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AN EFFICIENT FINITE DIFFERENCE METHOD FOR
PARAMETER SENSITIVITIES OF CONTINUOUS

TIME MARKOV CHAINS∗
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Abstract. We present an efficient finite difference method for the computation of parameter
sensitivities that is applicable to a wide class of continuous time Markov chain models. The estimator
for the method is constructed by coupling the perturbed and nominal processes in a natural manner,
and the analysis proceeds by utilizing a martingale representation for the coupled processes. The
variance of the resulting estimator is shown to be an order of magnitude lower due to the coupling.
We conclude that the proposed method produces an estimator with a lower variance than other
methods, including the use of common random numbers, in most situations. Often the variance
reduction is substantial. The method is no harder to implement than any standard continuous time
Markov chain algorithm, such as “Gillespie’s algorithm.” The motivating class of models, and the
source of our examples, are the stochastic chemical kinetic models commonly used in the biosciences,
though other natural application areas include population processes and queuing networks.
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1. Introduction. We develop a new finite difference method for the computa-
tion of parameter sensitivities that is applicable to a wide class of continuous time
Markov chain models. For k ∈ {1, . . . ,M}, let ζk ∈ R

d denote the possible transition
directions for a continuous time Markov chain, and let λk : Rd → R denote the re-
spective intensity, or propensity functions.1 The random time change representation
of Kurtz for the model is

(1) X(t) = X(0) +

M∑
k=1

Yk

(∫ t

0

λk(X(s))ds

)
ζk,

where the Yk are independent, unit-rate Poisson processes. See, for example, [13], [7,
Chapter 6] or the recent survey [5]. The infinitesimal generator for the model (1) is
the operator A satisfying

(Af)(x) =
∑
k

λk(x)(f(x + ζk)− f(x)),

where f : Rd → R is chosen from a sufficiently large class of functions. Without loss
of generality, we assume throughout that the state space of the process, S, is a subset
of Zd.

Consider a family of models (1) indexed by a set of parameters, which we denote
by the vector θ. Even when there are good theoretical reasons for believing the
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model is a reasonable description of some phenomenon, usually the parameters are
not known precisely and have to be estimated experimentally. Depending on the setup
and the parameters in question, it may be difficult to obtain good estimates. Thus, it
is important to analyze how sensitive features of interest in the model are to variation
in the parameters. For ease of exposition we take θ to be a scalar, though note that
it is trivial to extend all of the ideas of the paper to the setting of θ ∈ R

� for some
� > 0.

We let f : S → R be a function of the state of the system that gives a measurement
of interest. For example, f could be the abundance of one of the components at a

particular time. Define J(θ)
def
= Ef(Xθ(t)), where the θ dependence is being made

explicit. The problem of interest is to efficiently approximate J ′(θ).
There are a number of methods that can be used for the computation of such

parameter sensitivities in this setting, including finite differences, likelihood ratios and
Girsanov transformations, and infinitesimal perturbation analysis, each with its own
benefits and drawbacks; see, for example, [6, 11, 17, 18]. We focus on finite difference
methods, which, due to their simplicity, are the most popular choice. Specifically, in
this paper a new finite difference method is introduced that is easy to implement,
is analytically tractable, and typically produces an estimate with a given tolerance
with substantially lower computational complexity than that obtained using the other
methods currently known to the author.

While continuous time Markov chain models of the general form (1) are used
ubiquitously in both industry and the sciences to model natural phenomena ranging
from population processes to queueing networks, we feel the method developed here
will be most useful in the study of stochastic models of biochemical reaction networks.
We will therefore choose the language of biochemistry throughout and also choose this
area as the setting for our examples.

A biochemical reaction network is a chemical system involving multiple reactions
and chemical species. If the abundances of the constituent molecules of a reaction
network are sufficiently high, then their concentrations are typically modeled by a
coupled set of ordinary differential equations. If, however, the abundances are low,
then the standard deterministic models do not provide a good representation of the
behavior of the system and stochastic models are used. The simplest stochastic models
of such networks [12, 16] treat the system as a continuous time Markov chain with the
state, X , being the number of molecules of each species and with reactions modeled
as possible transitions of the chain. More explicitly, if the kth reaction happens at
time t, then the system is updated by the reaction vector ζk,

X(t) = X(t−) + ζk.

Letting λk : Rd → R denote the intensity, or propensity, of the kth reaction, we see
that this stochastic model satisfies (1).

As will be pointed out in the following sections, the strategy being proposed here
is in some ways similar to the common reaction path (CRP) method proposed in
[18], which is also a quite capable estimator for finite differences. However, there are
important differences. First, the actual coupling, and hence simulation, of the rele-
vant processes is different. The coupling proposed here tends to provide an estimator
with a lower variance, especially when the process is considered for moderate to large
times. Second, the coupling proposed here lends itself to analysis more readily than
that used in [18], as the centered counting processes used in our coupling are mar-
tingales with respect to the natural filtration of the process [2]. Third, the method
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being proposed here is as easy to implement as the usual Gillespie algorithm or next
reaction method. The strategy employed in [18], on the other hand, requires being
quite careful with the seeds of the pseudorandom number generators used since one
independent seed is required per reaction channel per sample path generated. Fi-
nally, the coupling proposed here essentially converts the problem of generating two
paths of a continuous time Markov chain into a problem of generating one path of a
different continuous time Markov chain with an enlarged state space. Therefore, all
analytical and computational techniques developed for the study of continuous time
Markov chains, of which there are many, will be employable on this larger system and
therefore applicable to the problem of computing sensitivities.

