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Abstract

This paper is concerned with elucidating a relationship between two common cou-
pling methods for the continuous time Markov chain models utilized in the cell biology
literature. The couplings considered here are primarily used in a computational frame-
work by providing reductions in variance for different Monte Carlo estimators, thereby
allowing for significantly more accurate results for a fixed amount of computational
time. Common applications of the couplings include the estimation of parametric sen-
sitivities via finite difference methods and the estimation of expectations via multi-level
Monte Carlo algorithms. While a number of coupling strategies have been proposed
for the models considered here, and a number of articles have experimentally compared
the different strategies, to date there has been no mathematical analysis describing the
connections between them. Such analyses are critical in order to determine the best
use for each. In the current paper, we show a connection between the common reaction
path (CRP) method and the split coupling (SC) method, which is termed coupled finite
differences (CFD) in the parametric sensitivities literature. In particular, we show that
the two couplings are both limits of a third coupling strategy we call the “local-CRP”
coupling, with the split coupling method arising as a key parameter goes to infinity, and
the common reaction path coupling arising as the same parameter goes to zero. The
analysis helps explain why the split coupling method often provides a lower variance
than does the common reaction path method, a fact previously shown experimentally.

1 Introduction

Models of biochemical reaction networks with stochastic dynamics have become increasingly
popular in the science literature over the previous fifteen years where they are often studied
via computational methods and, in particular, Monte Carlo methods. These computational
methods tend to be extremely expensive and time-consuming without the use of variance
reduction techniques. One of the most common ways to achieve a large reduction of variance
is to couple two relevant processes in order to increase their covariance. There are three
main couplings found in the relevant literature: (i) the use of common random numbers
(CRN), (ii) the common reaction path (CRP) coupling [17], and (iii) a split coupling (SC)
method termed coupled finite differences in the setting of parametric sensitivities [2, 4]. It
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has been observed in the literature that both the CRP and SC couplings are far superior
to the CRN coupling in terms of variance reduction [2, 17, 18]. It has also been observed
through examples that the SC method tends to perform much better than the CRP method,
though some exceptions exist [2, 18]. To the best of the authors’ knowledge there has to date
been no analytical work on understanding the connections between these two couplings. In
the present paper we prove that both the CRP and SC couplings arise naturally as different
limits of a third family of couplings we term the local-CRP coupling. In particular, the
CRP coupling arises as a limit in which the local-CRP coupling is as loosely coupled as
possible, whereas the SC coupling arises from a limit of the local-CRP “recoupling” as often
as possible. Such an analysis sheds light on why the split coupling often provides a lower
variance than does the CRP coupling.

The outline for the remainder of the paper is as follows. In Section 2, we formally
present the mathematical models considered in this paper, together with a brief description
of the computational methods that serve as motivation for the present work. In Section
3, we present the different coupling strategies for the models presented in Section 2. In
Section 4, we state and prove our main results. In Section 5, we provide numerical examples
demonstrating our main results, and in Section 6 we conclude with some brief remarks.

2 Mathematical model and motivating computational
methods

Motivated by models in biochemistry, we consider continuous time Markov chain models in
Zd, in which the ith component of the process typically represents the number of molecules
of “species” i present in the system. The transitions of the chain are specified by vectors,
ζk ∈ Zd, for k ∈ {1, . . . , R} with R < ∞, determining the net change in the chain due to
the occurrence of a single “reaction,” and by the intensity functions λk : Zd → R≥0, which
determine the rate at which the different reactions are occurring.1 Specifically, letting Nk(t)
be the number of times transition k ∈ {1, . . . , R} has occurred by time t ≥ 0, we will consider
the continuous time Markov chain X satisfying the equation

X(t) = X(0) +

R∑
k=1

Nk(t)ζk,

where Nk is a counting process with local intensity function λk. That is, {Nk} are the
counting processes for which the processes

Nk(t)−
∫ t

0

λk(X(s))ds

are local martingales. One useful representation for the counting processes Nk(t) is via
time-changed unit-rate Poisson processes [1, 6, 10, 15],

Nk(t) = Yk

(∫ t

0

λk(X(s))ds

)
,

yielding the stochastic equation

X(t) = X(0) +

R∑
k=1

Yk

(∫ t

0

λk(X(s))ds

)
ζk (2.1)

1Intensity functions are termed “propensity” functions in the biochemistry literature.
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where {Yk}Rk=1 is a collection of independent unit-rate Poisson processes. Note that X can
also be specified by its infinitesimal generator,

(Af)(x) =

R∑
k=1

λk(x)(f(x+ ζk)− f(x)), (2.2)

where f is any bounded function with compact support.
We denote Z as the process on Zd with the same transition directions {ζk} as X, but with

intensities λ̃k : Zd → R≥0. That is, Z is the Markov process with infinitesimal generator

(Bf)(x) =

R∑
k=1

λ̃k(x)(f(x+ ζk)− f(x)), (2.3)

and which satisfies the stochastic equation

Z(t) = Z(0) +

R∑
k=1

Yk

(∫ t

0

λ̃k(Z(s))ds

)
ζk, (2.4)

where {Yk}Rk=1 is a collection of independent unit-rate Poisson processes. In the remainder
of the paper, we consider different ways to couple X and Z and provide an asymptotic
relationship between two of the couplings.

2.1 Motivating computational methods

We briefly present two computational methods that serve as the motivation for the analysis of
the different coupling strategies: finite difference methods for parametric sensitivity analysis
and multi-level Monte Carlo for the estimation of expectations.

2.1.1 Parametric sensitivity analysis

Suppose that {Xθ} is a parametric family of processes about θ on a state space E, and
f : E → R is some statistic of interest. For example, f(X(t)) = Xi(t) may provide the
abundance of species i at time t ≥ 0. It is common to wish to evaluate

d

dθ
E[f(Xθ(t))] ≈ E[f(Xθ+h(t))]− E[f(Xθ(t))]

h
(2.5)

as a measurement of the sensitivity of E[f(Xθ(t))] with respect to θ. Such a strategy is
usually called a finite difference method. We would like to empirically evaluate the right-
hand side of (2.5) in as efficient a manner as possible. By coupling the processes (Xθ+h, Xθ),
we may evaluate

h−1E[f(Xθ+h(t))− f(Xθ(t))],

with the magnitude of Var(f(Xθ+h(t))− f(Xθ(t))) determining the quality of the coupling.
In particular, we wish to minimize Var(f(Xθ+h(t)) − f(Xθ(t))) without greatly increasing
the computational cost of producing realizations of the coupled processes (Xθ+h, Xθ). We
explicitly note that in the setting of the previous section, we have

λk(·) = ηk(θ, ·), λ̃k(·) = ηk(θ + h, ·),
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where for each k, {ηk(θ, ·) : Rd → R≥0} is a parametric family of functions about θ. In this
case, we have

X = Xθ, and Z = Xθ+h.

