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Stochastic models are often used to help understand the behavior of intracellular biochemical
processes. The most common such models are continuous time Markov chains (CTMCs). Parametric
sensitivities, which are derivatives of expectations of model output quantities with respect to model
parameters, are useful in this setting for a variety of applications. In this paper, we introduce a class
of hybrid pathwise differentiation methods for the numerical estimation of parametric sensitivities.
The new hybrid methods combine elements from the three main classes of procedures for sensitivity
estimation and have a number of desirable qualities. First, the new methods are unbiased for a broad
class of problems. Second, the methods are applicable to nearly any physically relevant biochemical
CTMC model. Third, and as we demonstrate on several numerical examples, the new methods are
quite efficient, particularly if one wishes to estimate the full gradient of parametric sensitivities.
The methods are rather intuitive and utilize the multilevel Monte Carlo philosophy of splitting an
expectation into separate parts and handling each in an efficient manner. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4905332]

I. INTRODUCTION
New methods for the estimation of parametric sensitivities

are introduced that are applicable to a class of stochastic
models widely utilized in the biosciences. In particular, the
theoretical analysis and algorithms provided here extend the
validity of the pathwise method developed by Sheppard,
Rathinam, and Khammash,30 with related earlier work by
Glasserman,15 to nearly all physically relevant stochastic
models from biochemistry. The extension is achieved by
providing an explicit, numerically computable term for the
bias introduced by standard pathwise differentiation methods.
The methods developed here are naturally unbiased and are
relatively easy to implement. Furthermore, they are quite
efficient, in some cases providing a speed up of multiple orders
of magnitude over the previous state of the art.

A. Mathematical model and problem statement

1. Mathematical model

We consider the parametrized family of continuous
time Markov chain (CTMC) models satisfying the stochastic
equation

Xθ(t)= Xθ(0)+
K
k=1

Yk

( t

0
λk(θ,Xθ(s)) ds

)
ζk, (1)

where the state space S of Xθ is a subset of Zd, K <∞, the
{Yk} are independent unit-rate Poisson processes, θ ∈RR is a
vector of model parameters, and where for each k ∈ {1, . . ., K},
we have a fixed reaction vector ζk ∈ Zd and a non-negative

a)ewolf@saintmarys.edu
b)anderson@math.wisc.edu

intensity, or propensity, function λk : RR ×Zd → R≥0. Such
models are used extensively in the study of biochemical
processes6,7,10,14,21,25,27,32 in which case the vectors ζk can be
decomposed into the difference between the source vector
νk ∈ Zd≥0, giving the numbers of molecules required for a
given reaction to proceed, and the product vector ν′

k
∈ Zd≥0,

giving the numbers of molecules produced by a given reaction.
Specifically, in this case, ζk = ν′k − νk. Under the assumption
of mass action kinetics, which assumes intensities of the form

λk(θ,x)= θk
d
i=1

xi!
(xi− νki)!1{x−νki≥0}, for x ∈ Zd≥0, (2)

the parameter vector θ commonly represents some subset of
the rate constants {θk} of the K reactions. Note that in the
biochemical setting, the state space S is a subset of Zd≥0.

Models of form (1) satisfy the Kolmogorov forward
equation, which is typically called the chemical master
equation in the biology and chemistry literature,

d
dt

pθπ(t,x) =
K
k=1

pθπ(t,x− ζk)λk(θ,x− ζk)1{x−ζk ∈S}

−
K
k=1

pθπ(t,x)λk(θ,x), (3)

where pθπ(t,x) is the probability the state of the system is x ∈ S
at time t ≥ 0 given an initial distribution of π. The infinitesimal
generator for the CTMC (1) is the operator Aθ defined via

(Aθ f )(x)=
K
k=1

λk(θ,x)( f (x+ ζk)− f (x)) (4)

for f : Rd → R vanishing off a finite set.11 For more back-
ground on this model, see Refs. 6, 7, 21, and 22.

0021-9606/2015/142(3)/034103/19/$30.00 142, 034103-1 © 2015 AIP Publishing LLC
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We note that many lattice-valued processes can be rep-
resented similarly to (1), where a counting process is used
to determine the number of jumps that have taken place in
one of finitely many specified directions. In particular, models
satisfying (1) also arise in queueing theory and the study of pop-
ulation processes. As biochemical reaction networks are the
main motivation for this work, we use biochemical terminology
and examples throughout, and simply note that the presented
methods are also applicable in those other settings.
Problem statement. The process Xθ satisfying (1) is right
continuous and has left hand limits. That is, Xθ is càdlàg and
is an element of the Skorohod space DZd[0,∞). Consider the
output quantity of the CTMC model (1) given by E[ f (θ,Xθ)],
where f :RR×DZd[0,∞)→ R is some measurable function of
θ and Xθ. We are interested in the problem of numerically
computing the gradient ∇θE[ f (θ,Xθ)] for a wide class of
functionals f . Specifically, we are interested in functionals of
the form

f (θ,Xθ)= h(θ,Xθ(t)), for t fixed, (5)

where h :RR×Zd→ R, or path functionals of the form

L(θ)B
 b

a

F(θ,Xθ(s)) ds, (6)

where 0 ≤ a ≤ b<∞ and F :RR×Zd→ R. We will write LX(θ)
for L(θ)when we wish to be clear about the underlying process
X and will denote J(θ)BE [L(θ)].

We will focus most of our attention on functionals of
form (6) as we will show in Sec. II B 1 how basic smoothing
procedures allow us to use such functionals in conjunction
with our new methods to provide estimates for ∇θE [ f (θ,Xθ)]
when f is of form (5). Thus, under some mild regularity
conditions on the functions λk and F (see conditions 1 and 2
in this section), we focus on the problem of estimating

∇θJ(θ)=∇θE[L(θ)]=

∂

∂θi
E

( b

a

F(θ,Xθ(s)) ds
)

i=1, ...,R

(7)

at some fixed value θ0 ∈RR. We will generally write θ rather
than θ0 if the context is clear.

B. A brief review of methods

Due to the importance of having reliable numerical
estimators for gradients, there has recently been a plethora
of research articles focusing on their development and
analysis.2,5,18,20,24,26,28,30,31 There are three main classes
of methods that carry out the task of estimating these
derivatives: finite difference methods, likelihood ratio (LR)
methods, and pathwise methods. Each class has its own
benefits and drawbacks.

– Estimators built via finite differences are easy to imple-
ment and often have a low variance. However, these
estimators provide a biased estimate.2,28,31 See Sec. II A.

– Estimators built using likelihood ratios are unbiased, but
often have a high variance.2,26 The use of the usual weight
function as a control variate (CV) can lower the variance,
sometimes dramatically so. See Sec. II C.

– Pathwise methods, known as (infinitesimal) perturbation
analysis in the discrete event systems literature,15,17

are unbiased and are often quite fast.30 Unfortunately,
biochemical models only rarely satisfy the conditions
required for the applicability of these methods. See, for
example, the Appendix of Ref. 30 and Sec. II B. Greatly
expanding the applicability of the pathwise methods
already developed for biochemical processes, for example,
in Ref. 30, is one of the main contributions of this work.

In some recent works, Gupta and Khammash have
developed a new type of method that does not fit neatly
into one of the above categories.18,19 Their new method,
the Poisson path approximation (PPA) method, which is an
improvement on their auxiliary path approximation (APA)
method introduced in Ref. 18, is unbiased and is quite
efficient.19 This method does, however, require additional
simulation of partial paths, which may significantly reduce
efficiency on some models.

C. A high level overview of the present work

Elements from each of the three general classes of meth-
ods outlined in Sec. I B will be utilized in the development
of estimators that combine the strengths of each. Further, the
methods introduced here utilize the multilevel Monte Carlo
philosophy by splitting a desired quantity into pieces and then
handling each piece separately and efficiently.4,13 Specifically,
much of the computational work is carried out with a pathwise
method30 applied to an approximate process, ensuring the
overall method is efficient. In order to correct for the bias
introduced by the use of an approximate process, the gradient
of an error term is computed. The error term is represented
as the expectation of a function of a coupling between the
original process and the approximate process. The likelihood
ratio method is used to compute the necessary derivative on
this error term. The coupling used between the exact and
approximate processes is the split coupling.2,5

Expanding upon the previous paragraph, we give a high
level summary of the new method as applied to the functional
LX(θ) in (6). First note that by adding and subtracting the
appropriate terms,

E

 b

a

F(θ,Xθ(s)) ds


=E

 b

a

(F(θ,Xθ(s)) ds−F(θ,Zθ(s))) ds


+E

 b

a

F(θ,Zθ(s)) ds

,

where Zθ is any process that can be built on the same
probability space as Xθ, and where we assume the expectations
above are finite. Then, assuming the derivatives exist,

∇θE
 b

a

F(θ,Xθ(s)) ds


=∇θE
 b

a

(F(θ,Xθ(s)) ds−F(θ,Zθ(s))) ds


+∇θE
 b

a

F(θ,Zθ(s)) ds

. (8)
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We are now able to use different methods to compute the
two derivatives on the right-hand side of the above equation.
We have complete control over Zθ, and we will construct it
so that (i) pathwise methods may be utilized for the final
derivative on the right-hand side of (8) and (ii) Zθ is a good
approximation to Xθ. The error term, which is the first term on
the right-hand side of (8), will be estimated via a likelihood
ratio method. The efficiency of the overall method rests upon
two facts. First, the error term can be quickly estimated
because its variance will be small if Zθ is a good approximation
to Xθ. This helps to overcome the often problematically large
variance of a likelihood estimator. Second, the final derivative
can be estimated quickly because pathwise methods are fast
when they are applicable.

In this paper, we present what we believe is a reasonable
choice for the process Zθ in (8). Specifically, it will have
the same jump directions {ζk} as Xθ, but different intensity
functions and an enlarged state space. While we hope to impart
why we believe it to be a good choice, many other options for
Zθ exist and can be explored in future research. Improvements
in the selection of the process Zθ will correspond with
improvements to the overall method. The use of multilevel
Monte Carlo on either of the needed derivatives could also
lead to a significant improvement in efficiency.

Our Sec. IV shows that the methods we introduce here fit
well into the group of existing methods for the numerical
estimation of parametric sensitivities in the jump process
setting. They are quite efficient on all examples, sometimes
significantly more efficient than any other existing method.
However, and not surprisingly given the amount of effort that
has been put into development over the past few years, they
are not always the most efficient. In particular, sometimes
PPA (Gupta and Khammash19) or the coupled finite difference
(CFD) method (Anderson2) is most efficient. With such a
strong group of methods having been developed over the past
few years, we feel future work in the field should also include
the determination of which methods to use for different model
and problem types.

D. Regularity conditions

We end this introduction with two regularity conditions
which are necessary for the validity of the methods introduced
here. The first condition guarantees that solutions to Eq. (1)
exist for all time. The second condition relates to F of (6) and
simply ensures that F does not grow too fast in the x variable.
Both conditions are required in our proofs in the Appendix.
Conditions to be satisfied by the approximate process Zθ will
be developed as needed throughout the paper. In particular,
see conditions 3, 4, and 5.

For x ∈ Zd, we use the notation ∥x∥ to denote the 1-norm,
∥x∥ =d

i=1 |xi |.