The most common finite difference coupling used today for the approximation of
sensitivities is probably an implementation of Gillespie’s algorithm plus using common
random numbers (CRN). We will also discuss this coupling and give the relevant
stochastic representation of it. We will conclude that the coupling proposed here will
produce a lower variance estimator than CRN for the same reasons that it produces
a lower variance estimator than the CRP scheme of [18].

The main goals of this paper are to introduce the new method and to provide
the mathematical analysis of the expected squared difference between the two rele-
vant processes, though some relevant examples will also be provided. In section 2,
we formally introduce our mathematical model of interest, including all technical as-
sumptions. In section 3, we develop our new finite difference estimator and provide
sharp analytical bounds. We also discuss the long time behavior of the introduced
estimator and compare it with both CRP and CRN. We conclude that the proposed
method will be quite superior for moderate and large time scales. In section 4, we
provide examples demonstrating our main results.

2. The formal setup. We consider the family of models

(2) Xθ(t) = Xθ(0) +
M∑
k=1

Yk

(∫ t

0

λθ
k(X

θ(s))ds

)
ζk,

where the Yk are independent, unit-rate Poisson processes, the vector θ represents a
given choice of parameters that we are making explicit in the notation, and all other
notation is as before. The assumption that there are a finite number of possible jump
directions ζk can almost certainly be weakened. However, this assumption makes the
analysis significantly cleaner, and all the motivating models (such as those arising
from biochemistry) naturally satisfy such a condition. We define F θ : Zd → R

d by

F θ(z)
def
=
∑
k

λθ
k(z)ζk.

We make the following running assumptions throughout the remainder of the paper.
The first is that the intensity functions are uniformly (in θ) globally Lipschitz. The
second is that the intensity functions scale at least linearly with perturbations to θ.

Assumption 1. We suppose that there is a K1 > 0 for which

|λθ
k(x)− λθ

k(y)|+ |F θ(x)− F θ(y)| ≤ K1|x− y|
for all k, θ of interest and all x, y ∈ S.

Assumption 2. We suppose there is a K2 > 0 so that for all k and all ε < 1,

sup
x∈S

[|λθ+ε
k (x) − λθ

k(x)|+ |F θ+ε(x)− F θ(x)|] ≤ K2ε.
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Assumption 1 can almost certainly be weakened to a local Lipschitz condition,
in which case analytical methods similar to those found in [9] and/or [15] can be
applied. Proving our main results in such generality, while possible and certainly
worth doing in future work, will be significantly messier, and we feel the main points
of the analysis will be lost. Note that Assumption 1 automatically holds if S is a
bounded set. In the chemical setting, mild assumptions on the intensity functions
ensure that the nonnegative orthant is forward invariant. Therefore, S is bounded if
there is a vector ξ ∈ Z

d
>0 for which ξ · ζk ≤ 0 for all k. For example, such a ξ exists if

mass is conserved. Assumption 1 also holds if the intensity functions are simply set
to zero outside of a compact subset of Zd, which has the same effect as analyzing the
standard model up until a stopping time τ , defined to be the time the processes leave
a given compact set (essentially using a localization argument).

Another relevant situation in which Assumption 1 holds is when the equivalent
scaled models are analyzed. While we point the reader to [2, 3, 4, 10] for a thorough
description of this model in the biosciences, we will briefly discuss it here. For some
parameter of the system, N , we let XN denote the process with ith component
XN

i = Xi/N
αi , where the αi ≥ 0 are chosen so that XN

i = O(1). Under mild
assumptions on the intensity functions λk, it can be shown that XN satisfies

(3) XN(t) = XN(0) +
∑
k

Yk

(∫ t

0

Nβk+νk·αλk(X
N (s))ds

)
ζNk ,

where ζNk,i = ζk,i/N
αi , and βk is chosen so that λk(X

N (·)) = O(1). This scaled model
is O(1) and therefore more readily satisfies Assumption 1, where now it is understood
that the state space is

SN def
= {z ∈ R

d | zi = xiN
−αi , x ∈ S}.

In many applications, it is more relevant to compute expectations and parameter
sensitivities of the scaled model (3) than of the unscaled version (1), though we do
not revisit this point in the current paper.

2.1. The basic problem and the benefits of variance reduction. We let
f : Zd

≥0 → R be a function of the state of the system which gives a measurement of
interest and define

J(θ)
def
= Ef(Xθ(t)).

The problem of interest is to efficiently estimate J ′(θ), where we recall that we are
making the simplifying assumption that θ is one-dimensional.