As mentioned in Section 1, there has been a large amount of work in the literature on
developing good coupling strategies for the estimation of parametric sensitivities via finite
differences (2.5); see, for example, [2, 7, 17, 18]. To the best of the authors’ knowledge
there has been no mathematical analysis detailing the connections between the different
couplings used, though see the discussion in Section 6 for details pertaining to a recent work
by Arampatzis and Katsoulakis [8].

2.2 Multi-level Monte Carlo

In [11], Mike Giles introduced the multi-level Monte Carlo (MLMC) method for the approx-
imation of expectations of diffusion processes. Specifically, if X is the diffusion process of
interest and {Z`} are a family of approximations to X, with higher values of ` corresponding
to better approximations, then we observe that for any function f of interest,

E[f(X(t))] ≈ E[f(ZL)] =

L∑
`=1

E[f(Z`(t))− f(Z`−1(t))] + E[f(Z0)],

where L is chosen large enough so that |E[f(X(t))]− E[f(ZL(t))]| is below some target
accuracy. It is typical to choose Z` to be the process produced by Euler-Maruyama with a
step size of M−` for some M ∈ {2, 3, . . . , 7}. If each term f(Z`(t)) − f(Z`−1(t)) is tightly
coupled, then the variance of each of the intermediate estimators will be low, thereby moving
the computational cost to the lowest level, E[f(Z0)], which can be estimated quickly via
Euler-Maruyama with large time-steps.

In [4], Anderson and Higham extended the multi-level Monte Carlo method to the setting
of this paper by utilizing the split coupling detailed in Section 3. They further noted that
an unbiased estimator can be produced for jump models by coupling the exact process X
with the approximate process with the finest time discretizatoin

E[f(X(t))] = E[f(X(t))− f(ZL(t))] +

L∑
`=1

E[f(Z`(t))− f(Z`−1(t))] + E[f(Z0)],

where, again, it is the quality of the coupling at each level that determines the overall quality
of the method.

We point out that in the diffusive case the most natural coupling is to re-use the driv-
ing Brownian path for each of the coupled processes. This is relatively easy to do via the
Brownian bridge. However, as will be noted in the next section, there are multiple natural
couplings to choose from in the context of jump processes with state dependent intensity
functions, and different choices lead to computational methods with vastly different compu-
tational complexities and, hence, runtimes.

3 Different Couplings

We return to the notation introduced at the beginning of Section 2 and focus our discussion
on ways to couple X and Z with intensities λk and λ̃k, respectively.
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3.1 Split coupling

We will begin by introducing the split coupling (SC), which first appeared as an analytic
tool in [16] and later appeared in the context of computational methods in [2, 3, 4, 5, 8].

Let a ∧ b def
= min{a, b}, and let U and V be any càdlàg processes on Rd. Then for each

k ∈ {1, . . . , R} we define the operators r1k, r2k, and r3k via

r1k(λk, λ̃k,U ,V)(s)
def
= λk(U(s)) ∧ λ̃k(V(s))

r2k(λk, λ̃k,U ,V)(s)
def
= λk(U(s))− r1k(λk, λ̃k,U ,V)(s)

r3k(λk, λ̃k,U ,V)(s)
def
= λ̃k(V(s))− r1k(λk, λ̃k,U ,V)(s).

(3.1)

The split coupling of the processes X and Z is then given by

Xsc(t) = X(0)+
R∑
k=1

{
Y1k

(∫ t

0

r1k(λk, λ̃k, Xsc, Zsc)(s)ds

)

+ Y2k

(∫ t

0

r2k(λk, λ̃k, Xsc, Zsc)(s)ds

)}
ζk

Zsc(t) = Z(0)+

R∑
k=1

{
Y1k

(∫ t

0

r1k(λk, λ̃k, Xsc, Zsc)(s)ds

)

+ Y3k

(∫ t

0

r3k(λk, λ̃k, Xsc, Zsc)(s)ds

)}
ζk,

(3.2)

where {Y1k}Rk=1∪{Y2k}Rk=1∪{Y3k}Rk=1 are mutually independent unit-rate Poisson processes.
Note that Xsc and Zsc share the family of counting processes determined by the Poisson
processes Y1k. Further note that (X,Z) satisfying the stochastic equation (3.2) is simply a
continuous time Markov chain on Zd × Zd with infinitesimal generator

(Lscg)(x, z) =

R∑
k=1

min{λk(x), λ̃k(z)}(g(x+ ζk, z + ζk)− g(x, z))

+

R∑
k=1

(λk(x)−min{λk(x), λ̃k(z)})(g(x+ ζk, z)− g(x, z))

+

R∑
k=1

(λ̃k(z)−min{λk(x), λ̃k(z)})(g(x, z + ζk)− g(x, z)),

where g : Zd × Zd → R is any bounded function with compact support.

3.2 Common random numbers

In the common random numbers (CRN) coupling, we simply simulate the embedded discrete
time Markov chain for each process concurrently with the exponential holding time for each
transition. The processes X and Z are then coupled by using (i) the same stream of random
variables for the generation of the embedded discrete time chain, and (ii) the same stream
of random variables for the exponential holding times.
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More explicitly, let {Ui}∞i=0 be a sequence of uniform random variables over the interval
[0, 1], and let η : RR≥0 × [0, 1]→ {ζ1, . . . , ζR} be defined via

η(c1, ...., cR, u) = ζk if

∑k−1
i=1 ci∑R
i=1 ci

≤ u <
∑k
i=1 ci∑R
i=1 ci

,

which is a categorical random variable parametrized by c1, ...., cR. Also, let us denote

λ0(x) =

R∑
k=1

λk(x) and λ̃0(x) =

R∑
k=1

λ̃k(x). (3.3)

Then for a common unit-rate poisson process Y , which will determine the exponential
holding times, we consider the following system:

RX(t) = Y

(∫ t

0

λ0(Xcrn(s))ds

)
RZ(t) = Y

(∫ t

0

λ̃0(Zcrn(s))ds

)
Xcrn(t) = Xcrn(0) +

∫ t

0

η(λ1(Xcrn(s−)), . . . , λR(Xcrn(s−)), URX(s−))dRX(s)

Zcrn(t) = Zcrn(0) +

∫ t

0

η(λ̃1(Zcrn(s−)), . . . , λ̃R(Zcrn(s−)), URZ(s−))dRZ(s),

(3.4)

where we note that the processes shared not just the Poisson process Y , but also the sequence
of uniform [0, 1] random variables {Ui}∞i=0. The solution to this system exists and is unique
by construction [6, 12, 13]. We note that while the representations are different, the marginal
processes Xcrn and Xsc have the same distribution, while the coupled processes (Xcrn, Zcrn)
and (Xsc, Zsc) obviously do not.