Definition. We say that h :RR×S → R has uniform polyno-
mial growth at θ if there is a neighborhood Θ ⊂ RR of θ and
constants C, p > 0 such that

�
supθ∈Θh(θ,x)� ≤C(1+ ∥x∥p) for

all x ∈ S. If p may be taken to be 1, we say that h has uniform
linear growth at θ.

Let 1 denote the vector of all ones. Define R1 ⊂ {1,. . .,K}
so that k ∈ R1 if and only if 1 · ζk > 0. Define R2= {1,. . .,K}
\R1. Note that ifS ⊂ Zd≥0, thenR1 contains the indices of those
reactions that increase the total population, i.e.,

∥x+ ζk∥ > ∥x∥, for all x ∈ S,

while reactions with indices in R2 either decrease the total
population or leave it unchanged.

Condition 1. The intensities λk satisfy this condition at θ
if there is some neighborhood Θ ⊂RR of θ such that

1. for each k ∈ {1, . . ., K} and θ ∈ Θ, the function λk has
uniform polynomial growth at θ;

2. for each k ∈ {1, . . ., K}, i ∈ {1, . . ., R}, and θ ∈Θ, the func-
tion ∂

∂θi
λk exists and has uniform polynomial growth at θ;

3. for each k ∈ R1 and θ ∈ Θ, the function λk has uniform
linear growth at θ;

4. there exist constants p and C such that for all k ∈ {1,. . .,R}
and all x ∈ S

sup
θ∈Θ
λk(θ,x), 0⇒ sup

θ∈Θ

1
λk(θ,x) ≤C(1+ ∥x∥p);

that is, for a fixed x, if the rates λk(θ,x) are not identically
zero on Θ, then they must be bounded away from zero.

Note that the third part of condition 1, which requires
certain intensities to grow at most linearly, only applies to those
intensity functions that are associated with transitions that
increase the total population count of the system. Essentially,
this portion of condition 1 ensures that the population does
not explode in finite time and could almost certainly be
weakened. We note that this condition was also utilized in
Ref. 18. Condition 1 is satisfied for most biochemical systems
considered in the literature. In particular, it is satisfied by any
binary chemical system with mass action kinetics. A chemical
system is binary if

d
i=1 |νki | ≤ 2 and

d
i=1 |ν′ki | ≤ 2 for each

k ∈ {1, . . ., K}. For example, assuming mass action kinetics,
the reactions A→ 2A and 2A→ B+C are permissible under
condition 1. On the other hand, condition 1 excludes 2A→ 3A,
which increases the population at a quadratic rate, and can lead
to explosions.

We turn to the regularity conditions for F of (6). The
following condition will allow us to bound moments of L
using the moments of the process Xθ.

Condition 2. Let Θ ⊂ RR. The function F : Θ×S → R
satisfies this condition if it is measurable and differentiable
in θ on Θ so that

1. there exist constants CA > 1 and pA > 1 such that
sup
θ∈Θ

|F(θ,x)| ≤CA(1+ ∥x∥pA) for all x ∈ S;

2. there exist constants CB > 1 and pB > 1 such that for all
i ∈ {1, . . ., R} and x ∈ S, we have

sup
θ∈Θ

����
∂

∂θi
F(θ,x)���� ≤CB(1+ ∥x∥pB).

The outline for the remainder of the paper is as follows. In
Sec. II, we introduce the three main classes of methods for the
numerical estimation of parametric sensitivities. In particular,
in Sec. II B, we present Theorem 1, which gives conditions
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for the validity of pathwise methods for functionals of form
(6). In Sec. III, we introduce an approximate process Zθ to
be utilized in (8) and formally present the new methods. In
Sec. IV, we demonstrate several numerical results, and we
present conclusions in Sec. V. The proof of Theorem 1 is
included in the Appendix.

II. CLASSES OF METHODS

We describe the three main classes of methods for the
numerical estimation of parametric sensitivities: finite differ-
ences, pathwise derivatives, and likelihood ratios. Because our
new methods involve both pathwise derivatives and likelihood
ratios, we discuss both in detail in Secs. II B and II C.
Throughout these sections, we also introduce and motivate the
regularity conditions and theoretical results that are required
for the approximate process Zθ of (8). In Sec. III, we will
combine these pieces to succinctly introduce our new methods.
Our main theoretical results pertaining to pathwise methods
are stated in Sec. II B 4 and proven in the Appendix.

A. Finite differences

Let ei ∈RR be the vector of all zeros except a one in the
ith component. Finite difference methods proceed by simply
noting that for f :RR×DZd[0,∞)→ R,

∂

∂θi
E[ f (θ,Xθ)] ≈ h−1�E[ f (θ+hei,Xθ+hei)]−E[ f (θ,Xθ)]�

= h−1E[ f (θ+hei,Xθ+hei)− f (θ,Xθ)],
as long as the derivatives and expectations exist, and where
the final equality implies the two processes have been built
on the same probability space, or coupled. The coupling is
used in order to reduce the variance of the difference between
the two random variables. The two most useful couplings in
the present context are the common reaction path method28

and the split coupling method,2 the latter of which we detail
explicitly in Sec. II C in and around (24).

B. Pathwise methods

When using a pathwise method, one begins with a
probability space that does not depend on θ; instead, one uses θ
to construct the path from the underlying randomness. For our
purposes, we take a filtered probability space (Ω,F ,{Ft}t≥0,Q)
under which {Yk,k = 1,. . .,K} are independent unit-rate Pois-
son processes. The path Xθ is then constructed by a jump
by jump procedure implied by (1), which is equivalent to
an implementation of the next reaction method.1,12 For ease
of exposition, we restrict ourselves to consideration of one
element of the gradient, ∂

∂θi
J(θ), though calculation of the

full gradient can be carried out in the obvious manner.
Consider a general functional f . If the following equality

holds,

∂

∂θi
E[ f (θ,Xθ)]=E


∂

∂θi
f (θ,Xθ)


, (9)

then ∂
∂θi
E[ f (θ,Xθ)] can be estimated via Monte Carlo by

repeated sampling of independent copies of the random
variable ∂

∂θi
f (θ,Xθ). Unfortunately, for a wide variety of

models of form (1) and functionals f , equality in (9) does
not hold. There are typically two reasons for this.

1. In many cases the random variable ∂
∂θi

f (θ,Xθ) is almost
surely zero, in which case the right hand side of (9) is zero
whereas the left hand side is not.

2. The underlying process Xθ can undergo an interruption, in
which case E


∂
∂θi

f (θ,Xθ)


is typically non-zero, but still

not equal to ∂
∂θi
E[ f (θ,Xθ)].

The first problem stated above commonly arises when f
is a function solely of the process at the terminal time T , i.e.,
when f (θ,Xθ)= h(Xθ(T)) for some T > 0 and h :S→ R (as in
(5)). Then, since Xθ is a CTMC and has piecewise constant
paths, ∂

∂θi
h(Xθ(T))= 0 almost surely. This type of problem is

easily overcome by any number of smoothing procedures, with
a few outlined in Sec. II B 1. The second problem, in which
there is an interruption, is a more serious problem with the
method. Interruptions are discussed in more detail in Sec. II
B 2. Overcoming this type of problem while still utilizing the
pathwise framework can be viewed as a major contribution of
this work.

1. Smoothing

As will be seen in Sec. II B 3, pathwise methods are
capable of providing estimates of derivatives of functionals of
the form

 b

a F(θ,Xθ(s)) ds, where a, b ∈R and F :RR×Zd→ R
satisfy mild regularity conditions. Thus, in order to estimate
derivatives of, for example, E[ f (Xθ(T))], where f : S → R,
one simply needs to replace f (Xθ(T)) with an appropriate
integral. There are a number of natural choices, with only a
few discussed here.

The Regularized Pathwise Derivative (RPD) method pre-
sented in Ref. 30 estimates ∂

∂θi
E[ f (Xθ(T))] using independent

copies of θ-derivatives of

L1(θ)B 1
2w

 T+w

T−w
f (Xθ(s))ds ≈ f (Xθ(T)), (10)

where w is some fixed window size. Note that even when
pathwise methods can be applied to the model, i.e., when there
are no interruptions, this method gives a biased estimate, with
the size of the bias a function of the size of w. Specifically, a
smaller w leads to a smaller bias but a larger variance.

Alternatively, one may use martingale methods to derive
an unbiased estimator. Specifically, for a large set of functions
f :Zd→ R,

f (Xθ(t))= f (Xθ(0))+
 t

0
(Aθ f )(Xθ(s)) ds+Mθ

t , (11)

where Mθ
t is a local martingale andAθ is the generator (4).6,11

In many cases of interest, Mθ
t is a martingale, in which case

(4) implies
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E[ f (Xθ(t))] = E


f (Xθ(0))+
 t

0


k

λk(θ,Xθ(s))[ f (Xθ(s)+ ζk)− f (Xθ(s))] ds

. (12)

For example, for processes Xθ that satisfy condition 1,
which is nearly all biologically relevant processes, Eq. (12)
holds for functions f that grow at most polynomially.
Therefore, another option for a smoothing functional would
be to take

L2(θ)B f (Xθ(0))+
 T

0
(Aθ f )(Xθ(s))ds (13)

in which case ∂
∂θi
E[ f (Xθ(T))]=E[ ∂

∂θi
L2(θ)] (see also Ref. 15,

p. 176). While unbiased when it applies, this estimator tends
to have higher variance than the RPD estimator so long as
the parameter w is not taken too small. We shall refer to the
smoothing procedure (13) as the Generator Smoothing (GS)
method and will refer to the estimation procedure

∂

∂θi
E[ f (Xθ(T))]≈ 1

n

n
j=1

∂

∂θi
L[ j]

2 (θ),

where L[ j]
2 (θ) is the jth independent realization of the random

variable ∂
∂θi

L2(θ), as the GS pathwise method. An algorithm
for the generation of the random variable ∂

∂θi
L2(θ) is given in

Sec. II B 3.

2. The non-interruptive condition

Smoothing alone does not always ensure the validity of
a pathwise method: for L(θ) given by (6), we still may have
∂
∂θi
E[L(θ)],E[ ∂

∂θi
L(θ)]. Again, letting ei ∈RR be the vector

of all zeros except a one in the ith component, for Xθ satisfying
condition 1, it is straightforward to show that

lim
h→0
E


L(θ+hei)−L(θ)

h


=

∂

∂θi
E[L(θ)]

and

L(θ+hei)−L(θ)
h

a.s .−→ ∂

∂θi
L(θ). (14)

However, to have the equality

∂

∂θi
E[L(θ)]=E


∂

∂θi
L(θ)


, (15)

we must have convergence in mean in addition to the a.s.
convergence in (14). The following condition will play a
central role in achieving the convergence in mean. A similar
condition was first introduced by Glasserman in the discrete
event simulation literature.15 Recall that S is the state space
of our process.

Condition 3 (Non-interruptive). The functions λk :Θ×S
→ R≥0, for k ∈ {1,. . .,K}, satisfy this condition if for each
k,ℓ ∈ {1,. . .,K}, x ∈ S, and θ ∈ Θ, the following holds: if
λk(θ,x)> 0 and λℓ(θ,x)> 0 for ℓ , k, then λℓ (θ,x+ ζk)> 0.