To estimate J ′(θ) the centered finite difference is often used:

(4) J ′(θ) ≈ Ef(Xθ+ε/2(t))− Ef(Xθ−ε/2(t))

ε
,

as its bias is O(ε2) [6]. That is,

J ′(θ) =
Ef(Xθ+ε/2(t))− Ef(Xθ−ε/2(t))

ε
+O(ε2).

This should be compared with the forward difference, which has a bias of O(ε):

J ′(θ) =
Ef(Xθ+ε(t))− Ef(Xθ(t))

ε
+O(ε).
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The estimator for (4) using centered finite differences is

(5) DR(ε) =
1

R

R∑
i=1

d[i](ε),

with

(6) d[i](ε) =
f(X

θ+ε/2
[i] (t))− f(X

θ−ε/2
[i] (t))

ε
,

where Xθ
[i] represents the ith path generated with parameter choice θ, and R is the

number of paths generated. If X
θ+ε/2
[i] (t) and X

θ−ε/2
[i] (t) are computed independently,

the variance of d[i](ε) is O(ε−2), and, hence, the variance of DR(ε) is O(R−1ε−2).
Note that

E(DR(ε)− J ′(θ))2 = Var(DR(ε)) + (EDR(ε)− J ′(θ))2

= O
(
R−1ε−2

)
+O

(
ε4
)
,

which, for a given R, is minimized when ε = O(R−1/6), at a value that is O(R−2/3).
Therefore, the optimal convergence rate to the exact value, in the sense of confidence
intervals, is O(R−1/3) [6].

Many computations are performed with a target variance (which yields a target
size of the confidence interval). Denoting the target variance by V ∗, we see that the
number of paths required is then approximated by the solution to

Var

(
1

R

R∑
i=1

d[i](ε)

)
=

1

R
Var(d(ε)) = V ∗ =⇒ R =

1

V ∗Var(d(ε)).

Thus, decreasing the variance of d(ε) lowers the computational complexity (total
number of computations) required to solve the problem. The basic idea of coupling,
in the context of this paper, is to lower the variance of d(ε) by simulating Xθ+ε/2 and
Xθ−ε/2 simultaneously so that the two processes are highly correlated or “coupled.”
That is, instead of generating paths independently, we want to generate a pair of paths
(Xθ+ε/2, Xθ−ε/2) so that for appropriate choices of f , the variance of f(Xθ+ε/2) −
f(Xθ−ε/2) is reduced. The basic idea of any such coupling is to reuse, or share, some
portion of the driving “noise” in the generation of each process. As already alluded
to in the introduction, one such finite difference method that achieved a substantial
reduction in variance due to coupling can be found in [18], which we discuss in more
detail in later sections.

In section 3.1, we will develop a new coupling technique so that the variance of
d[i](ε) in (6) is O(ε−1), a full order of magnitude lower (in ε) than when the paths
were generated independently. This will lead to a finite difference method with an
optimal convergence rate, in the sense of the above paragraph, of O(R−2/5), achieved
when ε = O(R−1/5). More importantly, however, the variance of the estimator (5) will
be O(R−1ε−1), which should be compared with a variance of O(R−1ε−2) when inde-
pendent paths are used. Thus, the number of paths (and computational complexity)
required to solve a given problem will be reduced by an order of ε.

3. Coupled finite differences. In section 3.1, we discuss how to couple the
requisite processes for the coupled finite difference method being proposed here. In
section 3.2, we provide sharp bounds on the variance of the estimator.
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3.1. Coupling the processes. Whether using the forward or centered differ-
ence, the main problem is to intelligently produce two paths generated from systems
whose parameters differ by an order of ε. A good coupling should satisfy three things:
(i) it should minimize the variance of the difference (6);
(ii) it should be easy to simulate; and
(iii) it should be analytically tractable.
We will show that the coupling (7) below satisfies each of these requirements; however,
we begin by motivating the coupling by two simpler problems that capture the core
idea.

We consider the problem of trying to understand the difference between Z1(t) and
Z2(t), where Z1, Z2 are Poisson processes with rates 13.1 and 13, respectively. We let
Y1 and Y2 be independent unit-rate Poisson processes and set

Z1(t) = Y1(13t) + Y2(0.1t),

Z2(t) = Y1(13t),

where we use the additivity property of Poisson processes. The important point
to note is that both processes Z1 and Z2 are using the process Y1(13t) to generate
simultaneous jumps. The process Z1 then uses the auxiliary process Y2(0.1t) to jump
the extra times that Z2 does not. The processes Z1, Z2 will jump together the vast
majority of times and in this way will be very tightly coupled.2 The coupling above
also already hints at the main points of the mathematical analysis that will be carried
out in section 3.2 as

Z1(t)− Z2(t) = Y2(0.1t),

and so

E|Z1(t)− Z2(t)| = EY2(0.1t) = 0.1t,

E(Z1(t)− Z2(t))
2 = EY2(0.1t)

2 = 0.1t+ 0.01t2.