3.3 Common reaction path coupling and the local common reaction
path coupling

The common reaction path (CRP) coupling arises by simply noting that we may couple
the processes (2.1) and (2.4) via the Poisson processes {Yk}. That is, in the CRP coupling
(Xcrp, Zcrp) satisfies

Xcrp(t) = Xcrp(0) +

R∑
k=1

Yk

(∫ t

0

λk(Xcrp(s))ds

)
ζk

Zcrp(t) = Zcrp(0) +

R∑
k=1

Yk

(∫ t

0

λ̃k(Zcrp(s))ds

)
ζk,

(3.5)

where the Yk are independent unit-rate Poisson processes.
Numerical experiments have shown that this coupling is significantly tighter than the

CRN coupling, in that it produces a lower variance between the coupled processes, for many
situations [2, 17, 18]. However, the variance between the processes often increases substan-
tially as t grows. In fact, the variance of the relevant estimators oftentimes approaches that
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of independent realizations of X and Z as t grows towards infinity [2, 18]. We postulate
that the variance of the CRP coupling increases in this manner because of its inability to fix
a “decoupling” once it occurs. To understand this heuristically, suppose that given Xcrp(t0)
and Zcrp(t0) for some t0 > 0 we also have∫ t0

0

λ̃k(Zcrp(s))ds�
∫ t0

0

λk(Xcrp(s))ds (3.6)

for all k. Then the time and type of the next jump of Xcrp is nearly uncorrelated from the
time and type of the next jump of Zcrp. This is true even if Xcrp(t0) and Zcrp(t0) are very
close or even equal. This problem does not occur with the split coupling since the next
jump times of X and Z are always correlated via the counting processes with intensity

λk(Xsc(s)) ∧ λ̃k(Zsc(s)).

The above discussion motivates us to consider the following modification to the CRP
coupling. We discretize [0, T ] into multiple subintervals. For each such subinterval we
generate the coupled processes using a new set of independent unit-rate Poisson processes
and initial conditions given by the values of the processes at the terminal time of the
previous subinterval. Note that if the processes Xcrp and Zcrp are equal to each other at a
transition between subintervals, then the processes will have recoupled. We will elaborate
on this strategy. Let π = {0 = s0 < s1 · · · < sn = T} be a partition of [0, T ]. Also let
{Ykm : k = 1, . . . , R,m = 0, 1, 2, . . . } be a set of independent, unit-rate Poisson processes.
Then we define the local-CRP coupling over [0, T ] with respect to π as the solution of

Xπ
crp(t) = X(0) +

R∑
k=1

∞∑
m=0

Ykm

(∫ t∧sm+1

t∧sm
λk(Xπ

crp(s))ds

)
ζk

Zπcrp(t) = Z(0) +

R∑
k=1

∞∑
m=0

Ykm

(∫ t∧sm+1

t∧sm
λ̃k(Zπcrp(s))ds

)
ζk.

(3.7)

We remark that, irrespective of π, the marginal distribution of Xπ
crp is the same as that

of X, our process of interest, and the same goes for Zπcrp and Z. Also, when π is a trivial
partition with n = 1, the coupling (3.7) is precisely the CRP coupling of (3.5). In the
next section, we will consider the limit of the the family of local-CRP couplings as n→∞
and prove that under reasonable conditions the coupled processes converge weakly to the
processes coupled via the split coupling (3.2).

4 Limit of the local-CRP coupling

We begin this section by specifying some notation. First, when X and Z are stochastic pro-
cesses built on the probability space (Ω,F , P ), we denote by X(s, ω) the process X evaluated
at time s for a given choice ω ∈ Ω. Further, by (X,Z)(s, ω) we mean (X(s, ω), Z(s, ω)), a
vector of random variables evaluated at time s. As is usual, we will often omit ω from the
notation when no confusion is expected. Finally, when t = (t1, . . . , tK) is a K dimensional
vector of times points, we denote

X(t) = [X(t1), . . . , X(tK)].

Also, throughout the section, we assume that X(0) = Z(0).
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4.1 Weak convergence of finite dimensional distributions

We will first articulate what we mean by taking n→∞ in the context of the last section.

Definition. Let πn = {0 = s0 ≤ s1 ≤ · · · ≤ sn = T} be a partition of [0, T ]. For
m ∈ {0, . . . , n− 1} let

∆mπn = sm+1 − sm.
The mesh of πn is defined as

mesh(πn)
def
= max{∆mπn : m ∈ {0, . . . , n− 1}}.

Supposing that mesh(πn) → 0 as n → ∞, the limit of interest to us is the weak limit
of (Xπn

crp, Z
πn
crp) as n→∞. We begin with Proposition 4.1 showing the weak convergence of

Xπn
crp to Xsc over finite coordinates as n→∞. In Subsection 4.2 we prove weak convergence

at the process level.

Proposition 4.1. Suppose that neither of the nominal processes X,Z are explosive and let
(Xsc(t), Zsc(t)) be coupled in the way of (3.2). Let

πn = {0 = s0 ≤ s1 ≤ · · · ≤ sn = T}

be a sequence of partitions such that mesh(πn) → 0, as n → ∞, and for each n let
(Xπn

crp(t), Zπn
crp(t)) be coupled in the way of (3.7). Then for any K ∈ Z≥0 and t ∈ [0, T ]K ,

and any bounded Lipshitz f : (Rd × Rd)K → R,

E[f((Xπn
crp, Z

πn
crp)(t))]→ E[f((Xsc, Zsc)(t))], as n→∞.

We will briefly outline the proof of 4.1. For a fixed n, let

{Y nikm; i = 1, 2, 3, k = 1, . . . , R, m = 0, 1, 2, ...} (4.1)

and

{Y nkm; k = 1, . . . , R, m = 0, 1, 2, . . . } (4.2)

be two sets of independent unit-rate Poisson processes. At this point, we do not make any
assumption on the correlation between the processes in the set (4.1) and the processes in
the set (4.2), except to note that they will not be independent. In fact, we will construct the
Poisson processes of (4.1) as functions of the Poisson processes of (4.2). For now, simply
consider the processes built using the Poisson processes of (4.1)

Xπn
sc (t) = Xsc(0)+

∞∑
m=0

R∑
k=1

{
Y n1km

(∫ sm+1∧t

sm∧t
r1k(λk, λ̃k, X

πn
sc , Z

πn
sc )(s)ds

)

+ Y n2km

(∫ sm+1∧t

sm∧t
r2k(λk, λ̃k, X

πn
sc , Z

πn
sc )(s)ds

)}
ζk

Zπn
sc (t) = Xsc(0)+

∞∑
m=0

R∑
k=1

{
Y n1km

(∫ sm+1∧t

sm∧t
r1k(λk, λ̃k, X

πn
sc , Z

πn
sc )(s)ds

)