In accordance with terminology from the discrete event
simulation literature, we define an interruption as a change in

state, from x to x+ ζk for some k, such that for some ℓ , k,
we have λℓ (θ,x) > 0 and λℓ (θ,x + ζk) = 0. If an interruption
occurs, the function L(θ) can have a jump discontinuity in
θ for a given realization of the process, and (15) can fail to
hold. The non-interruptive condition 3, therefore, ensures that
interruptions cannot occur.

Many biological models do not satisfy condition 3. For
a simple example of a model that does not satisfy the non-
interruption condition, consider the reaction network

A→ ∅, A→ B,

which has reaction vectors


−1
0


and



−1
1


.

Endow the system with mass action kinetics and an initial
condition of precisely one A particle and zero B particles.
Then, the occurrence of either reaction will necessarily cause
an interruption.

For models in which interruptions are possible, which
includes most biochemical models, both the GS pathwise
method and the RPD method may produce significant bias
when estimating gradients. See Appendix B of Ref. 30 for
a comment on this issue, and see Sec. IV where the bias is
demonstrated numerically.

3. An algorithm for calculating ∂
∂θi L(θ)

Providing realizations of the random variable ∂
∂θi

L(θ),
where L is of form (6), is central to the methods presented here.
This section provides the necessary numerical algorithm. The
derivations are based on simulating the random time change
representation (1) using the next reaction method. Conditions
on the intensity functions guaranteeing that ∂

∂θi
E[L(θ)]

=E[ ∂
∂θi

L(θ)] are provided in Sec. II B 4.
We note that the algorithm derived within this section is

essentially the same as those derived in Refs. 15 and 30. This
section is included for completeness but can be safely skipped
by those familiar with pathwise differentiation.

Recalling the discussion in and around (8), the methods
introduced in this article use pathwise differentiation on
functionals of a non-interruptive process. This process is
typically an approximation of the original process. Thus, in
this section, we denote our nominal process by Zθ as opposed
to Xθ. Further, for notational convenience in this section, we
take θ to be 1-dimensional.

Continuing, we suppose Zθ is a process satisfying the
stochastic equation (1) with θ ∈ R. Let Ẑℓ(θ) denote the ℓth
state in the embedded discrete time chain of the process Zθ,
and let Tθ

ℓ be the ℓth jump time, with Tθ
0 = 0. We are interested

in computing the θ-derivative of

LZ(θ)B
 b

a

F(θ,Zθ(s)) ds
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=

N (θ,b)
ℓ=0

F(θ,Ẑℓ(θ)) [Tθ
ℓ+1∧b−Tθ

ℓ ∨a]+, (16)

where a ∧ b = min(a,b) and a ∨ b = max(a,b), and where
N(θ,b) = N is the number of jumps of the process through
time b. If Zθ is a non-explosive process, then N <∞ with a
probability of one.

The embedded chain is discrete-valued. Thus, ∂
∂θ

Ẑℓ(θ)= 0
a.s. wherever the derivative exists. Therefore, by (16),

∂

∂θ
LZ(θ) =

N
ℓ=0


[Tθ

ℓ+1∧b−Tθ
ℓ ∨a]+

(
∂

∂θ
F(θ,Ẑℓ(θ))

)
+ F(θ,Ẑℓ(θ)) ∂

∂θ
[Tθ

ℓ+1∧b−Tθ
ℓ ∨a]+


, (17)

where the partial of the function F is with respect to the first
variable. The terms involving the derivatives ∂

∂θ
F(θ,Ẑℓ(θ)) are

straightforward to compute. The remaining terms require the
derivatives of the jump times Tθ

ℓ , so we now focus on their
derivation.

Define ∆θℓ = Tθ
ℓ+1 −Tθ

ℓ to be the holding time of the
process in the ℓth state (so that the indexing begins at 0).
Let Sθ

k
(t)=  t

0 λk(θ,Zθ(s)) ds. Note that Sθ
k
(t) is the argument

of the Poisson process Yk in the stochastic equation (1). The
quantity Sθ

k
(t) is therefore usually referred to as the “internal

time” of Yk. Let

Ik(t)= inf
�
r ≥ Sθ

k(t) :Yk(r)>Yk(Sθ
k(t))

	

be the internal time of the first occurrence of Yk after time
Sk(t). Then, the holding time of the process Zθ in the ℓth state
is given by

∆
θ
ℓ =min

k




Ik(Tθ
ℓ )−Sθ

k
(Tθ

ℓ )
λk(θ,Ẑℓ(θ))



. (18)

Let kℓ be the argmin in the above expression; kℓ is the
index of the reaction that changes the system from the ℓth to
the (ℓ+1) st state. Via the product rule, we have

∂

∂θ
∆
θ
ℓ = −

Ikℓ−Sθ
kℓ
(Tθ

ℓ )
λkℓ(θ,Ẑℓ(θ))2

∂

∂θ
λkℓ(θ,Ẑℓ(θ))

− λkℓ(θ,Ẑℓ(θ))−1 ∂

∂θ
Sθ
kℓ
(Tθ

ℓ )

= −
∆θℓ

λkℓ(θ,Ẑℓ(θ))
∂

∂θ
λkℓ(θ,Ẑℓ(θ))

− λkℓ(θ,Ẑℓ(θ))−1 ∂

∂θ
Sθ
kℓ
(Tθ

ℓ ), (19)

where the second equality follows from (18). Note that
for t ∈

�
Tθ
ℓ ,T

θ
ℓ+1

�
and any k ∈ {1,. . .,K}, we have that Sθ

k
(t)

= Sθ
k
(Tθ

ℓ )+λk(θ,Ẑℓ(θ))(t−Tθ
ℓ ). Thus,

∂

∂θ
Sθ
k(Tθ

ℓ ) =
∂

∂θ
Sθ
k(Tθ

ℓ−1)+∆θℓ−1
∂

∂θ
λk(θ,Ẑℓ−1(θ))

+ λk(θ,Ẑℓ−1(θ)) ∂
∂θ
∆
θ
ℓ−1. (20)

The values { ∂
∂θ
∆θℓ} and { ∂

∂θ
Sθ
ℓ (Tθ

ℓ )} can now be solved
for recursively given that Sθ

k
(Tθ

0 )= 0 for all k.

To find the derivatives of the Tθ
ℓ as in (17), first note that

∂
∂θ

Tθ
0 = 0, and that for ℓ > 0, the definition of ∆θℓ implies that

∂

∂θ
Tθ
ℓ =

ℓ−1
j=0

∂

∂θ
∆
θ
j .

Let ℓa ∈N be maximal such that Tθ
ℓa
≤ a; that is, the ℓth

a

jump is the last jump to occur before time a. We may now
conclude that

∂

∂θ
[Tθ

ℓ+1∧b−Tθ
ℓ ∨a]+

=




0 ℓ < ℓa or ℓ > N
∂

∂θ
Tθ
ℓa+1=

ℓa

j=0

∂

∂θ
∆
θ
j ℓ = ℓa

∂

∂θ
∆
θ
ℓ ℓa < ℓ < N

− ∂

∂θ
Tθ
N =−

N−1

j=0

∂

∂θ
∆
θ
j ℓ = N

,

(21)

which can all be easily computed during numerical simulation.
The derivations above lead to the following algorithm for

the generation of Zθ over the interval [0,b] and of the random
variable ∂

∂θ
LZ(θ) = ∂

∂θ

 b

a F(θ,Zθ(s))ds. The notation in the
algorithm provided below is the same as that above with the
following exceptions:

(i) flag is a variable that only takes the values zero or one. It
starts at zero and becomes one once t ≥ a. In the algorithm,
this moment is determined by finding the first time at
which the process makes a jump at a time greater than a
(see step 4).

(ii) The output ∂
∂θ

LZ(θ), as given in (17), is denoted by dL.

It may be helpful for the reader to note that steps 1, 2, 5, 6, 8,
and 9 make up the usual implementation of the next reaction
method.1,12 Only steps 3, 4, 7, and 10 are those required for the
derivative terms. All uniform random variables generated in
the algorithm below are assumed to be mutually independent.

ALG0RITHM. Numerical derivation of Zθ and ∂
∂θ

LZ(θ)
= ∂

∂θ

 b

a F(θ,Zθ(s)) ds.

Initialize. Given: a continuous time Markov chain with jump
directions ζk, intensities λk(θ,z), and initial condition z0. Set
ℓ = 0, Tθ

0 = 0, Zθ(Tθ
0 ) = z0, ∂

∂θ
Tθ

0 = 0, and dL = 0. For each
k ∈ {1, . . ., K}, set Sθ

k
(Tθ

0 ) = 0, ∂
∂θ

Sθ
k
(Tθ

0 ) = 0. Set flag = 0.
For each k ∈ {1, . . ., K}, set Ik(Tθ

0 ) = ln (1/uk), where {uk}
are independent uniform (0,1) random variables.

Perform the following steps.

1. For all k ∈ {1, . . ., K}, calculate λk(Zθ(Tθ
ℓ )). Set

∆
θ
ℓ =min

k

Ik(Tθ
ℓ )−Sθ

k
(Tθ

ℓ )
λk(θ,Zθ(Tθ

ℓ ))
and j = argmin

k

Ik(Tθ
ℓ )−Sθ

k
(Tθ

ℓ )
λk(θ,Zθ(Tθ

ℓ ))
.

2. If Tθ
ℓ +∆

θ
ℓ > b, go to step 10. Otherwise, set Tθ

ℓ+1=Tθ
ℓ +∆

θ
ℓ

and continue to step 3.
3. Set

∂

∂θ
∆
θ
ℓ =−

∆θℓ

λ j(θ,Zθ(Tθ
ℓ ))
· ∂
∂θ
λ j(θ,Zθ(Tθ

ℓ ))−
∂
∂θ

Sθ
j (Tθ

ℓ )
λ j(θ,Zθ(Tθ

ℓ ))
,

then set ∂
∂θ

Tθ
ℓ+1=

∂
∂θ

Tθ
ℓ +

∂
∂θ
∆θℓ.
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4. Set

dL← dL+∆θℓ ·
∂

∂θ
F(θ,Zθ(Tθ

ℓ ))+F(θ,Zθ(Tθ
ℓ )) · A,

where

A=




0 if Tθ
ℓ+1 < a

∂

∂θ
Tθ
ℓ+1 if Tθ

ℓ+1 > a and flag= 0.

∂

∂θ
∆
θ
ℓ otherwise

If Tθ
ℓ+1 > a and flag= 0, set flag= 1.

5. Set Zθ(Tθ
ℓ+1)= Zθ(Tθ

ℓ )+ ζ j.
6. For each k ∈ {1, . . ., K}, set

Sθ
k(Tθ

ℓ+1)= Sθ
k(Tθ

ℓ )+∆θℓλk(θ,Zθ(Tθ
ℓ )).

7. For each k ∈ {1, . . ., K}, set
∂

∂θ
Sθ
k(Tθ

ℓ+1) =
∂

∂θ
Sθ
k(Tθ

ℓ )+∆θℓ ·
∂

∂θ
λk(θ,Zθ(Tθ

ℓ ))

+ λk(θ,Zθ(Tθ
ℓ )) ·

∂

∂θ
∆
θ
ℓ.

8. Set I j(Tθ
ℓ+1) = I j(Tθ

ℓ )+ ln
� 1
u

�
, where u is a uniform(0,1)

random variable.
9. Set ℓ← ℓ+1 and return to step 1.