More generally, if Z1 and Z2 are nonhomogeneous Poisson processes with inten-
sities f(t) and g(t), respectively, then we could let Y1, Y2, and Y3 be independent,
unit-rate Poisson processes and define

Z1(t) = Y1

(∫ t

0

f(s) ∧ g(s)ds

)
+ Y2

(∫ t

0

f(s)− (f(s) ∧ g(s)) ds

)
,

Z2(t) = Y1

(∫ t

0

f(s) ∧ g(s)ds

)
+ Y3

(∫ t

0

g(s)− (f(s) ∧ g(s)) ds

)
,

where we are using that, for example,

Y1

(∫ t

0

f(s) ∧ g(s)ds

)
+ Y2

(∫ t

0

f(s)− (f(s) ∧ g(s)) ds

)
D
= Y

(∫ t

0

f(s)ds

)
,

2In this case, the long-run percentage of jumps that are shared can be quantified precisely as
13/(13 + 0.1) ≈ 0.99923.
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where Y is a unit-rate Poisson process and we define a ∧ b
def
= min{a, b}. Thus, we

are coupling the processes by splitting up the intensity functions into two pieces, one
shared

f(s) ∧ g(s),

and the other not, and then using the same noise, Y1, on the shared portion.
We return to the problem of coupling the main processes of interest to us. For

ease of notation, we will couple the processes Xθ+ε and Xθ as opposed to Xθ+ε/2 and
Xθ−ε/2, with the understanding that generating the centered difference is performed
in the obvious manner. We generate our coupled processes (Xθ+ε, Xθ) via

(7)

Xθ+ε(t) = Xθ+ε(0) +
∑
k

Yk,1

(∫ t

0

λθ+ε
k (Xθ+ε(s)) ∧ λθ

k(X
θ(s))ds

)
ζk

+
∑
k

Yk,2

(∫ t

0

λθ+ε
k (Xθ+ε(s))− λθ+ε

k (Xθ+ε(s)) ∧ λθ
k(X

θ(s))ds

)
ζk,

Xθ(t) = Xθ(0) +
∑
k

Yk,1

(∫ t

0

λθ+ε
k (Xθ+ε(s)) ∧ λθ

k(X
θ(s))ds

)
ζk

+
∑
k

Yk,3

(∫ t

0

λθ
k(X

θ(s))− λθ+ε
k (Xθ+ε(s)) ∧ λθ

k(X
θ(s))ds

)
ζk,

where the Yk,i are unit-rate Poisson processes and all other notation is as before.
Thus, and just as in the example pertaining to the nonhomogeneous Poisson processes
above, the effect of the intensity function λθ+ε

k on the process Xθ+ε has been split

into two pieces: one of size λθ+ε
k (Xθ+ε(s)) ∧ λθ

k(X
θ(s))ds, and one of size

λθ+ε
k (Xθ+ε(s))− λθ+ε

k (Xθ+ε(s)) ∧ λθ
k(X

θ(s))ds.

Further, since the two processes Xθ+ε and Xθ share the contribution of each of the
terms with intensity

λθ+ε
k (Xθ+ε(s)) ∧ λθ

k(X
θ(s))ds,

we expect them to be highly correlated. It is important to note that the marginal
processes have the same distributions as the respective processes generated via (2).
This fact can be seen by noting that (7) is a continuous time Markov chain and that
the transition rates of the marginal processes are identical to those of (2) with the
corresponding rate constants. Note also that the coupling (7) is essentially the same
as in the toy problems above where we coupled Z1 and Z2.

A coupling similar to (7) first appeared in [14]. More recently, it was used in [2] to
study the strong error of different approximation methods in the discrete stochastic
case and in [3] to generate paths so as to apply multilevel Monte Carlo techniques
in the continuous time Markov chain setting. The application of the coupling (7)
towards the problem of parametric sensitivity analysis is the main contribution of
this paper.

As discussed at the end of section 1, the process (Xθ+ε, Xθ) satisfying (7) is a
continuous time Markov chain with state space Zd×Z

d. Therefore, all analytical and
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computational techniques developed for the study of continuous time Markov chains
will be applicable to this system and, hence, to the problem of computing sensitivities.

Before proceeding with the analysis, we give the algorithm for generating a path
(Xθ+ε, Xθ) via (7). We note that the method below is the next reaction method ap-
plied to (7) [1, 8]. See [1] for a thorough explanation of how the next reaction method
is equivalent to simulating representations of the forms considered here. Below, we will
denote a uniform[0, 1] random variable by rand(0, 1), and we remind the reader that
if U ∼ rand(0, 1), then ln(1/U) is an exponential random variable with a parameter
of one. All random variables generated are assumed to be independent of each other
and all previous random variables. It is assumed that the processes start with the
same initial condition, though this can be weakened in the obvious manner. Finally,
we note that it is also possible to simulate the continuous time Markov chain (7) by
the obvious adaption of Gillespie’s direct, or optimized direct, algorithm. While we
do not formally provide that algorithm here, it will be problem specific as to which
implementation (Gillespie versus next reaction method) is more efficient.