+ Y n3km

(∫ sm+1∧t

sm∧t
r3k(λk, λ̃k, X

πn
sc , Z

πn
sc )(s)ds

)}
ζk,

(4.3)
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along with

Xπn
crp(t) = Xcrp(0) +

∞∑
m=0

R∑
k=1

Y nkm

(∫ t∧sm+1

t∧sm
λk(Xπn

crp(s))ds

)
ζk

Zπn
crp(t) = Xcrp(0) +

∞∑
m=0

R∑
k=1

Y nkm

(∫ t∧sm+1

t∧sm
λ̃k(Zπn

crp(s))ds

)
ζk,

(4.4)

which are built with the Poisson processes (4.2). Note that (Xsc, Zsc)
dist
= (Xπn

sc , Z
πn
sc )

irrespective of n. The construction we will employ will allow us to conclude that (Xπn
sc , Z

πn
sc )

and (Xπn
crp, Z

πn
crp) satisfy

lim
n→∞

P

(
max

i∈{0,...,K}
|(Xπn

sc (ti), Z
πn
sc (ti))− (Xπn

crp(ti), Z
πn
crp(ti))| > γ

)
= 0 (4.5)

for any γ > 0. We can then appeal to a standard Portmanteau type argument to finish
the proof of Proposition 4.1: let ε > 0, and consider any bounded continuous map f :
(Rd × Rd)K → R with Lipshitz constant L. Then

|Ef((Xsc, Zsc)(t)− Ef((Xπn
crp, Z

πn
crp)(t)|

= |Ef((Xπn
sc , Z

πn
sc )(t)− Ef((Xπn

crp, Z
πn
crp)(t)|

≤ LE[|(Xπn
sc , Z

πn
sc )(t)− (Xπn

crp, Z
πn
crp)(t)|]

≤ LKγ + L P ( max
i=0,...,K

|(Xπn
sc (ti), Z

πn
sc (ti))− (Xπn

crp(ti), Z
πn
crp(ti))| > γ).

We can first choose γ < ε/(2LK). With this γ fixed, we may choose n large enough so that
the second piece can be bounded by ε/2, and the claim is achieved.

We must still describe the specific construction alluded to above that will allow us to
conclude (4.5). For each n, let

{Y nkm, Y
n,aug
ikm , i = 1, 2, 3, k = 1, . . . , R, m = 0, 1, 2, . . . }, (4.6)

be independent unit-rate Poisson processes. We generate (Xπn
crp, Z

πn
crp) up to time T using the

processes Y nkm according to (4.4). We now turn our attention to constructing the required
independent unit-rate Poisson processes Y nikm, and the coupled processes (Xπn

sc , Z
πn
sc ) built

using them according to (4.3).
Inductively arguing on m, suppose we have already generated (Xπn

sc , Z
πn
sc ) given by (4.3)

up to time sm ≥ 0. We further suppose that we have constructed the relevant Poisson
processes Y nikm̃ for all m̃ < m. We must now describe how to construct Y nikm for each valid
pair (i, k). We define the following random times for each i ∈ {1, 2, 3} and k ∈ {1, . . . , R}:

Tikm
def
= rik(λk, λ̃k, X

πn
sc , Z

πn
sc )(sm) ·∆m(πn) (4.7)

and

T crp
km

def
=

(∫ sm+1

sm

λ(Xπn
crp(s))ds

)
∨
(∫ sm+1

sm

λ̃(Zπn
crp(s))ds

)
,
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where, as usual, a∨b def
= max{a, b}, and we recall that (Xπn

crp, Z
πn
crp) has already been generated

up to time T . For notational clarity we refrain from using n in the notation above for the
random times. We now define Y n1km in the following manner

Y n1km(u) = Y nkm(u) for u ≤ T1km

Y n1km(u) = Y n1km(T1km) + Y n,aug1km (u− T1km) for u > T1km.

Having defined Y n1km, we turn to the construction of Y n2km and Y n3km. The construction is
based on which of two of the following cases hold.

1. If λ(Zπn
sc (sm)) ≤ λ(Xπn

sc (sm)), then let Y n2km satisfy

Y n2km(u) = Y nkm(u+ T1km)− Y nkm(T1km) for u ≤ T2km

Y n2km(u) = Y n2km(T2km) + Y n,aug2km (u− T2km) for u > T2km,

and let Y n3km(u) = Y n,aug3km (u) for all u ≥ 0.

2. If λ(Zπn
sc (sm)) > λ(Xπn

sc (sm)), then let Y n3km satisfy

Y n3km(u) = Y nkm(u+ T1km)− Y nkm(T1km) for u ≤ T3km

Y n3km(u) = Y n3km(T3km) + Y n,aug3km (u− T3km) for u > T3km,

and let Y n2km(u) = Y n,aug2km (u) for all u ≥ 0.

Note that the strong Markov property guarantees that the processes {Y nikm} so constructed
are independent, unit-rate Poisson processes. We then generate (Xπn

sc , Z
πn
sc ) between times

sm and sm+1 according to (4.3) with the processes {Y nikm}. Note that in so doing, we have
also created a coupling between (Xπn

sc , Z
πn
sc ) and (Xπn

crp, Z
πn
crp).

Note that for each i, k, and m, the value Tikm as defined in (4.7) is an approximation to

T sc
ikm

def
=

∫ sm+1

sm

rik(λk, λ̃k, X
πn
sc , Z

πn
sc )(s) ds.

We would like to make a few observations about this approximation before proceeding
further.

Lemma 4.2. Fix n, and let m ∈ {0, 1, . . . }. If

R∑
k=1

3∑
i=1

Y nikm(Tikm ∨ T sc
ikm) = 1 (4.8)

then there is a unique j ∈ {1, 2, 3} and ` ∈ {1, ..., R} for which

Y nj`m(Tj`m ∧ T sc
j`m) = 1.

Note the difference between ∧ and ∨ in the above statement.
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Proof. For each (i, k), define

Qik(t)
def
= Y nikm

(∫ t+sm

sm

rik(λk, λ̃k, X
πn
sc , Z

πn
sc )(s)ds

)
,

for t ≥ 0. Note that (4.8) implies that Y nj`m(Tj`m ∨ T sc
j`m) = 1 for some j and ` and

Y nikm(Tikm ∨ T sc
ikm) = 0 for all (i, k) 6= (j, `). In particular, this implies Qj` is the first

one among the set of counting processes {Qik} to jump. (This follows since for all (i, k),

rik(λk, λ̃k, X
πn
sc , Z

πn
sc )(s) will not change from rik(λk, λ̃k, X

πn
sc , Z

πn
sc )(sm) until the first jump

of (Xπn
sc , Z

πn
sc ) during s > sm.) By the definitions of Tj`m and T sc

j`m, it easily follows that
Y nj`m(Tj`m ∧ T sc

j`m = 1. It is trivial that no other (i, k) pair can satisfy this relation.

The following is an analogue to Lemma (4.2).