10. Set

dL← dL+ (b−Tθ
ℓ )

∂

∂θ
F(θ,Zθ(Tθ

ℓ ))

− f lag ·F(θ,Zθ(Tθ
ℓ )) ·

∂

∂θ
Tθ
ℓ .

4. Validity of pathwise estimators

Letting Zθ be a process satisfying a stochastic equation
of form (1), we turn to the question of when ∂

∂θi
E[LZ(θ)]

=E[ ∂
∂θi

LZ(θ)], with ∂
∂θi

LZ(θ) detailed in Sec. II B 3. For our
proof of Theorem 1, we require a condition on the intensity
functions of Zθ that is more restrictive than condition 1.

Condition 4. Let Θ ⊂ RR. The functions λk : Θ×Zd →
R≥0, k = 1,. . .,K, satisfy this condition if each of the following
hold.

1. There exist constants ΓM, Γ′ such that for all k ∈ {1, . . ., K}
and all z ∈ Zd,

sup
θ∈Θ

sup
z∈S
λk(θ,z) ≤ ΓM and sup

θ∈Θ
sup
z∈S

����
∂

∂θi
λk(θ,z)���� ≤ Γ

′.

2. There exists some constant Γm such that for all k ∈
{1,. . .,K} and all z ∈ Zd,

sup
θ∈Θ
λk(θ,z), 0⇒ sup

θ∈Θ

1
λk(θ,z) ≤ Γm.

The first condition guarantees that the intensities and
their θ-derivatives are uniformly bounded above. The second
condition stipulates that on those z ∈ Zd at which the rates
λk(θ,z) are not identically zero on Θ, the rates must be
uniformly bounded away from zero.

Theorem 1. Suppose that the process Zθ satisfies the
stochastic equation (1) with λk satisfying conditions 3 and

4 on a neighborhood Θ of θ. Suppose that the function
F satisfies condition 2 on Θ. For some 0 ≤ a ≤ b <∞, let
LZ(θ)=

 b

a F(θ,Zθ(s)) ds. Then, ∂
∂θi
E[LZ(θ)]= E


∂
∂θi

LZ(θ)


for all i ∈ {1, . . ., R}.

The proof of this theorem is similar to that found in
Ref. 15 and can be found in Appendix . We believe that the
stringent condition 4 can be replaced by the more relaxed
condition 1, though this remains open. The stricter condition
4 plays only a small role in the methods developed here as it
can be incorporated into the definition of the process Zθ, as
will be seen in Sec. III. In particular, we note that we will not
be requiring that our actual process of interest, Xθ, satisfies
condition 4, only that the approximate process, Zθ, does.

C. Likelihood ratios and coupled paths

The LR method for sensitivity estimation proceeds by
selecting a realization of a given process according to
a θ-dependent probability measure. Differentiation of the
probability measure is then carried out within the expectation.
For CTMC models, Xθ as in (1) that have θ-differentiable
intensities and that satisfy the growth condition 1 (which,
recall, is nearly all biochemical systems), and for a large class
of functionals f , we have

∂

∂θi
E[ f (θ,Xθ)]=E


∂

∂θi
f (θ,Xθ)+ f (θ,Xθ)Hi(θ,T)


, (22)

where

Hi(θ,T)=
N (T )−1
ℓ=0

∂
∂θi
λkℓ (θ,X̂ℓ(θ))
λkℓ (θ,X̂ℓ(θ))

−
K
k=1

 T

0

∂

∂θi
λk(θ,Xθ(s))ds,

(23)

and where

• N(T) is the total number of jumps of Xθ through time
T , and a sum of the form

−1
ℓ=0 is set to zero,

• kℓ is the index of the reaction that changes the system
from the ℓth state to the (ℓ+1)st state,

• X̂ℓ(θ) is the ℓth state in the embedded discrete chain of
the path.

For a system (1) with intensities of the form λk(θ,x)= θkgk(x),
where gk :Zd→ R≥0, such as stochastic mass action kinetics,
Hi simplifies to

Hi(θ,T)= 1
θi

(
Ni(T)−

 T

0
λi(θ,Xθ(s))ds

)
,

where Ni(T) is the number of jumps of reaction i by time T .
See. Refs. 8, 16, and 26.

The random variable Hi(θ,T) is often known as a
weighting function or weight and is simple to compute
during path simulation. The likelihood ratio method is widely
applicable, straightforward to use, and provides an unbiased
estimate of the sensitivity. However, the variance of the
estimate is often prohibitively large, leading to an inefficient
method. One can reduce this variance significantly by using
the weight as a control variate (see, e.g., Sec. V.2 of Ref. 8),
since Hi(θ,·) is often a mean zero martingale.6
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1. The LR method applied to coupled paths

As was pointed out in and around (8), we want to apply the
likelihood ratio method to estimate the sensitivity ∂

∂θi
E[LX(θ)

− LZ(θ)] where X and Z are coupled processes. Assume
that Xθ and Zθ have the same jump directions ζk ∈ Zd, but
different intensity functions. Denote their respective intensity
functions by λX

k
and λZ

k
. It may happen that Xθ and Zθ have

different natural state spaces. In particular, the most common
application will have Xθ(t) ∈ Zd≥0 while Zθ(t) ∈ Zd. Therefore,
we simply take the domains of λX

k
and λZ

k
to be the union of

the two; for example, all of Zd. If the natural domain of either
intensity function is some subset of Zd, then that function will
need to be extended to this larger domain in some reasonable

fashion. For example, since the natural domain of λX
k

is often
Zd≥0, we may extend each λX

k
to be identically zero outside of

the non-negative orthant.
To proceed, we must couple the processes Xθ and Zθ;

i.e., we must build them on the same probability space. We
will use the split coupling, which first appeared in Ref. 23
and has since appeared in numerous publications related to
computational methods.2–5,18,33 We take

Wθ(t)B


Xθ(t)
Zθ(t)



to be the family of processes satisfying the stochastic equation

Xθ(t)=Xθ(0)+
K
k=1

Yk,1

( t

0
λ
X
k (θ,Xθ(s))∧λZk (θ,Zθ(s))ds

)
ζk+ Yk,2

( t

0
λ
X
k (θ,Xθ(s))−λXk (θ,Xθ(s))∧λZk (θ,Zθ(s))ds

)
ζk,

Zθ(t)=Zθ(0)+
K
k=1

Yk,1

( t

0
λ
X
k (θ,Xθ(s))∧λZk (Zθ(s))ds

)
ζk+ Yk,3

( t

0
λ
Z
k (θ,Zθ(s))−λXk (θ,Xθ(s))∧λZk (θ,Zθ(s))ds

)
ζk, (24)

where {Yk,1,Yk,2,Yk,3} are independent unit-rate Poisson pro-
cesses and we recall that a∧ b=min(a,b) for any a, b ∈ R.
Note that the 2d-dimensional process Wθ(t) is also a CTMC.
For each k ∈ {1,. . .,K}, the reaction of system (1) with reaction
vector ζk ∈ Zd has been associated with three reactions of the
process Wθ. The reaction vectors for these three reactions,
which are elements of Z2d, are

ηk,1=



ζk

ζk


, ηk,2=



ζk

0


, ηk,3=



0
ζk


,

where each 0 is interpreted as 0⃗ ∈ Zd. Letting w =
(
x
z

)
∈ Z2d,

where x, z ∈ Zd, the intensity functions for the three reactions
are

Λk,1(θ,w) = λXk (θ,x)∧λZk (θ,z),
Λk,2(θ,w) = λXk (θ,x)−λXk (θ,x)∧λZk (θ,z),
Λk,3(θ,w) = λZk (θ,z)−λXk (θ,x)∧λZk (θ,z). (25)

We say a reaction associated with Wθ is of type j ∈ {1,2,3}
if the reaction vector is ηk, j. Now note that

Wθ(t)=Wθ(0)+
3
j=1

K
k=1

Yk, j

( t

0
Λk, j(θ,Wθ(s)) ds

)
ηk, j

has the same general form as (1). Thus, as long as the rates
satisfy the usual mild regularity conditions, we may use the
likelihood method as in (22) and (23). Given some function
f̃ :RR×DZ2d[0,∞)→ R, the analogous equations are

∂

∂θi
E[ f̃ (θ,Wθ)]=E


∂

∂θi
f̃ (θ,Wθ)+ f̃ (θ,Wθ)H̃i(θ,T)


, (26)

where

H̃i(θ,T) =
Ñ (T )−1
ℓ=0

∂
∂θi
Λkℓ, jℓ(θ,Ŵℓ(θ))
Λkℓ, jℓ(θ,Ŵℓ(θ))

−
3
j=1

K
k=1

 t

0

∂

∂θi
Λk, j(θ,Wθ(s)) ds,

and where

• Ñ(T) is the total number of jumps of W (θ) through time
T ,
• kℓ ∈ {1, . . ., K} is the index and jℓ ∈ {1,2,3} is the type

of the reaction that changes Wθ from the ℓth state to the
(ℓ+1)st state,

• Ŵℓ(θ) is the ℓth state in the embedded discrete chain of
the path of Wθ, with enumeration starting at ℓ = 0.

For a system in whichΛi, j(θ,w)= θkgi, j(w), H̃i simplifies
to

H̃i(θ,T)=
3
j=1


1
θi

(
Ñi, j(T)−

 T

0
Λi, j(θ,Wθ(s)) ds

)
,

where Ñi, j(T) is the number of jumps of reaction i of type j
by time T .

We return to our problem at hand of estimating

∂

∂θi
E[LX(θ)−LZ(θ)]

=
∂

∂θi
E

 b

a

F(θ,Xθ(s))−F(θ,Zθ(s)) ds

.

Using (26) with f̃ (θ,Wθ)=
 b

a [F(θ,Xθ(s))−F(θ,Zθ(s))]ds, we
see that, so long as the differentiation is valid, ∂

∂θi
E[LX(θ)

−LZ(θ)]=E[V (θ)] with

V (θ)B
 b

a

(
∂

∂θi
F(θ,Xθ(s))− ∂

∂θi
F(θ,Zθ(s))

)
ds

+ H̃i(θ,b)
 b

a

[F(θ,Xθ(s))−F(θ,Zθ(s))]ds, (27)
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where the partial of F is always with respect to the first
variable.

2. Requirements for the process Zθ

So long as the rates of both Xθ and Zθ are differentiable,
the new rates (25) for the coupled process are piecewise
differentiable. However, because the intensities Λk, j involve
minima, there may be values of θ and w where the derivative
does not exist. In particular, this may occur if, for some k, the
two rates in the minimum λX

k
(θ,x)∧λZ

k
(θ,z) are equal, since

at such points, the left- and right-hand derivatives may be
different.

The following condition ensures the differentiability of
each Λk, j.

Condition 5. Suppose for some k ∈ {1, . . ., K} and somew
=

(
x
z

)
in the state space of W, we have that λX

k
(θ,x)= λZ

k
(θ,z).

Then, we require that ∂
∂θi
λZ
k
(θ,z) = ∂

∂θi
λX
k
(θ,x) for each i

∈ {1, . . ., R}.