Algorithm 1 (simulation of the representation (7)). Initialize. Set Xθ+ε =
Xθ = x and t = 0. For each k and i ∈ {1, 2, 3}, set

• Pk,i = ln(1/uk,i), where uk,i is rand(0, 1), and
• Tk,i = 0.

Repeat the following steps:
(i) For each k, set

• Ak,1 = λθ+ε
k (Xθ+ε) ∧ λθ

k(X
θ),

• Ak,2 = λθ+ε
k (Xθ+ε)−Ak,1, and

• Ak,3 = λθ
k(X

θ)−Ak,1.
(ii) For each k and i ∈ {1, 2, 3}, set

Δtk,i =

{
(Pk,i − Tk,i)/Ak,i if Ak,i > 0,

∞ if Ak,i = 0.

(iii) Set Δ = mink,i{Δtk,i}, and let μ ≡ {k, i} be the indices where the minimum is
achieved.

(iv) Set t = t+Δ.
(v) Update state vectors according to reaction ζμ (where the minimum occurred in

step (iii)):

(Xθ+ε, Xθ) =

⎧⎨
⎩

(Xθ+ε, Xθ) + (ζk, ζk) if i = 1,
(Xθ+ε, Xθ) + (ζk, 0) if i = 2,
(Xθ+ε, Xθ) + (0, ζk) if i = 3.

(vi) For each k and i ∈ {1, 2, 3}, set Tk,i = Tk,i +Ak,i ×Δ.
(vii) Set Pμ = Pμ + ln(1/u), where u is rand(0, 1).
(viii) Return to step (i) or quit.

Note that at most two of Ak,1, Ak,2, Ak,3 will be nonzero at each step. Further, it
will often be that Ak,1 � max{Ak,2, Ak,3} and the processes will move together the
vast majority of the time (which is, of course, the whole point of such a coupling),
showing that the cost of generating the path (Xθ+ε, Xθ) will be less than the cost
of generating two paths via the representation (2). This fact is observed in the data
collected on the numerical examples in section 4.
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The common reaction path method. We now revisit the point that the
strategy being proposed here is similar to that proposed in [18], where instead of the
coupling (7) the authors used what is equivalent to

Xθ+ε(t) = Xθ+ε(0) +
∑
k

Yk

(∫ t

0

λθ+ε
k (Xθ+ε(s))ds

)
ζk,

Xθ(t) = Xθ(0) +
∑
k

Yk

(∫ t

0

λθ
k(X

θ(s))ds

)
ζk,

(8)

where the Yk are independent unit-rate Poisson processes and all other notation is as
before. The key point is that they are using the same Poisson processes for the gen-
eration of each path. As stated in section 1, the estimator built with paths generated
via (8) is quite capable in many circumstances. The main differences between their
method and the one being proposed in this paper via (7) are the following:

1. The processes generated via (7) are generally coupled tighter than those gen-
erated via (8), resulting in a lower variance for the estimator, sometimes
substantially so. However, sometimes the coupling (8) produces a lower vari-
ance estimator than (7) when the terminal time T is small. These facts will
be demonstrated via examples in section 4 and discussed more below.

2. The model (7) is more amenable to analysis, as the centered counting pro-
cesses of (7) are martingales with respect to the natural filtration [2], which
is not the case for (8).

3. Implementation of (7) is simpler than that of (8), as (7) does not require
the generation of many independent seeds for the pseudorandom number
generator. In fact, simulation of (7) is no more challenging than simulating
any continuous time Markov chain.

4. The coupling (7) makes the problem of computing the difference between
two paths into one of computing a single path of a different continuous time
Markov chain with an enlarged state space.

The following example is chosen to highlight the advantages of the coupling (7)
over those of (8).

Example 1. Consider the simple model in which an mRNA molecule is created
and degraded,

(9) ∅
θ
�
0.1

M,

which is equivalent to an M/M/∞ queue with arrival rate θ and service rate 0.1. Here
we are using the common convention of putting the rate constant of a reaction next
to the corresponding reaction vector. We suppose that we want to understand the
sensitivity of the expected number of mRNA molecules with respect to the parameter
θ ≈ 2. We consider how the different representations (7) and (8) “should” behave on
this model, whose representation via (2) is

(10) Xθ(t) = X(0) + Y1 (θt)− Y2

(∫ t

0

0.1Xθ(s)ds

)
.
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For ε > 0, let (Xθ+ε, Xθ) satisfy (7), which for this example is

Xθ+ε(t) = Xθ+ε(0) + Y1,1(θt) + Y1,2(εt)

− Y2,1

(∫ t

0

0.1Xθ(s)ds

)
− Y2,2

(∫ t

0

0.1(Xθ+ε(s)−Xθ(s))ds

)
,

Xθ(t) = Xθ(0) + Y1,1(θt) − Y2,1

(∫ t

0

0.1Xθ(s)ds

)
,

where we have used that with this coupling Xθ+ε(t) ≥ Xθ(t) for all t ≥ 0 if ε ≥ 0.
Therefore, assuming that Xθ+ε(0) = Xθ(0), we have

Xθ+ε(t)−Xθ(t) = Y1,2(εt)− Y2,2

(∫ t

0

0.1(Xθ+ε(s)−Xθ(s))ds

)
.