Lemma 4.3. If (Xπn
crp, Z

πn
crp)(sm) = (Xπn

sc , Z
πn
sc )(sm) and

∑
k

Y nkm

((
3∑
i=1

Tikm

)
∨ T crp

km

)
= 1

then there is a unique j for which

Y njm

((
3∑
i=1

Tijm

)
∧ T crp

jm

)
= 1.

Further, the first jump time of the Poisson process Y njm occurs at some t0 satisfying

t0 <
(
λj(X

πn
crp(sm)) ∨ λ̃j(Zπn

crp(sm))
)

∆m.

Proof. Because the two processes are equal at time sm, we have that

3∑
i=1

Tikm =
(
λk0(Xπn

crp(sm)) ∨ λ̃k0(Zπn
crp(sm))

)
∆m.

As neither Zπn
crp nor Xπn

crp changes until the first firing of Yjm, the claim follows.

Based on the last two observations, we have the following lemma which will be useful in
proving Proposition 4.1.

Lemma 4.4. Fix n and suppose that, for a given path of (Xπn
sc , Z

πn
sc )(ω), (Xπn

crp, Z
πn
crp)(ω)

coupled in the way we described above,

Hm,n(ω)
def
=

R∑
k=1

max

{
3∑
i=1

Y nikm(Tikm ∨ T sc
ikm), Y nkm

((
3∑
i=1

Tikm

)
∨ T crp

km

)}
≤ 1, (4.9)

for all m. Then for all m = 0, . . . , n,

(Xπn
sc , Z

πn
sc )(sm, ω) = (Xπn

crp, Z
πn
crp)(sm, ω)

11



Proof. We will omit ω in the expressions. We have

(Xπn
sc , Z

πn
sc )(s0) = (Xπn

crp, Z
πn
crp)(s0)

by assumption. Arguing inductively, assume that

(Xπn
sc , Z

πn
sc )(sm) = (Xπn

crp, Z
πn
crp)(sm).

We will show that
(Xπn

sc , Z
πn
sc )(sm+1) = (Xπn

crp, Z
πn
crp)(sm+1)

when (4.9) holds. If Hm,n = 0 for this m, then

(Xπn
sc , Z

πn
sc )(sm+1) = (Xπn

sc , Z
πn
sc )(sm) = (Xπn

crp, Z
πn
crp)(sm) = (Xπn

crp, Z
πn
crp)(sm+1),

and there is nothing to do. Therefore we consider the case in which Hm,n = 1. More
specifically, suppose that for some k0,

max

{
3∑
i=1

Y nik0m(Tik0m ∨ T sc
ik0m), Y nk0m

((
3∑
i=1

Tik0m

)
∨ T crp

k0m

)}
= 1.

This means that, by condition (4.9),

max

{
3∑
i=1

Y nikm(Ti`m ∨ T sc
ikm), Y nkm

((
3∑
i=1

Tikm

)
∨ T crp

km

)}
= 0

for all k 6= k0. Combined with Lemmas 4.2 and 4.3, these conditions guarantee that each of
the processes Xπn

sc , Z
πn
sc , X

πn
crp, Z

πn
crp jump precisely one time in the time interval [sm, sm+1],

and the jump happens according to reaction channel k0 (see [14] for more details). That is,
we have

Xπn
sc (sm+1) = Zπn

sc (sm+1) = Xπn
crp(sm+1) = Zπn

crp(sm+1) = Xπn
sc (sm) + ζk0 ,

and we are done.

It is not too difficult to see that if λk and λ̃k are uniformly bounded for all k, then we
can make the condition in Lemma 4.4 hold with a probability greater than 1 − ε for any
ε > 0 by setting mesh(πn) small enough. Of course, we do not have such a uniform bound
on the intensity functions. Also, note that Lemma 4.4 does not imply that

(Xπn
crp, Z

πn
crp)(t) = (Xπn

sc , Z
πn
sc )(t) for t ∈ [sm, sm+1],

even if the conditions of the lemma are met, as the processes may (and most likely will)
jump at slightly different times. However, we trivially note that under the conditions of
Lemma 4.4,

(Xπn
crp, Z

πn
crp)(t) = (Xπn

sc , Z
πn
sc )(t) for all t ∈ [sm, sm+1] (4.10)

if neither (Xπn
crp, Z

πn
crp) nor (Xπn

sc , Z
πn
sc ) jump at all in [sm, sm+1].

We are now in a position to prove Proposition 4.1.
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Proof of Proposition 4.1. We first recall that t = (t1, . . . , tK) for some K ∈ {1, 2, . . . }.
Next, we define

Kn
0

def
= {m ∈ {0, ..., n− 1} ; {tj}Kj=1 ∩ [sm, sm+1) 6= ∅}.

Fix ε > 0. As we remarked around (4.5), it suffices to show that, for large enough n,

P

(
max

i=0,...,K
|(Xπn

sc (ti), Z
πn
sc (ti))− (Xπn

crp(ti), Z
πn
crp(ti))| > 0

)
< ε,

where we converted the γ in (4.5) to a zero as our processes take values in Zd.
We will resort to a localization argument and take advantage of the fact that X and Z

are both nonexplosive. Let M > 0, and let Hm,n be defined as in Lemma 4.4. Define

An(t)
def
= {ω : Hm,n(ω) ≤ 1 if m 6∈ Kn

0 and Hm,n(ω) = 0 if m ∈ Kn
0 } , (4.11)

and

BM,n
def
={ω : max{sup

s≤T
λk(Xπn

sc (s)), sup
s≤T

λ̃k(Zπn
sc (s)), sup

s≤T
λk(Xπn

crp(s)), sup
s≤T

λ̃k(Zπn
crp(s)} ≤M}.

(4.12)

Note that by the non-explosivity of the processes, the supremums are achieved everywhere
they appear above. By Lemma 4.4 and the arguments in and around (4.10), we have that

An(t) ⊂ {(Xπn
sc , Z

πn
sc )(t) = (Xπn

crp, Z
πn
crp)(t)}.

Therefore

P ((Xπn
sc , Z

πn
sc )(t) 6= (Xπn

crp, Z
πn
crp)(t)) ≤ P (ACn (t))

= P (ACn (t) ∩BM,n) + P (ACn (t) ∩BCM,n). (4.13)

We handle the two pieces on the right hand side of (4.13) separately.
For the second term in (4.13), we first note that

BCM,n ⊂ {sup
s≤T

λk(Xπn
sc (s)) > M} ∪ {sup

s≤T
λ̃k(Zπn

sc (s)) > M}∪

{sup
s≤T

λk(Xπn
crp(s)) > M} ∪ {sup

s≤T
λ̃k(Zπn

crp(s)) > M}.