III. THE HYBRID PATHWISE METHOD

A. Putting it all together

Developing hybrid pathwise methods is now straight-
forward. We will estimate ∇θE[LX(θ)] using (8) for an
appropriately chosen process Zθ. In Sec. II, we detailed the
main conditions that Zθ must satisfy for this procedure to
work. Specifically, we need a Zθ that is tightly coupled with
Xθ, that satisfies the non-interruptive condition 3, and that
satisfies the regularity conditions 4 and 5. We also require that
F, which determines L via (6), satisfies condition 2. Finally,
for the validity of the likelihood ratio method on the error term,
we require that Xθ satisfies condition 1. The hybrid pathwise
method then proceeds by

1. estimating ∇θE[LX(θ)−LZ(θ)] via Monte Carlo using the
LR method as detailed in Sec. II C 1, and

2. estimating ∇θE[LZ(θ)] via Monte Carlo using the pathwise
method as detailed in Sec. II B 3.

Denoting by QX−Z and QZ, the two estimators detailed above,
our final estimate for ∇θE[LX(θ)] is taken to be

QXBQX−Z+QZ, (28)

which is trivially unbiased. We will generate paths indepen-
dently, in which case

Var(QX)=Var(QX−Z)+Var(QZ), (29)

which can be estimated and used for confidence intervals in
the usual way.

Any Zθ satisfying the above conditions may be used. In
order to make specific suggestions, we now restrict ourselves
to the setting of biochemistry where, as detailed in the
Introduction, ζk = ν′k− νk and the natural state space of Xθ is
Zd≥0. We will consider two cases: when λX

k
satisfies stochastic

mass action kinetics and when λX
k

satisfies Michaelis–Menten
kinetics.

1. Stochastic mass action kinetics

Suppose that λX
k
(θ,x) satisfies stochastic mass action ki-

netics (2), in which case λX
k
(θ,x)= θkgk(x). We define λX

k
(θ,x)

= 0 if x <Zd≥0.
We now define Zθ to be the process satisfying (1) with

the following intensity functions. For each k ∈ {1,. . .,K}, let
δk > 0. Let M > 0 be a large number. Define

λ
Z
k (θ,z)=




θkδk if zi < νki for any i such that νki > 0
θkM if λXk (θ,z) ≥ θkM
λ
X
k (θ,z) otherwise

.

(30)

Note that in much of Zd≥0, the rates of Zθ are identical to
those of Xθ. Note also that Zθ satisfies the non-interruptive
condition 3, the restrictive regularity condition 4, and the
condition 5 guaranteeing the applicability of the LR method
on the coupled processes. The redefinition of the intensity
functions for large values of λX

k
(θ,z) (by θkM) is a consequence

of our theoretical results. If Theorem 1 can be proven with
condition 4 replaced by condition 1, as we believe is possible,
then the M term could be ignored and we would have

λ
Z
k (θ,z)=




θkδk if zi < νki for any i such that νki > 0
λ
X
k (θ,z) otherwise

.

2. Michaelis–Menten Kinetics

The standard Michaelis–Menten rate is of the form
λX
k
(θ,x) = θ1xk

θ2+xk
.29 Note that near a fixed θ, this rate is uni-

formly bounded in x ≥ 0. For some δk > 0, let

λ
Z
k (θ,z)=




θ1δk
θ2+δk

if zi < νki for any i such that νki > 0

λ
X
k (θ,z) otherwise

.

(31)

Note that (i) Zθ so defined will again have rates that are
in agreement with Xθ for much of Zd≥0, and (ii) Zθ satisfies all
the conditions outlined above, including the non-interruptive
condition 3.

It is important to note that the processes Zθ defined in
the manner of (30) or (31) can reach states with negative
coordinates, even if the initial condition Zθ(0) is in Zd≥0. This is
a consequence of how we overcame the problem that, in gen-
eral, biochemical processes do not satisfy the non-interruptive
condition 3.

B. Implementation issues

In this short section, we make a few points about imple-
menting the hybrid pathwise method.

1. In Sec. III A, we were conservative in redefining all inten-
sity functions so that they can never become zero. How-
ever, if a reaction cannot be interrupted by another, then
there is no need to redefine the kinetics at zero. Allowing
such intensities to become zero will then improve the
performance of the method. For example, see the model
in Sec. IV B.
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In particular, if the process Xθ already satisfies the
non-interruptive condition 3 and the restrictive condition 4,
then the approximate process Zθ is unnecessary: one can
use pathwise estimates alone to estimate ∂

∂θi
E[LX(θ)]. See

Sec. IV A for such an example.
2. The best choice for the δk of (30) and (31) will be model-

dependent. If δk is too large, the process Zθ may cease to be
a good approximation of Xθ, which will cause the variance
of the likelihood ratio estimate of ∂

∂θi
E[LX(θ)−LZ(θ)] to be

large. On the other hand, taking δk too small makes it very
rare that the process Zθ makes a jump that the process Xθ

cannot make. In this latter case, the problem of estimating
∂
∂θi
E[LX(θ)− LZ(θ)] becomes a problem of estimating a

rare event.
In our numerical experiments, we found that taking δk

to be near one was a reasonable choice for all the models
we considered. Additionally, we have found that M can be
taken arbitrarily large with no loss of accuracy.

3. If the sensitivity we wish to estimate is of the form
∂
∂θi
E[ f (Xθ(T))], i.e., is not an integral of a function, we

may instead write

∂

∂θi
E[ f (Xθ(T))] = ∂

∂θi
E[ f (Xθ(T))− f (Zθ(T))]

+
∂

∂θi
E[ f (Zθ(T))], (32)

and note that the LR method is applicable on the first term
on the right-hand side of the above equation. That is, there
is no reason to replace f in that term with an integrated
function. The final term must be estimated using either the
GS method or the RPD smoothing method. We shall refer to
these hybrid procedures for estimating ∂

∂θi
E[ f (Xθ(T))] as

the GS hybrid and the RPD hybrid methods, respectively.
4. One must decide how many simulated paths will be used for

each of the estimators QX−Z and QZ of (28). Suppose one
wishes to minimize the expected time required to compute
an estimate such that the 95% half-width is within some
target value, ϵ . That is, we would like

Var(QX−Z)+Var(QZ)=Var(QX) ≤ δB
(

ϵ

1.96

)2
, (33)

where δ denotes the target variance. Let vℓ denote the vari-
ance Var(V (θ)), where V (θ) is as in (27), so that Var(QX−Z)
=

vℓ
nℓ

, where nℓ is the number of coupled paths simulated.
Also, let cℓ denote the average time required to compute one
pair of coupled paths for the likelihood estimate. Similarly,
define vp, cp, and np for the pathwise estimates. Then, we
wish to minimize the expected total computational time

nℓcℓ+npcp =
vℓcℓ

Var(QX−Z) +
vpcp

Var(QZ) ,

subject to constraint (33). The solution to this optimization
problem satisfies

Var(QX−Z)= δ
√
vℓcℓ

√
vpcp+

√
vℓcℓ

and

Var(QZ)=
δ
√
vpcp

√
vpcp+

√
vℓcℓ

. (34)

In practice, one may use the following optimization
procedure. First, in a preliminary simulation, compute n
samples each of (Xθ,Zθ) and Zθ. Second, from these prelim-
inary samples, estimate each of vp, cp, vℓ, and cℓ and utilize
these values to estimate the target variances (34).

5. Finally, we point out that if one first simulates many paths
of Zθ for use in the pathwise estimate QZ and notes that
each path is a valid realization of the original process Xθ

(which is simple to check as simulation occurs), then with
high probability, one knows without further computation
that QX−Z is zero or near zero. Of course, theoretical work
is needed to quantify what is meant by “high probability” in
the previous sentence. However, this observation provides
a means to check for practical applicability of pathwise
methods, which have been shown to be extremely efficient
on many models.30

IV. NUMERICAL EXAMPLES

With the examples in this section, we demonstrate the va-
lidity and efficiency of our new class of methods. An important
example is given in Sec. IV B, where we demonstrate that
pathwise-only methods of the type developed in Ref. 30 can
fail, in the sense that there can be large biases, if interruptions
can occur. That is, the example in Sec. IV B shows that the
error term utilized in this paper, and differentiated using the
LR method, is necessary.

On a variety of examples, we compare the efficiency of
the developed methods with the following:

1. The likelihood ratio method including the weight (23) as a
control variate (LR + CV).

2. The RPD method.
3. The CFD method using centered differences.
4. The PPA method.

We will demonstrate that the new methods introduced here
compare quite favorably with this group of already established
methods, with the GS hybrid method often the most efficient
unbiased method. Future work will involve a wider numerical
study to help determine a better framework for choosing the
most efficient method for a given model.

Throughout, we use the term “variance” to refer to esti-
mator variance, which is the sample variance divided by the
number of paths simulated. For each hybrid method estimate,
we use the optimization procedure described in item 4 of
Sec. III B and compute the variance as in (29). All half-
widths given are 95% confidence intervals computed as 1.96
multiplied by the square root of the variance. The numerical
calculations were carried out in MATLAB using an Intel i5-
4570 3.2 GHz quad-core processor.

A. Birth-death

Consider the birth-death model

∅
θ1
�
θ2

A

with mass action kinetics. We let Xθ(t) denote the abundance
of A at time t and take Xθ(0)= 0. For this model, we can solve
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FIG. 1. A comparison of the sensitivity
estimates and method variance for the
birth-death model of Sec. IV A as the
time t is varied. 104 paths were used for
each method, and Xθ(0) = 0, and θ0
= (10, 0.5). The parameter h for the
CFD method was chosen as a fraction of
the parameter θ2. Similarly, the param-
eter w for the RPD method was chosen
as a fraction of the time t , which varies
in this experiment.

to find that

E[Xθ(t)]= θ1

θ2
(1−e−θ2t),

and
∂

∂θ1
E[Xθ(t)]= 1

θ2
(1−e−θ2t) and

∂

∂θ2
E[Xθ(t)]= θ1

θ2
(te−θ2t)− θ1

θ2
2

(1−e−θ2t).
We estimate the sensitivity with respect to θ2 of the quan-

tity E[Xθ(t)] at θ0= (θ1,θ2)= (10,0.5).
Since the model naturally satisfies condition 3, we may use

the GS pathwise and RPD methods without the error
terms; see item 1 of Sec. III B. Though the intensity of the
model is unbounded, the intensities are “bounded in practice:”
throughout these simulations, no intensity was ever greater than
M = 103. That is, if we had used the full hybrid method with an
approximateprocess Zθ withanintensityboundedaboveby103,
then the error term would have given us an estimate of zero. We
may therefore confidently use both pathwise-only methods.

Figure 1 shows that each method does a good job of
estimating the given sensitivities and that the GS pathwise
method has the lowest variance of any unbiased method. In

fact, for this experiment, the GS pathwise method also has a
smaller variance than most of the biased methods. The RPD
method, with the larger choice of w, has a slightly lower
variance than the GS pathwise method.

A more straightforward comparison of method efficiency
can be provided by finding the central processing unit (CPU)
time required for each method to estimate the sensitivity to a
given tolerance. In Figure 2, we report these CPU times when
we run each method until it produced a half-width equal to 1%
of the absolute value of the sensitivity. As can be seen in the
figure, the GS pathwise method is significantly more efficient
than the other unbiased methods. Indeed, at time t = 5, the GS
pathwise method is over 3 times faster than PPA and more
than 20 times faster than the LR + CV method. At time t = 50,
the GS pathwise method is over 25 times faster than PPA and
nearly 150 times faster than the LR + CV method. At time
t = 5, the GS pathwise method is also more efficient than any
of the biased methods used.