Setting Zθ,ε = Xθ+ε − Xθ, we see that Zθ,ε itself can be viewed as the solution to
(10), though with zero initial condition and input rate ε. The mean and variance can
be solved as functions of time and satisfy

EZθ,ε(t) = E(Xθ+ε(t)−Xθ(t)) =
ε

0.1
(1 − e−0.1t),(11)

Var(Zθ,ε(t)) = Var(Xθ+ε(t)−Xθ(t)) =
ε

0.1
(1 − e−0.1t).(12)

On the other hand, if (Xθ+ε, Xθ) satisfy the coupling (8), then

Xθ+ε(t) = Xθ+ε(0) + Y1(θt+ εt)− Y2

(∫ t

0

0.1Xθ+ε(s)ds

)
,

Xθ(t) = Xθ(0) + Y1(θt) − Y2

(∫ t

0

0.1Xθ(s)ds

)
,

and

(13)

Xθ+ε(t)−Xθ(t) = Y1(θt+εt)−Y1(θt)−
[
Y2

(∫ t

0

0.1Xθ+ε(s)ds

)
− Y2

(∫ t

0

0.1Xθ(s)ds

)]
.

In this case, we still have that E[Xk+ε(t) − Xk(t)] satisfies the right-hand side of
(11). However, the variance cannot be calculated with such ease as for (12). We note,
however, that for large t, we will have θt+ εt � θt, and therefore anticipate∫ t

0

0.1Xθ+ε(s)ds �
∫ t

0

0.1Xθ(s)ds,

implying that the two processes Xθ+ε and Xθ should decouple and behave indepen-
dently. This is demonstrated in a numerical example in section 4 where we show that
the variance of the difference (13) converges to 40, which is the same as if Xθ+ε and
Xθ were generated independently, and is substantially larger than the bound given in
(12) for small ε.

As will be discussed immediately below, we also expect to see this “decoupling”
when Gillespie’s algorithm is implemented with common random numbers (CRN).
This also will be demonstrated by examples in section 4.
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The above example gives a heuristic as to why the coupling (7) will tend to give
a lower variance than (8). For processes generated by (7), whenever Xθ+ε(t) ≈ Xθ(t)
during the course of the simulation, the processes have recoupled, regardless of the
the history of the process up to that time. On the other hand, if Xθ+ε and Xθ are
generated via (8), then Xθ+ε ≈ Xθ need not imply

∫ t

0

λθ+ε
k (Xθ+ε(s))ds ≈

∫ t

0

λθ+ε
k (Xθ(s)ds),

and so the two processes could be exploring completely different portions of the Pois-
son processes. Thus, even when Xθ+ε(t) = Xθ(t) in the course of the simulation
of (8), the integrated intensities will not be equal, and so the processes are no longer
coupled as tightly as they were at time zero. As time increases, this problem could get
worse and the processes can decouple completely (as happens in the example above).

CRN and Gillespie’s algorithm. The standard method of using CRN in the
implementation of Gillespie’s algorithm will suffer the same defect as (8) in that for
large times the coupled processes can decouple. To understand why, we need to give
the correct representation for Gillespie’s algorithm (which is equivalent to simulating
the embedded discrete time Markov chain). The following representation can be found
in [5]. We define

λ0(x) =
∑
k

λk(x) and qk(x) =

k∑
i=1

λi(x)/λ0(x).

Let Y be a unit-rate Poisson process, and let {ξi} be an independent and identically
distributed sequence of uniform(0,1) random variables that are also independent of Y .
Then let X satisfy

R0(t) = Y

(∫ t

0

λ0(X(s))ds

)
,

X(t) = X(0) +
∑
k

ζk

∫ t

0

1(qk−1(X(s−)),qk(X(s−)](ξR0(s−))dR0(s).

(14)

The counting process R0 is determining the jump times, which are seen to be expo-
nential random variables with parameter λ0(X(s−)). The uniform random variables
are then used to select which reaction occurs, with the kth reaction being chosen
with probability λk(X(s−))/λ0(X(s−)). Simulation of (14) is called Gillespie’s algo-
rithm (or simply simulating the embedded discrete time Markov chain). The standard
CRN + Gillespie algorithm finite difference method, which is probably the most com-
mon coupling method used today in the context of finite differences, then consists of
using the same Y and choice of {ξi} for the construction of Xθ and Xθ+ε, and it will
decouple for the same reasons as those of (8). This is demonstrated numerically in
an example in section 4.