Now, recall that the marginal distributions of Xπn
crp and Xπn

sc are the same as the marginal
distribution of X, and that the same goes for Zπn

crp and Zπn
sc compared with Z. Therefore,

for all n we have

P (BCM,n) ≤ 2×
[
P (sup

s≤T
{λk(Xs)} > M) + P (sup

s≤T
{λ̃k(Zs)} > M)

]
. (4.14)

By the monotone convergence theorem and the fact that the processes are all non explosive,
the right hand side of (4.14) will tend to 0 as M → ∞. Therefore, we can take M large
enough so that the second piece of (4.13) is smaller than ε/2. We fix this M , and turn
attention to the first term on the right hand side of (4.13).
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We consider the localized version of H. In particular, for our fixed M > 0 let

HM
m,n(ω)

def
=

R∑
k=1

max

{
3∑
i=1

Y nikm(M∆m(πn)), Y nkm (3M∆m(πn))

}
.

Then it is clear that, for any q > 0,

{{Hm,n > q} ∩BM,n} ⊂
{
{HM

m,n > q} ∩BM,n

}
⊂ {HM

m,n > q}

and therefore

P (ACn (t) ∩BM,n)

≤ P (HM
m,n > 1 for some m 6∈ Kn

0 OR HM
m,n > 0 for some m ∈ Kn

0 )

≤
∑
m6∈Kn

0

P (HM
m,n > 1) +

∑
m∈Kn

0

P (HM
m,n > 0). (4.15)

To handle these two pieces, we recall two basic facts pertaining to Poisson random variables.
First, if we denote by W (Λ) ∼ Poisson(Λ) then

P (W (Λ) > 1) =1− exp(−Λ)(1 + Λ)

≤1− (1− Λ)(1 + Λ)

=Λ2,

where we used the inequality exp(−x) ≥ 1− x. Second, and using the same inequality,

P (W (Λ) > 0) = 1− exp(−Λ) ≤ Λ.

Now note that
P ({HM

m,n > q}) ≤ P (W (6RM∆m(πn)) > q).

Hence, if mesh(πn) = δn then by the two facts above and (4.15), we have

P (ACn (t) ∩BM ) ≤
∑
m 6∈Kn

0

(6RM∆m(πn))2 +
∑
m∈Kn

0

(6RM∆m(πn))

≤ (6RM)2δn
∑
m6∈Kn

0

∆m(πn)

δn
∆m(πn) + 6RM |Kn

0 |δn

≤ (6RM)2δnT + 6RM |Kn
0 |δn, (4.16)

where in the third inequality we used that ∆m(πn)
δn

< 1, which follows by the definition of
mesh. We can now take n large enough so that (4.16) is less than ε/2. Collecting the above,
we may now conclude that for such n,

P (|(Xπn
sc , Z

πn
sc )(t)− (Xπn

crp, Z
πn
crp)(t)| > 0) < ε,

as required.

The following is an immediate corollary to Proposition 4.1.
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Corollary 4.5. Let s = {s0 < s1 < s2 < · · · < sm1} and t = {t0 < t1 < t2 < · · · < tm2}.
Let fi : Rd → R, i = 0, . . . ,m1, and gj : Rd → R, j = 0, . . . ,m2, be bounded and continuous
functions on Rd, and assume the conditions set forth in Proposition 4.1. Then

E

m1∏
i=0

fi((X
πn
crp(si))

m2∏
j=0

gj(Z
πn
crp(tj)))

→ E

m1∏
i=0

fi((Xsc(si))

m2∏
j=0

gj(Zsc(tj)))

 , as n→∞.

Of course, we hope that Proposition 4.1 together with Corollary 4.5 imply the weak
convergence of (Xπn

crp, Z
πn
crp) to (Xsc, Zsc) at the process level. Since it is natural to view

(Xπn
crp, Z

πn
crp) ∈ R2d, we would ideally like to show that (Xπn

crp, Z
πn
crp) =⇒ (Xsc, Zsc) weakly

as stochastic processes on R2d. For such convergence to hold we require the laws of
{(Xπn

crp, Z
πn
crp)} to be relatively compact (i.e. every sequence has a convergent subsequence)

Unfortunately, and perhaps surprisingly, this is not the case as we now show.
The following result is Theorem 7.2 on page 128 of [10]. Following the notation in [10],

when E is a metric space we let DE [0,∞) be the set of all càdlàg functions from [0,∞) to
E.

Theorem 4.6. Let (E, r) be a complete and separable metric space, and let {Xn} be a
family of processes with sample paths in DE [0,∞) endowed with the Skorohod metric. Then
{Xn} is relatively compact if and only if the following two conditions hold:

1. For each η > 0 and rational t ≥ 0, there is exists a compact set Γη,t ⊂ E such that

inf
n
P (Xn(t) ∈ Γη,t) ≥ 1− η.

2. For every η > 0 and T > 0, there exists δ > 0 such that

sup
n
P (w′(Xn, δ, T ) ≥ η) < η

where
w′(X, δ, T )

def
= inf

π
max
i

sup
a,b∈[ti,ti+1)

|X(a)−X(b)|

where π ranges over all partitions of [0, T ] satisfying ti+1 − ti > δ for all i ≥ 0.

Unfortunately the conditions of Theorem 4.6 do not hold in general for our set of pro-
cesses {(Xπn

crp, Z
πn
crp)} over the skorohod space DR2d [0,∞). To see this, we note the following

two facts:

1. For jump processes whose jump sizes are bounded below, for example by integer values
in our present setting, for small enough η > 0 we have

{w′((X,Z), δ, T ) < η} = {w′((X,Z), δ, T ) = 0},

2. The event w′((X,Z), δ, T ) = 0 can be achieved if and only if the minimum time between
jumps of (X,Z) is greater than δ.
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To understand the second statement, simply note that if the minimum time between jumps
is less than δ, then for any partition π satisfying ti+1 − ti > δ for all i, the process must
change by at least the smallest jump size (mink |ζk| in our case) in some interval of the
partition. Conversely, if the minimum holding time of the process is greater than δ, then we
achieve a value of 0 for w′ by choosing π so that the jump times correspond with a subset
of the partition times ti.

The following example explicitly shows that Theorem 4.6 does not hold for our choice
of {(Xπn

crp, Z
πn
crp)} with E = R2d. Essentially the same argument would work for any model

considered in this paper.

Example 1. Consider the chemical reaction network

A→ 2A,

which models increases in A as a counting process with a linear intensity (i.e. a linear birth
process). We consider the corresponding coupled processes (Xsc, Zsc) and (Xπn

crp, Z
πn
crp) with

λ1(x) = θx, λ̃1(x) = (θ + h)x,

and initial condition

Xsc(0) = Zsc(0) = Xπn
crp(0) = Zπn

crp(0) > 0.

For any δ > 0, the probability that the processes Xsc and Zsc jump simultaneously in the
time period [0, δ] and that their simultaneous jump is the first jump for both processes is

αδ
def
=

θ

θ + h

(
1− e−(θ+h)X(0)δ

)
> 0.