The efficiency of the biased methods RPD and CFD is
highly influenced by the choice of the parameter w or h. At
time t = 50, the RPD method with w = (0.1)t = 5 is over 4

FIG. 2. A comparison of the efficiency
of the different methods in estimating
the sensitivity with respect to θ2 of the
birth-death model of Sec. IV A with
Xθ(0) = 0 and θ0 = (10, 0.5). Two
different times, 5 and 50, were used.
The CPU times reported are the times
required by the different methods to
produce a target confidence interval of
half-width equal to 1% of the absolute
value of the sensitivity. Note that a log
scale is used.
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times faster than the GS pathwise method, though at the cost
of a small bias.

Finally, we note here that on this model and the
other models simulated, the LR + CV method, which uses
the weighting function as a control variate, generally has
variances at least an order of magnitude smaller than the
usual LR method in which a control variate is not used. The
additional computational cost of adding this control variate is
negligible.

B. A simple switch

In contrast to the linear growth model, the following
simple switch is one in which the two pathwise-only methods
can have a large bias if no correction term is added:

A
θ1→ ∅, A

θ2→ B, B
θ3→C,

with Xθ(0) = (a,0,0) giving the initial abundances of A, B,
and C, respectively. We estimate the derivative with respect
to θ1 of the mean number of C molecules, ∂

∂θ1
E[Xθ,C(t)], at

θ = ( 1
4 ,1,1) and at various times t. Since this model is linear,

we can solve for the sensitivity exactly at θ = (θ1,1,1):

∂

∂θ1
E[Xθ,C(t)] = ae−t

θ2
1

− a
(1+θ1)2

− ae−(1+θ1)t
( θ2

1t+θ(t+2)+1

θ2
1(1+θ1)2

)
.

1. Pathwise-only methods are biased

We consider the bias of the GS pathwise and RPD
methods in computing the sensitivity ∂

∂θ1
E[Xθ,C(t)]. For the

GS pathwise method, we use E[Xθ,C(t)] = E[
 t

0 Xθ,B(s) ds],
which follows from (12). For the RPD method, we use

E


1

2w

 T+w

T−w
Xθ,C(s) ds



as an approximation to E[Xθ,C(T)]. As shown in Figure 3,
the RPD and GS pathwise methods provide biased estimates,
with the bias ranging from small to (very) large, depending
on the initial condition and time, t. In fact, at t = 10, these
two methods provide estimates of approximately zero for a
sensitivity of magnitude approximately 6. At a small time of
t = 0.5, the RPD and GS pathwise methods show only a small
bias, though it is still noticeable for small initial abundances of
A. In each plot of Figure 3, the same value of w was used for
both the RPD and RPD hybrid methods (the hybrid methods
for this example are discussed below).

These results confirm that neither the RPD method nor the
GS pathwise method is unbiased for models with interruptions.
Further, the biases can be substantial.

2. Comparison of valid methods

To use the hybrid methods introduced in this paper, we
construct Zθ as in Sec. III with

λ
Z
1 (θ,z)=




1
4

zA < 1

1
4

zA otherwise
,

FIG. 3. A demonstration of the significant bias of the pathwise-only methods
(RPD and GS pathwise) for the estimation of the sensitivity of E[Xθ,C(t)]
with respect to θ1 in the switch model of Sec. IV B. Various initial A
abundances and three different times t are used. The GS hybrid and RPD
hybrid method estimates are also shown; both estimate the exact sensitivity
well. Each estimate used 105 paths, and a value of w = (0.1)t was used for
both the RPD and RPD hybrid methods. For t = 10, both hybrid methods used
30% pathwise estimates (and 70% coupled likelihood estimates); at t = 2,
both used 75% pathwise estimates; and at t = 0.5, both used 90% pathwise
estimates.
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FIG. 4. An efficiency comparison for the estimation of the sensitivity of E[Xθ,C(t)] with respect to θ1 in the switch model of Sec. IV B, with a = 10. CPU
time gives the computation time in seconds required to achieve a confidence half-width of 1% of the sensitivity. Via the optimization procedure described in
Sec. III B, the GS hybrid method used approximately 36% pathwise estimates, versus 64% coupled likelihood ratio estimates, when t = 10; when t = 2, the
method used 76% pathwise estimates, and when t = 0.5, it used 100% pathwise estimates. That is, the best allocation strategy is significantly different at these
various times. The RPD hybrid method similarly uses more pathwise estimates at smaller times, though the exact allocation is different for the two choices of
the parameter w. For both hybrid methods, the optimization step is included in the computation time. The time required for the optimization step, which for this
experiment included sampling 500 pathwise estimates and 500 coupled likelihood estimates, was approximately 0.10 s for t = 0.5, 0.15 s for t = 2, and 0.25 s
when t = 10.

λ
Z
2 (θ,z)=




1 zA < 1
zA otherwise

, λZ3 (θ,z)=



0 zB < 1
zB otherwise

.

(35)

The process Zθ may now reach states in which the first
coordinate is negative. We may allow the rate λZ3 (θ,x) to be
zero because the reaction B→ C can never be interrupted
by another reaction; see item 1 of Sec. III B. Hence, the Zθ

constructed with rates (35) is still non-interruptive.
In Figure 4, we give a comparison of method efficiency

with a = 10 for times t = 0.5, t = 2, and t = 10. Again, we give
the time required for each method to achieve a confidence
interval of half-width equal to 1% of the magnitude of the
sensitivity. At t = 0.5, the GS hybrid method is significantly
more efficient than any other method; in particular, it is almost
10 times faster than PPA and over 165 times faster than
LR + CV, the other unbiased methods considered. As time
increases to t = 2, however, PPA becomes the most efficient
method. At t = 10, the advantage of PPA over the hybrid
methods is even more significant: PPA is over 30 times
faster than the GS hybrid method. Interestingly, at t = 10, the
LR + CV method is very nearly as efficient as PPA. This
is a particularly striking example of why future work should
include a study of the regimes in which a given method is
likely to be the most efficient choice.

Note that in this example, the biased methods with
the given parameter choices are less efficient than the most
efficient unbiased method at each time we considered.

3. Michaelis–Menten kinetics

We demonstrate the hybrid methods on a non-mass
action model. In particular, the standard Michaelis–Menten
approximation of the substrate–enzyme model

S→ ∅, E+S� ES→ E+P, P→ P̃

would lead to the model

S
θ1→ ∅, S

∗→ P, P
θ3→ P̃,

where the intensity (∗) is given by λX2 (θ,Xθ) = θ2Xθ,S

θ4+Xθ,S
, and

where Xθ,S denotes the number of substrate molecules. The
other two rates follow mass action kinetics. See, for example
Ref. 29, from which we obtained the relevant parameter
values, θ = (1/20,1,1,11). Note that this network is analogous
to the switch model above. For the needed approximate model
we use

λ
Z
1 (θ,z)=




1
20

zS < 1

1
20

zS otherwise
,

λ
Z
2 (θ,z)=




θ2

θ4+1
zS < 1

θ2zS
θ4+ zS

otherwise
,

and

λ
Z
3 (θ,z)=




0 zP < 1
θ3zP otherwise

.

Again note that the third reaction cannot be interrupted.
We estimate ∂

∂θ1
E[Xθ, P̃(t)] at times t = 2 and t = 20; the actual

sensitivity values are approximately 0.23 and 29, respectively.
The results are similar to the results of the mass action switch
model of Sec. IV B 2. See Figure 5. In particular, for the small
time t = 2, the hybrid methods are more efficient than PPA
and the other methods. In particular, the GS hybrid method is
over 7 times faster than PPA. At the time of t = 20, when the
intensity of each reaction channel in the system is often zero,
the PPA and LR + CV methods are most efficient, with PPA
returning the desired estimate over 12 times faster than the
GS hybrid method.

C. Dimerization

We consider a model of mRNA transcription and
translation in which, additionally, the protein dimerizes.
Table I gives the reactions of the model. Since the model
does not satisfy the non-interruptive condition 3, this table
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FIG. 5. An efficiency comparison for
the estimation of ∂

∂θ1
E[Xθ, P̃(t)] in

the Michaelis–Menten switch model of
Sec. IV B 3 with an initial S quantity of
10. CPU time gives computation time
in seconds required to achieve a confi-
dence half-width of 1% of the sensitiv-
ity value.

also provides the rates that were used for the approximate
process Zθ in the hybrid methods.

1. Dimer abundance sensitivity

We first estimate the sensitivity ∂
∂θ3
E[Xθ,D(t)] at time t

= 1, with θ = (200,100,0.1,25,1,1), and with zero initial
quantities. In the first bar graph in Figure 6, we show the
time required by each method to compute an estimate to
within 5% of the sensitivity value. The GS hybrid method is
again the most efficient of the unbiased methods, returning
the estimate over 8 times faster than PPA and over 600 times
faster than the LR + CV method. In this experiment, for the
GS hybrid method to achieve the target variances determined
by the optimization procedure, approximately 53% of the
estimates samples were pathwise estimates, with the other
47% being coupled likelihood estimates. See Sec. III B.

The CFD method with h = (0.1)θ3 is seen to be
significantly more efficient than the other methods, including
the unbiased methods. Of course, the bias of any such finite
difference method is generally unknown, which is an issue if
high accuracy is a priority. For example, with h= (0.1)θ3, the

CFD method returns an estimate of 145±1, while the actual
sensitivity is ≈141; that is, the bias is approximately 3% of
the sensitivity value. Furthermore, as expected, the variance is
inversely proportional to the size of h, and when h is changed
to (0.01)θ3, the CFD method becomes less efficient than all
other methods except LR + CV. This illustrates the issue for
biased methods that, a priori, one generally does not know
which values of h will provide an efficient estimate with
acceptable bias. The RPD hybrid method suffers a similar
difficulty in the choice of w: one generally cannot know the
bias of a particular w without numerical experimentation. For
example, with w = (0.1)t, the RPD hybrid method also has a
bias of approximately 3%, as it returns an estimate of 145±1.

We next include results for computing ∂
∂θ3
E[Xθ,D(t)] at a

different set of parameters, namely, θ = (1000,200,0.1,20,0.1,
0.1), at time t = 2 and with an initial condition of Xθ,M(0)
= 50 and other initial abundances equal to 0. As shown in
the second graph in Figure 6, in order to achieve a half-width
of approximately 5% of the value of the sensitivity, the GS
hybrid method is by far the most efficient unbiased method.
In particular, the PPA method requires over 225 times more
computation time than the GS hybrid method. We estimate that

TABLE I. Reactions and hybrid rates for the dimerization model of Sec. IV C. We take all initial quantities equal
to zero and M̃ = 106 (we have added a tilde to avoid confusion with the symbol for mRNA). For the process Zθ

to be non-interruptive, we need only to prevent three of the intensities from being zero: λ2, λ3, and λ5. Indeed, λ1
is constant, and reactions 4 and 6 cannot be interrupted by another reaction.