Naive couplings: A cautionary tale. At this point it may be tempting to
try to couple the processes generated via (7) even tighter by using the same Poisson
processes for each of Yk,2 and Yk,3. This would, in effect, be a highbred version of the
common reaction path and coupled finite difference methods. That is, one may be
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tempted to use

Xθ+ε(t) = Xθ+ε(0) +
∑
k

Yk,1

(∫ t

0

λθ+ε
k (Xθ+ε(s)) ∧ λθ

k(X
θ(s))ds

)
ζk

+
∑
k

Yk,2

(∫ t

0

λθ+ε
k (Xθ+ε(s))− λθ+ε

k (Xθ+ε(s)) ∧ λθ
k(X

θ(s))ds

)
ζk,

Xθ(t) = Xθ(0) +
∑
k

Yk,1

(∫ t

0

λθ+ε
k (Xθ+ε(s)) ∧ λθ

k(X
θ(s))ds

)
ζk

+
∑
k

Yk,2

(∫ t

0

λθ
k(X

θ(s))− λθ+ε
k (Xθ+ε(s)) ∧ λθ

k(X
θ(s))ds

)
ζk,

(15)

where we are now using the same Poisson process for all of the auxiliary processes. In
fact, this does not work: the marginal distributions of (Xθ+ε, Xθ) as generated by (15)
are not the same as the original processes, and so this coupling should not be used.
In fact, the marginal distributions can be so different that the coupled processes will
converge to the wrong value as ε → 0. This fact is best demonstrated by an example.

Example 2. Consider the system arising from the single reaction

X
θ→ ∅,

with X0 = 1. The stochastic equation of the form (1) governing this system is

Xθ(t) = 1− Y

(
θ

∫ t

0

Xθ(s)ds

)
.

Hence, the process can take only the values of one and zero and EXθ(1) = exp{−θ},
which implies that d

dθEX
θ(1) = − exp{−θ}. In particular,

d

dθ
EXθ(1)

∣∣∣∣
θ=1

= −e−1.

For the coupling (15) for this model we have

ε−1
E[X1+ε/2 −X1−ε/2] = −e−1 2

2 + ε

(
eε/2 − e−ε/2

)
= −e−1ε+O(ε2),

which converges to zero as ε → 0. Perhaps the simplest way to compute the above
expectation is to find the condition on the first jump times of the underlying Poisson
processes that guarantee the random variable X1+ε/2−X1−ε/2 takes a value of nega-
tive one. This event has a probability of O(ε2), implying the result. This computation
is left to the interested reader.

3.2. Analytical results. The following theorem is the main analytical result of
this paper and allows us to conclude that for any function f satisfying the assumptions
of Theorem 3.1 and (Xθ+ε, Xθ) satisfying (7),

Var
(
f(Xθ+ε(t))− f(Xθ(t))

) ≤ Ct,f,M ε

for some Ct,f,M > 0 depending upon t, f , and M (the number of reactions).
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Theorem 3.1. Suppose (Xθ+ε, Xθ) satisfy (7) with our running assumptions
(Assumptions 1 and 2). Let f : Rd → R be a C1 function with bounded first derivative
on all x ∈ S. Then, for any T > 0 there is a CT,f,M > 0 for which

E sup
t≤T

(
f(Xθ+ε(t))− f(Xθ(t))

)2 ≤ CT,f,M ε.

We provide two lemmas, giving the L1 and L2 bounds on the difference between
Xθ+ε and Xθ, before proving Theorem 3.1.

Lemma 3.2. Suppose (Xθ+ε, Xθ) satisfy (7) with our running assumptions (As-
sumptions 1 and 2). Then, for T > 0 there is a CT,M > 0 for which

E sup
t≤T

∣∣Xθ+ε(t)−Xθ(t)
∣∣ ≤ CT,M ε.

Proof. Let T > 0. For any s ≥ 0,

Xθ+ε(s)−Xθ(s) = Mθ,ε(s) +

∫ s

0

F θ+ε(Xθ+ε(r)) − F θ(Xθ(r))dr,(16)

where Mθ,ε is a martingale with quadratic covariation

[Mθ,ε]t =
∑
k

(
Nθ,ε

k,2(t) +Nθ,ε
k,3(t)

)
ζkζ

T
k ,

where

Nθ,ε
k,2(t)

def
= Yk,2

(∫ t

0

λθ+ε
k (Xθ+ε(s))− λθ+ε

k (Xθ+ε(s)) ∧ λθ
k(X

θ(s))ds

)
,

Nθ,ε
k,3(t)

def
= Yk,3

(∫ t

0

λθ
k(X

θ(s))− λθ+ε
k (Xθ+ε(s)) ∧ λθ

k(X
θ(s))ds

)
.

Therefore, for s ≤ t,

|Xθ+ε(s)−Xθ(s)| ≤ sup
r≤t

|Mθ,ε(r)|+
∫ s

0

|F θ+ε(Xθ+ε(r)) − F θ(Xθ+ε(r))|dr

+

∫ s

0

|F θ(Xθ+ε(r)) − F θ(Xθ(r))|dr

≤ sup
r≤t

|Mθ,ε(r)|+K2εs+K1

∫ s

0

|Xθ+ε(r) −Xθ(r)|dr

≤ sup
r≤t

|Mθ,ε(r)|+K2εt+K1

∫ t

0

sup
u≤r

|Xθ+ε(u)−Xθ(u)|dr,

where K1,K2 are the constants of Assumptions 1 and 2, respectively. As the above
inequality holds for all s ≤ t, we have that

