versus epsilon for this
computation suggests that the double coupled method gives an estimator con-
verging faster than O(ε−3) in this computation as well: the slope of the best
fit line for the CFD2 method is approximately 1.78.

to store the path for the computation after its simulation).
Table VII shows the estimates of ∂2

∂α2 E t−1
∫ t

0 XA(s)ds at
t = 30 using the various finite difference methods, demon-
strating the advantage of the double coupled method
for these path functional quantities as well. Additionally,
Figure 9 shows that the overall behavior of the variances of
the three finite difference methods remains the same as in the
previous examples.

V. CONCLUSIONS AND FUTURE WORK

We have introduced a new, efficient method for the com-
putation of second derivative sensitivities for discrete bio-
chemical reaction networks. Through several numerical ex-
amples we have demonstrated its advantage over existing
methods, both in simple scenarios and in more realistic sys-
tems, including several examples in which the system con-
tained nonlinear propensities, or in which the relevant quan-
tity to be studied involved a nonlinear function f or even a path
functional of the system state. Future work will include prov-
ing analytical bounds on the variance of the estimator given
by the new method and exploring conditions in which a bet-
ter convergence rate is achieved, as well as finding efficient
algorithms to simultaneously compute all of the second order
sensitivities of models with a large number of parameters. An-
other avenue of future work will involve incorporating algo-
rithms for the computation of second derivatives into the opti-
mization methods discussed in the introduction in the context
of parameter estimation.
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