Reaction λX
k

λZ
k

(1) Transcription ∅ → M θ1 θ1

(2) Translation M → M + P θ2XM




θ2 ZM < 1
θ2M̃ θ2ZM ≥ θ2M̃

θ2ZM otherwise

(3) Dimerization P + P → D θ3XP(XP−1)



θ3 ZP < 2
θ3M̃ ZP ≥ 2 and

θ3ZP(ZP − 1) ≥ θ3M̃

θ3ZP(ZP − 1) otherwise

(4) Degradation M → ∅ θ4XM




θ4M̃ θ4ZM ≥ θ4M̃

θ4ZM otherwise

(5) Degradation P → ∅ θ5XP




θ5 ZP < 1
θ5M̃ θ5ZP ≥ θ5M̃

θ5ZP otherwise

(6) Degradation D → ∅ θ6XD




θ6M̃ θ6ZD ≥ θ6M̃

θ6ZD otherwise
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FIG. 6. A comparison of efficiency of the sensitivity methods on the dimerization model of Sec. IV C to compute ∂
∂θ3
E[Xθ,D(t)]. We provide two estimates.

The first estimate is at θ = (200, 100, 0.1, 25, 1, 1), t = 1, and zero initial conditions; the second is at θ = (1000, 200, 0.1, 20, 0.1, 0.1), t = 2, and an initial
condition of Xθ,M(0) = 50 and other initial abundances equal to 0. CPU gives computation time in seconds required to reach a confidence half-width of 5% of
the sensitivity value. In the second graph, the CPU time given for the LR + CV method is an estimate based on the variance of partial data.

the LR + CV method requires approximately 1.8×106 times
more computation time than the GS hybrid method, though
we were not able to complete the numerical computations for
the LR + CV method due to the fact that the time required
to do so was so large. We note that, for this example, the
approximate paths Zθ simulated for the pathwise estimates of
the GS hybrid method were all valid realizations of the original
process Xθ. That is, with very high probability, the coupled
likelihood estimator is zero or near zero. Thus, contrary to the
previous set of parameters, in this experiment, all estimates
were pathwise estimates. See Sec. III B.

Note that for this particular experiment, the RPD hybrid
method is more efficient than the GS hybrid method, by a
factor of almost 7 when w = (0.1)t = 0.2, and by a factor of
about 2.5 when w = (0.01)t = 0.02. Furthermore, the bias of
the RPD method is less significant than for the previous choice
of parameters. In particular, the bias of the RPD hybrid method
when w = (0.1)t is only approximately 1% of the actual value,
returning an estimate of 557±1 while the actual value is ≈552;
when w = (0.01)t, the bias is only about 0.8%. As described
above for the GS hybrid method, the RPD hybrid method used
only pathwise estimates in this experiment. Also note that the
RPD hybrid method, with either choice of w, is more efficient
than the CFD method at either choice of h we considered.

2. Integrated dimerization rate sensitivity

We consider the functional

 t

0
λ3(θ,Xθ(s))ds =

 t

0
θ3Xθ,P(s)(Xθ,P(s)−1) ds,

which is the integral of the rate of the dimerization reaction
at t = 5 and at θ0 = (200,10,0.01,25,1,1). This quantity is a
functional of the path and we therefore use the pathwise
hybrid method, outlined in and around (8), on this quantity
directly. That is, we do not need to use the martingale
representation (11) as we have in previous examples. The
RPD and PPA methods are not applicable for the computation
of this sensitivity. Also note that, unlike in previous examples,
the functional depends explicitly on θ, which requires the

methods to take into account the partial derivative of the
functional in both pathwise and likelihood ratio estimators.

Instead of estimating a single derivative, we estimate
the full gradient. Further, for this example, we estimate the
efficiency of the methods by simulating each valid method
for a fixed amount of time and comparing the resulting
confidence intervals for each of the entries of the gradient.
Table II provides this comparison for the pathwise hybrid, the
LR + CV, and the CFD methods. As shown in the table, the
pathwise hybrid method is significantly more precise than the
LR+CV method, which is the only other unbiased method that
is applicable for this problem. The pathwise hybrid method is
also significantly more precise than the CFD method, which
for this experiment used the relatively large perturbations of h
= (0.1)θi for the ith entry of the gradient (which leads to a
smaller variance). The relatively poor behavior of the CFD
method is partially due to the fact that, unlike the pathwise
hybrid and LR + CV methods, the CFD method cannot reuse
paths for different gradient estimates since the simulated paths
have only one particular parameter perturbed. This problem

TABLE II. A comparison of sensitivity methods on the dimerization model
of Sec. IV C. Estimates of ∇θE[

 t
0 λ5(θ, Xθ(s)) ds] are given for t = 5 and

at θ0 = (200, 10, 0.01, 25, 1, 1). CPU gives computation time in seconds.
Recall that the hybrid and LR + CV methods are unbiased, while CFD is not.
Note that the total computation time used by each of the three methods is
approximately equal (we have rounded the values to the nearest second for
clarity). As the CFD method must compute each estimate one by one, the
total computation time was allocated approximately equally for each of the
six estimates.

Pathwise hybrid LR + CV CFD

∇θ

0.5713 ± 0.0067 0.5685 ± 0.0501 0.5669 ± 0.0146
11.48 ± 0.13 11.14 ± 0.67 11.26 ± 0.27
3401 ± 34 3162 ± 308 3403 ± 126
−4.559 ± 0.051 −5.046 ± 0.419 −4.544 ± 0.114
−55.95 ± 0.59 −57.33 ± 4.48 −53.32 ± 1.57

0.0 ± 0.0 −0.1 ± 2.4 0.0 ± 0.0

CPU time 68 68 68
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with finite difference methods grows in significance as the
dimension of θ grows.

V. CONCLUSIONS

We have provided a new class of methods for the
estimation of parametric sensitivities. These hybrid methods
include a pathwise estimate but also a correction term,
ensuring that the bias is either mitigated (in the case of
the RPD hybrid method) or zero. In particular, the GS hybrid
method is, along with the LR and PPA methods, only the third
unbiased method so far developed in the current setting for
the estimation of derivatives of the form ∂

∂θi
E[ f (Xθ(t))].

For computing sensitivities of the form ∂
∂θ
E[ f (Xθ(t))]

at some fixed time t, two methods were highlighted. The
GS hybrid method is unbiased and can be significantly more
efficient than existing unbiased methods. At the cost of a small,
controllable bias, the RPD hybrid method, which utilizes the
RPD method of Ref. 30 for the pathwise estimate, can often
increase efficiency further, particularly at large times when
the system may be nearing stationarity. A useful avenue of
future work will be to study these and other existing sensitivity
methods on a wider range of networks and parameter values
to better describe which method might be most efficient for a
given model of interest.
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APPENDIX: PROOF OF THEOREM 1

We restate Theorem 1.

Theorem 1. Suppose that the process Zθ satisfies the
stochastic equation (1) with λk satisfying conditions 3 and
4 on a neighborhood Θ of θ. Suppose that the function F
satisfies condition 2 on Θ. For some 0 ≤ a ≤ b<∞, let LZ(θ)
=
 b

a F(θ,Zθ(s)) ds. Then, ∂
∂θi
E[LZ(θ)]=E


∂
∂θi

LZ(θ)


for all
i ∈ {1, . . ., R}.

The proof of Theorem 1 is similar to that of Theorem 5.1
in Ref. 15. The main difference is in the proof of the continuity
of the function L, which is our Lemma 2. As in Sec. II B 3,
for convenience throughout this Appendix, we take R= 1 (so
that θ is 1-dimensional).

We first need some preliminary results. Let N(θ,t) be the
number of jumps of Zθ through time t.

Lemma 1. For any fixed and finite t, q ∈ [1,∞), and
c ∈ [1,∞), we have

E


sup
θ∈Θ

N(θ,t)q

<∞, E


sup
θ∈Θ

sup
s∈[0, t]

∥Zθ(s)∥q

<∞,

and

E


sup
θ∈Θ

cN (θ, t)

<∞.

Proof. Note that by condition 4, N(θ,t) is stochastically
bounded, uniformly in θ, by a Poisson random variable N̂ with
parameter Γ̃= tKΓM. This proves the first bound immediately.
To see the second result, note that sups∈[0, t]∥Zθ(s)∥
≤ ∥Zθ(0)∥ + N(θ,t)maxk |1 · ζk | and use the first result. To
prove the final bound, use that E

�
supθ∈ΘcN (θ, t)� ≤ E[cN̂], and

that

E[cN̂] =
∞

m=0

cmP(N̂ =m)=
∞

m=0

cm
Γ̃m

m!
e−Γ̃

= e−Γ̃
∞

m=0

(cΓ̃)m
m!

= e−Γ̃ec Γ̃ <∞.

�

Lemma 2. For any θ ∈ Θ and for h > 0 such that
(θ−h,θ+h) ⊂Θ, with probability 1−O(h2), we have that LZ(θ)
is continuous and piecewise differentiable on (θ−h,θ+h).

Proof. There are two parts to the proof. First, we show
that if on the interval (θ− h,θ+ h) no more than one change
occurs to the embedded chain Ẑℓ on the interval [a,b], then
LZ(θ) is continuous on that interval. Second, we require that
the probability of two or more such changes is O(h2). The
proof of the second claim follows as in the second part of
Appendix 5.B in Ref. 15, p. 120, so we do not include it here.

We prove the first claim. Suppose that there is at most
one change to the embedded chain in the time interval [a,b]
on (θ−h,θ+h). Then, one of the following cases occurs:

(i) there is no change to the embedded chain,
(ii) two (or more) jumps switch order through time b, causing

a change in the embedded chain of Zθ, or
(iii) some jump enters or exits the interval [a,b], changing the

number states appearing in the integral LZ.

We have crucially used the non-interruptive condition 3
here, and the fact that Zθ satisfies the random time change
representation (1), to exclude any other possibilities, including
interruptions. What we must show is that LZ is continuous in
each case. Recall from (16) that

LZ(θ)=
N (θ,b)
ℓ=0

F(θ,Ẑℓ(θ))[Tθ
ℓ+1∧b−Tθ

ℓ ∨a]+ (A1)

and that F is continuous in θ by assumption. By work in
Sec. II B 3, the jump times Tθ

ℓ are continuous except possibly
at values of θ at which the embedded chain of Zθ changes.
Thus, it is clear that LZ is continuous in case (i).

Now suppose that (ii) occurs at some point θ∗ ∈ (θ− h,θ
+h). Then, two reactions k and m occur at the same time. (The
case when three or more reactions occur simultaneously is
essentially the same.) Further suppose these reactions occur as
the ℓth and (ℓ+1) st jumps. Then at θ∗, there is a discontinuity
in Ẑℓ(θ): from one side the limit is Ẑℓ−1(θ)+ ζk and from
the other it is Ẑℓ−1(θ)+ ζm. However, by the non-interruptive
condition, the two reactions may occur in either order, and the
net result of the two reactions is the same regardless: ζk+ ζm
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is added to the system. That is, X̂ℓ+1(θ)≡ Zℓ−1(θ)+ ζk+ ζm on
the whole interval, and furthermore, this crossover of jumps
affects no other states of the embedded chain.

Then in the summation (A1), any given term changes
continuously except possibly the ℓth term

F(θ,Ẑℓ(θ))[Tθ
ℓ+1∧b−Tθ

ℓ ∨a]+. (A2)

But at θ∗, we have Tθ∗
ℓ+1=Tθ∗

ℓ . That is, neither reaction is
postponed because the intensities of both are strictly positive.
Therefore, term (A2) is zero at the point of discontinuity, and
LZ(θ) is continuous at θ∗ as needed.