By the arguments we made in the proof above, for any ε > 0 there exists some Mε such
that if n > Mε, then with probability greater than αδ − ε, both Xπn

crp and Zπn
crp will also make

a first jump in [0, δ]. However, with a probability of one, Xπn
crp and Zπn

crp jump at different
times. Hence, when they jump in the time interval [0, δ), we have

sup
a,b∈[0,δ)

|(Xπn
crp, Z

πn
crp)(a)− (Xπn

crp, Z
πn
crp)(b)| ≥ 1.

This in particular means that for any 0 < η < 1,

sup
n
P (w′((Xπn

crp, Z
πn
crp), δ, T ) ≥ η) ≥ αδ,

and the laws of {(Xπn
crp, Z

πn
crp)} fail to be relatively compact.

4.2 Weak Convergence in the product Skorohod topology

Example 1 demonstrates that the measures induced by (Xπn
crp, Z

πn
crp) on DR2d [0,∞) are not

relatively compact. Hence, the processes (Xπn
crp, Z

πn
crp) do not converge weakly to (Xsc, Zsc)

in DR2d [0,∞). However, in this section we demonstrate that there is convergence in

D := DRd [0,∞)×DRd [0,∞)

endowed with the product Skorohod topology.
As is usual, the main work that remains to be done is in showing that {(Xπn

crp, Z
πn
crp)} is

relatively compact in the appropriate topological space.
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Proposition 4.7. Let D def
= DRd [0,∞) × DRd [0,∞), with the product Skorohod topology.

The family of processes {(Xπn
crp, Z

πn
crp)} is relatively compact in D.

Proof. By Theorem 2.2 on page 104 of [10], it is enough to show that for any ε > 0, there
exists a compact set Cε ∈ D such that

inf
n
P ((Xπn

crp, Z
πn
crp) ∈ Cε) > 1− ε.

To show this, we consider the marginal processes, which we recall satisfy X ∼ Xπn
crp and

Z ∼ Zπn
crp for each n ≥ 1. Note that if Aε, Bε ⊂ DRd [0,∞) are compact, then the inequalities

P (X ∈ Aε) = P (Xπn
crp ∈ Aε) > 1− ε

2

P (Z ∈ Bε) = P (Zπn
crp ∈ Bε) > 1− ε

2

(4.17)

imply the inequality
P ((Xπn

crp, Z
πn
crp) ∈ Aε ×Bε) > 1− ε,

with Aε × Bε compact in D. Hence, it is sufficient to simply prove the pair of inequalities
(4.17) for the marginal processes, which live in DRd [0,∞). However, inequality (4.17) holds
so long as the marginal processes are tight (in DRd [0,∞)), and so Theorem 4.6 may be
used. Therefore it suffices to show that X and Z both separately satisfy the conditions in
Theorem 4.6, which we do now.

Since X is a nonexplosive pure jump process, it clearly passes the first condition of
Theorem 4.6. Also, recall that X is constructed with R ∈ Z>0 Poisson processes, one for
each jump direction. Then for any T > 0 and M > 0,

P (w′(X, δ, T ) > 0) ≤ P

(
w′(X, δ, T ) > 0, sup

k=1,..,R,s<T
λk(X(s)) ≤M

)

+ P

(
sup

k=1,..,R,s<T
λk(X(s)) > M

)

≤ P (w′(Y (MR·), δ, T ) > 0) + P

(
sup

k=1,..,R,s<T
λk(X(s)) > M

) (4.18)

where Y (MR·) is a Poisson process with rate MR. Since X is non explosive, we may take
M large enough to control the second piece, and for this M we can choose δ small enough
to control the first piece. That is, limδ→0 P (w′(X, δ, T ) > 0) = 0. This tells us that X
also passes the second condition of Theorem 4.6. The same procedure works for Z. Thus,
{(Xπn

crp, Z
πn
crp)} is relatively compact in D with the product topology.

With this proposition at our hand, we can prove the main result of our paper.

Theorem 4.8. Suppose X and Z are both non-explosive, càdlàg process as given above. Let
DRd [0,∞) be the Skorohod Space as defined in [10]. Consider the product topology on

D := DRd [0,∞)×DRd [0,∞).

Also, let πn = {snj } be a sequence of partitions of [0,∞) such that

mesh(πn) = max
j<∞

(snj − snj−1)→ 0, as n→∞.
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Then for all f : D → R that are bounded and continuous,

E[f(Xπn
crp, Z

πn
crp)]→ E[f(Xsc, Zsc)], as n→∞.

That is, (Xπn
crp, Z

πn
crp)→ (Xsc, Zsc), as n→∞, weakly in the product Skorohod topology.

We would like to emphasize that the test function f considered above maps a path in D
to R. The test functions for Proposition 4.1, on the other hand, are evaluated at discrete
time points.

Now we put everything together to prove Theorem 4.8.

Proof of Theorem 4.8. By Proposition 4.7 it is sufficient to show that every convergent
(in distribution) subsequence of (Xπn

crp, Z
πn
crp) converges in distribution to (Xsc, Zsc). By

Corollary 4.5, it is sufficient to show that if

E

m1∏
i=0

fi(Xsc(si))

m2∏
j=0

gj(Zsc(tj))

 = E

m1∏
i=0

fi(X
∗(si))

m2∏
j=0

gj(Z
∗(tj))

 (4.19)

for all {si}, {tj} ⊂ [0,∞), and fi, gi ∈ C(Rd) (bounded and continuous functions), then
E[h(Xsc, Zsc)] = E[h(X∗, Z∗)] for any bounded and continuous function h : D → R. A
standard monotone class argument (for example, see page 132 in [10]) shows that 4.19 is
more than enough to guarantee that E[h(Xsc, Zsc)] = E[h(X∗, Z∗)] for all h continuous with
respect to DR2d [0,∞). From the definition of the Skorohod metric, it is straightforward to
show that the topology of DR2d [0,∞) is finer than that of D. This in particular means that
the continuous functions with respect to D are a subset of those of DR2d [0,∞). Thus, we
may conclude that E[h(Xsc, Zsc)] = E[h(X∗, Z∗)] if h is continuous with respect to D, and
the result is shown.

While the results presented so far pertain to the specific couplings found in the numerical
analysis literature, a slightly more general theorem can be achieved by following an identical
line of reasoning.