Suppose instead that at θ∗, case (iii) occurs. Since an
additional jump time appears in the interval [a,b] at θ∗, an
additional term may show up in summation (A1). However,
this new jump time Tθ

ℓ must be equal to either a or b. Then,
[Tθ

ℓ+1∧b−Tθ
ℓ ∨a]+ is zero, and LZ is again continuous at θ∗.

Finally, LZ is piecewise differentiable in each case.
Indeed, by the derivations in Sec. II B 3, LZ is differentiable
except possibly at values of θ at which the embedded chain
changes, and by assumption, there is at most one such value.

�
We now prove two useful bounds before finally giving

the proof of Theorem 1. For the remainder, we assume for
convenience that ΓM,Γm, and Γ′ are at least 1.

Lemma 3. For each ℓ from 0 to N(θ,b), we have

MℓBmax
k

max
j≤ℓ

����
∂

∂θ
Sθ
k(Tθ

j )
���� ≤ Γ

′b(2ΓMΓm)ℓ,
where ΓM,Γm, and Γ′ are as in condition 4.

Proof. Consider (19) and (20) and recall that for each k,
we have ∂

∂θ
Sθ
k
(Tθ

0 )= 0. Then,

����
∂

∂θ
∆
θ
0
����=

����
∆θ0

λkℓ(θ,Ẑθ(0))
∂

∂θ
λk0(θ,Ẑθ(0))���� ≤ ∆

θ
0Γ
′
Γm.

Then for any k, we have

∂

∂θ
Sθ
k(Tθ

1 )=∆θ0
∂

∂θ
λk(θ,Ẑθ(0))+λk(θ,Ẑθ(0)) ∂

∂θ
∆
θ
0,

so that

M1=max
k

����
∂

∂θ
Sθ
k(Tθ

1 )
���� ≤ ∆

θ
0Γ
′+ΓM∆

θ
0Γ
′
Γm

≤ 2Γ′ΓmΓM∆θ0.

Similarly, for a given ℓ, we have

����
∂

∂θ
∆
θ
ℓ

���� ≤
����

∆θℓ

λkℓ(θ,Ẑℓ(θ))
∂

∂θ
λkℓ(θ,Ẑℓ(θ))����

+
����λkℓ(θ,Ẑℓ(θ))−1 ∂

∂θ
Sθ
kℓ
(Tθ

ℓ )
����

≤ ∆θℓΓ
′
Γm+ΓmMℓ−1.

Therefore, using that

∂

∂θ
Sθ
k(Tθ

ℓ ) =
∂

∂θ
Sθ
k(Tθ

ℓ−1)+∆θℓ−1
∂

∂θ
λk(θ,Ẑℓ−1(θ))

+ λk(θ,Ẑℓ−1(θ)) ∂
∂θ
∆
θ
ℓ−1

and noticing that the Mℓ are nondecreasing, we see that

Mℓ ≤ Mℓ−1+Γ
′
∆
θ
ℓ−1+ΓM

����
∂

∂θ
∆
θ
ℓ−1

����
≤ Mℓ−1+Γ

′
∆
θ
ℓ−1+ΓM(∆θℓ−1Γ

′
Γm+ΓmMℓ−2)

≤ Mℓ−1+Γ
′
∆
θ
ℓ−1+ΓM(∆θℓ−1Γ

′
Γm+ΓmMℓ−1)

≤ 2ΓMΓmMℓ−1+2Γ′ΓMΓm∆θℓ−1.

Iterating this inequality, we see that

Mℓ ≤ (2ΓMΓm)ℓ−12Γ′ΓMΓm
ℓ−1
j=0

∆
θ
j ≤ Γ

′b(2ΓMΓm)ℓ.

�

Corollary 1. For each ℓ from 0 to N(θ,b) we have
����
∂

∂θ
∆
θ
ℓ

���� ≤ 2Γ′bΓm(2ΓMΓm)ℓ,
where ΓM,Γm, and Γ′ are as in condition 4.

Proof. By (19), condition 4, and Lemma 3, we have that

����
∂

∂θ
∆
θ
ℓ

���� ≤
����

∆θℓ

λkℓ(θ,Ẑℓ(θ))
∂

∂θ
λkℓ(θ,Ẑℓ(θ))����

+
����λkℓ(θ,Ẑℓ(θ))−1 ∂

∂θ
Sθ
kℓ
(Tθ

ℓ )
����

≤ bΓmΓ′+Γm
����
∂

∂θ
Sθ
kℓ
(Tθ

ℓ )
����

≤ bΓmΓ′+ΓmΓ′b(2ΓMΓm)ℓ
≤ 2Γ′bΓm(2ΓMΓm)ℓ.

�

We finally turn to the proof of Theorem 1. As noted
previously, the proof of the theorem now follows similarly to
the proof of Theorem 5.1 in Ref. 15.

Proof of Theorem 1. Let h̃ be the infimum over h for
which two or more changes occur to the embedded chain of
Zθ through (θ− h,θ+ h) on the time interval [a,b]. That is, h̃
is the second place at which a change in the embedded chain
occurs. Note that h̃ > 0 is positive with probability 1. Without
loss of generality, (θ− h̃,θ+ h̃) ⊂Θ. We must prove the middle
equality in

d
dθ
E[LZ(θ)] = lim

h→0
E[h−1[LZ(θ+h)−LZ(θ)]]

= E

lim
h→0

h−1[LZ(θ+h)−LZ(θ)]


= E


d
dθ

LZ(θ)

.

We write

E[h−1[LZ(θ+h)−LZ(θ)]]
=E[h−1[LZ(θ+h)−LZ(θ)]1(h < h̃)]
+E[h−1[LZ(θ+h)−LZ(θ)]1(h ≥ h̃)]. (A3)

Consider the first term. By Lemma 2, and since by the
definition of h̃ at most one change occurs to the embedded
chain for h < h̃, we have that LZ is continuous and piecewise
differentiable on (θ− h̃,θ+ h̃). By a generalized mean value
theorem (e.g., Ref. 9),
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�
h−1[LZ(θ+h)−LZ(θ)]1(h < h̃)� ≤ sup

θ∈Θ

����
d
dθ

LZ(θ)����,
where the supremum is over those points where the derivative
exists. We will show that this supremum has finite expectation;
therefore, since as h→ 0,

h−1[LZ(θ+h)−LZ(θ)]1(h < h̃)a.s .→ d
dθ

LZ(θ),
we will have by the dominated convergence theorem that
E[h−1[LZ(θ + h)− LZ(θ)]1(h < h̃)]→ E[ d

dθ
LZ(θ)]. We will

also show that the second term in (A3) goes to zero as
h→ 0, which proves the theorem.

Write N B N(θ,b) and recall that

����
d
dθ

LZ(θ)���� =
������

N
ℓ=0

[Tℓ+1(θ)∧b−Tℓ(θ)∨a]+
(
∂

∂θ
F(θ,Ẑℓ(θ))

)
+ F(θ,Ẑℓ(θ)) ∂

∂θ
[Tℓ+1(θ)∧b−Tℓ(θ)∨a]+

�����

≤
������

N
ℓ=0

[Tℓ+1(θ)∧b−Tℓ(θ)∨a]+
(
∂

∂θ
F(θ,Ẑℓ(θ))

) ������
+
����

N
ℓ=0

F(θ,Ẑℓ(θ)) ∂
∂θ

[Tℓ+1(θ)∧b−Tℓ(θ)∨a]+����.

We now consider these two terms separately. By condition
2 on F,

������

N
ℓ=0

[Tℓ+1(θ)∧b−Tℓ(θ)∨a]+
(
∂

∂θ
F(θ,Ẑℓ(θ))

) ������
≤

N
ℓ=0

Tℓ+1(θ)∧b− [Tℓ(θ)∨a]+����
∂

∂θ
F(θ,Ẑℓ(θ))����

≤C2

N
ℓ=0

[Tℓ+1(θ)∧b−Tℓ(θ)∨a]+(1+ ∥ Ẑθ
ℓ ∥c2)

≤C2(b−a)(1+max
ℓ≤N

∥ Ẑθ
ℓ ∥c2)

≤C2(b−a)(1+sup
θ∈Θ

sup
s∈[0,b]

∥Zθ(s)∥c2).
Now, from (21) and our work in Lemma 3, we have for

any ℓ that

����
∂

∂θ
[Tℓ+1(θ)∧b−Tℓ(θ)∨a]+���� ≤

N
j=0

����
∂

∂θ
∆ j

����.

Therefore, for the second term,

����

N
ℓ=0

F(θ,Ẑℓ(θ)) ∂
∂θ

[Tℓ+1(θ)∧b−Tℓ(θ)∨a]+����

≤C1

N
ℓ=0

(1+ ∥ Ẑθ
ℓ ∥c1)����

∂

∂θ
[Tℓ+1(θ)∧b−Tℓ(θ)∨a]+����

≤C1(1+max
ℓ≤N

∥ Ẑθ
ℓ ∥c1)

N
ℓ=0

N
j=0

����
∂

∂θ
∆ j

����

≤C1(1+max
ℓ≤N

∥ Ẑθ
ℓ ∥c1)

N
ℓ=0

N
j=0

2Γ′TΓ2
m(2ΓMΓm) j

≤C1(1+sup
θ∈Θ

sup
s∈[0,b]

∥Zθ(s)∥c1)N22Γ′TΓm(2ΓMΓm)N .
By Lemma 1 and repeated applications of the Cauchy-

Schwarz inequality, we see that both of the bounds we have

computed are bounded uniformly in θ on Θ by a quantity of
finite expectation as needed.

Finally, we must show that E[h−1[LZ(θ+ h)− LZ(θ)]1(h
≥ h̃)] goes to zero as h→ 0. By using the Cauchy-Schwarz
inequality, we see that

E
�
h−1[LZ(θ+h)−LZ(θ)]1(h ≥ h̃)�2

≤ h−2E
�[LZ(θ+h)−LZ(θ)]2�P(h ≥ h̃).

Since by Lemma 2 we have P(h ≥ h̃) =O(h2), and since
[LZ(θ + h)− LZ(θ)]a.s→ 0, we are done by the dominated
convergence theorem if we can show that [LZ(θ+h)−LZ(θ)]2
is bounded by an integrable function. By condition 2 on F,
for any θ ∈Θ,

[LZ(θ)]2 =
( b

a

F(θ,Zθ(s))ds
)2

≤ (b−a)
 b

a

�
F(θ,Zθ(s))�2ds

≤ (b−a)
 b

a

C2
1(1+ ∥Zθ(s)∥c1)2ds

≤ C2
1(b−a)2(2+2sup

θ∈Θ
sup

s∈[0,b]
∥Zθ(s)∥2c1), (A4)

where the final line follows because (a+b)2 ≤ 2a2+2b2. This
bound has finite expectation by Lemma 1, and is also uniform,
so that it holds for |LZ(θ+h)2| as well. Then as needed,

|LZ(θ+h)−LZ(θ)|2 ≤ 2[LZ(θ+h)]2+2[LZ(θ)]2
≤ 4sup

θ∈Θ
[LZ(θ)]2,

which has finite expectation by taking the supremum of (A4).
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