Theorem 4.9. For i ∈ {1, 2, 3} and k ∈ {1, . . . , R}, let rik : Rd × Rd → R≥0 be a non-
negative measurable function. Suppose that {πn} is a sequence of partitions of [0,∞) for
which mesh(πn)→ 0, as n→∞. Define (Xsc, Zsc) and (Xπn

crp, Z
πn
crp) via

Xsc(t) = X(0)+

R∑
k=1

{
Y1k

(∫ t

0

r1k(Xsc, Zsc)(s)ds

)
+ Y2k

(∫ t

0

r2k(Xsc, Zsc)(s)ds

)}
ζk

Zsc(t) = Z(0)+

R∑
k=1

{
Y1k

(∫ t

0

r1k(Xsc, Zsc)(s)ds

)
+ Y3k

(∫ t

0

r3k(Xsc, Zsc)(s)ds

)}
ζk,

and

Xπn
crp(t) = X(0) +

∞∑
m=0

R∑
k=1

Y nkm

(∫ t∧sm+1

t∧sm
{r1k(Xπn

crp, Z
πn
crp)(s) + r2k(Xπn

crp, Z
πn
crp)(s)}ds

)
ζk

Zπn
crp(t) = Z(0) +

∞∑
m=0

R∑
k=1

Y nkm

(∫ t∧sm+1

t∧sm
{r1k(Xπn

crp, Z
πn
crp)(s) + r3k(Xπn

crp, Z
πn
crp)(s)}ds

)
ζk,

where all notation is as before. Finally, we suppose that all processes are non-explosive.
Then, (Xπn

crp, Z
πn
crp)→ (Xsc, Zsc), as n→∞, weakly in the product Skorohod topology.
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Proposition 4.8 is therefore a special case of Theorem 4.9 in which each rik depends on
λk and λ̃k in a specific way.

5 Numerical examples

In this section, we provide two numerical examples demonstrating the convergence of the
local-CRP coupling to that of the split coupling. Based upon our motivation in terms of
variance reduction, we focus upon the convergence of the variance between the coupled
processes.

Example 2. We begin by considering a basic model of gene transcription and translation,
where the model tracks the counts for the numbers of genes (G), mRNA molecules (M), and
proteins (P ) in the system. We suppose that the system can undergo the following possible
reactions,

G→ G+M (R1)

M →M + P (R2)

M → ∅ (R3)

P → ∅, (R4)

where, for example, reaction (R1) implies a net change to the system of one extra mRNA
molecule. Since no reaction changes the number of genes present in the system, we may take
that to be a fixed quantity. Hence, there are two dynamic components, and the stochastic
model for this system is

X(t) = X(0) + Y1

(∫ t

0

λ1(X(s))ds

)[
1
0

]
+ Y2

(∫ t

0

λ2(X(s))ds

)[
0
1

]
+ Y3

(∫ t

0

λ3(X(s))ds

)[
−1
0

]
+ Y4

(∫ t

0

λ4(X(s))ds

)[
0
−1

]
,

where X1 counts the numbers of mRNA molecules, and X2 counts the numbers of proteins.
We now let X be the process with intensity functions

λ1(x) = 2, λ2(x) = 10x1, λ3(x) = (1/4 + 1/80)x1, λ4(x) = x2,

and let Z be the process with intensity functions

λ1(x) = 2, λ2(x) = 10x1, λ3(x) = (1/4− 1/80)x1, λ4(x) = x2.

These are reasonable choices, for example, if we were attempting to estimate the sensitivity
of some statistic with respect to the rate parameter for the third intensity function evaluated
at 1/4.

Let πn be a partition of [0, 30] into n equally sized intervals. In Figure 1, we plot numeri-
cal estimates of V ar(Xsc(t)−Zsc(t)), V ar(Xcrp(t)−Zcrp(t)), and V ar(Xπn

crp(t)−Zπn
crp(t)), for

n ∈ {2, 6, 30, 300}, over the time period [0, 30]. The estimates were achieved via Monte Carlo
methods with 10,000 sample paths. We observe the uniform convergence of V ar(Xπn

crp(·) −
Zπn
crp(·)) to V ar(Xsc(·) − Zsc(·)) as mesh(πn) → 0. We also observe a sharp drop in the

variance of Xπn
crp(·)− Zπn

crp(·) at the “resetting” of the Poisson processes, which occur at the
end of each interval of the discretization πn.
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Figure 1: Numerical approximations (via Monte Carlo with 10,000 sample paths) for the
variance of the difference between the processes X and Z of Example 2 for the split coupling
(blue), CRP coupling (black), and various local-CRP couplings. Convergence of the variance
of the local-CRP coupling to the variance of the split coupling is clear.

Example 3. Consider a simple quadratic birth and death model

∅ → 2A (r1)

2A→ ∅ (r2)

with initial count X(0) given by a Poisson random variable with parameter 15. We can
model the dynamics of this system with the stochastic equations

X(t) = X(0) + 2Y1

(∫ t

0

λ1(X(s))ds

)
− 2Y2

(∫ t

0

λ2(X(s))ds

)
,

where
λ1(x) = 400, and λ2(x) = kx(x− 1),

and where k is a parameter of the model. We consider the model X with k = 0.1 + 1/25
and the model Z with k = 0.1 − 1/25. Further, we let the initial conditions of X and
Z be independent Poisson random variables with a parameter of 15 (that is, the initial
conditions of X and Z are independent from each other). Let πn be a partition of [0, 1] into
n equally sized intervals. In Figure 3, we plot numerical estimates of V ar(Xsc(t)−Zsc(t)),
V ar(Xcrp(t) − Zcrp(t)), and V ar(Xπn

crp(t) − Zπn
crp(t)), for n ∈ {2, 4, 8, 100}, over the time

period [0, 1]. The estimates were achieved via Monte Carlo methods with 5,000 sample paths.
We again observe the sharp drop in variance at the “resetting” times of the processes.
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Figure 2: Numerical approximations (via Monte Carlo with 5,000 sample paths) for the
variance of the difference between the processes X and Z of Example 3 for the split coupling
(blue), CRP coupling (black), and various local-CRP couplings. Convergence of the variance
of the local-CRP coupling to the variance of the split coupling is clear.

6 Discussion

The stochastic models finding widespread use in the cell biology literature are typically
immensely complicated, and computational methods often provide the only effective way
to probe the dynamics. As Persi Diaconis recently noted [9], this presents mathematicians
with an opportunity to make contributions by explicitly studying the different simulation
and computational algorithms themselves. Such analyses will not only shed light on which
methods to use in different contexts, but will inevitably lead to a deeper understanding of
the underlying processes, and hence to better computational methods.

In this work we have clarified the connection between two couplings commonly found in
the computational cell biology literature and, in particular, showed that the split coupling
can be regarded as a natural limit of a localized version of the CRP coupling. There
are other interesting ways to understand the split coupling. For example, Arampatzis and
Katsoulakis [8] recently studied a group of couplings that is included in the family of general
split couplings considered in Theorem 4.9. They note that for each test function f there is
an optimal choice for the function r1k(λk, λ̃k,U ,V)(s) in (3.1) that minimizes the variance
of the finite difference E[f(Xt) − f(Zt)] in the setting of (3.2). When the test function is
f(x) = x, the correct choice of r1k is the one given in (3.1), which yields the split coupling.
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