(17) sup
s≤t

|Xθ+ε(s)−Xθ(s)| ≤ sup
r≤t

|Mθ,ε(r)|+K2εt+K1

∫ t

0

sup
u≤r

|Xθ+ε(u)−Xθ(u)|dr.
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By the Burkholder–Davis–Gundy inequality and the fact that
√
z ≤ z for all nonneg-

ative integers, we have the existence of a C2 > 0 for which

(18)

E sup
r≤t

|Mθ,ε(r)| ≤ C2

∑
k

∫ t

0

E|λθ+ε
k (Xθ+ε(u))− λθ

k(X
θ(u))|du

≤ C2

∑
k

[ ∫ t

0

E|λθ+ε
k (Xθ+ε(u))− λθ

k(X
θ+ε(u))|du

+

∫ t

0

E|λθ
k(X

θ+ε(u))− λθ
k(X

θ(u))|du
]

≤ C3εt+ C4

∫ t

0

E|Xθ+ε(u)−Xθ(u)|du

≤ C3εt+ C4

∫ t

0

E sup
u≤r

|Xθ+ε(u)−Xθ(u)|dr,

where C3 and C4 are constants independent of ε or T and depend linearly on M
(the number of reactions). Taking expectations of (17), applying (18), and using
Gronwall’s inequality gives the desired result.

Lemma 3.3. Suppose (Xθ+ε, Xθ) satisfy (7) with our running assumptions (As-
sumptions 1 and 2). Then, for T > 0 there is a CT,M > 0 for which

E sup
t≤T

∣∣Xθ+ε(t)−Xθ(t)
∣∣2 ≤ CT,M ε.

Proof. Returning to (16) in the proof of Lemma 3.2, we have that

|Xθ+ε(s)−Xθ(s)|2 ≤ 2|Mθ,ε(s)|2 + 2T

∫ s

0

|F θ+ε(Xθ+ε(r)) − F θ(Xθ(r))|2dr.

The proof is now essentially the same as that of Lemma 3.2, though (18) in combina-
tion with Lemma 3.2 is used to bound the martingale term.

Note that the expected difference of the pth moment, for any p ≥ 1, can be
estimated in the same manner as above.

Example 3. To demonstrate the above lemmas, we consider the following simple
example:

∅ θ→ S,

where the parameter of interest is the rate constant θ. For this example we have that
λθ(x) ≡ θ, and so

Xθ+ε(t) = Y1(θt) + Y2(εt),

Xθ(t) = Y1(θt).

Hence Xθ+ε(t) − Xθ(t) = Y2(εt), and the statements of Lemmas 3.2 and 3.3 follow
immediately. Further, the lemmas are shown to be sharp.
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Proof of Theorem 3.1. By Taylor’s theorem combined with our assumption on f ,
we have that for some Cf > 0,(

f(Xθ+ε(t)) − f(Xθ(t))
)2 ≤ Cf |Xθ+ε(t)−Xθ(t)|2,

and the result follows by application of Lemma 3.3.
We return now to (5) and (6) and note that with Xθ+ε/2, Xθ−ε/2 generated via

the coupling proposed here,

Var(d[i](ε)) = O(ε−1),

Var(DR(ε)) = O(R−1ε−1),

which are an order of magnitude lower, in terms of ε, than the respective variances
when the processes are generated independently. As discussed at the end of section
2.1, this fact leads to a decrease in the computational work (and simulation time)
required to solve a given problem to a desired tolerance by a factor of ε, yielding
potentially enormous savings.

4. Numerical examples. We compare our method with existing methods on
three different models: a basic model for the production of mRNA and proteins,
an M/M/∞ queue, and a genetic toggle switch from [18]. Because the common
reaction path (CRP) method of [18] tends to perform at least as well as the usual
implementation of CRN with Gillespie’s algorithm, we choose to include only the
CRP method in our comparison (except for one plot in Numerical Example 2 to
demonstrate the decoupling alluded to at the end of section 3.1).

Numerical Example 1. Consider the model of gene transcription and translation

(19) G
2→ G+M, M

10→ M + P, M
θ→ ∅, P

1→ ∅,
where a single gene is being translated into mRNA, which is then being transcribed
into proteins. The final two reactions represent degradation of the mRNA and protein
molecules, respectively. Assuming that there is a single gene copy, the stochastic
equation (1) for this model is

(20)

Xθ(t) = Xθ(0) + Y1(2t)

(
1
0

)
+ Y2

(∫ t

0

10Xθ
1 (s)ds

)(
0
1

)

+ Y3

(∫ t

0

θXθ
1 (s)ds

)( −1
0

)

+ Y4

(∫ t

0

Xθ
2 (s)ds

)(
0
−1

)
,

where Xθ
1 (t) and Xθ

2 (t) give the number of mRNA and protein molecules at time t,
respectively, and Y1, Y2 are independent unit-rate Poisson processes. Suppose the rate
constant θ is of interest to us and we believe that θ ≈ 1/4. We would like to estimate
the sensitivity of the mean number of protein molecules at time T = 30, say, with
respect to the parameter θ ≈ 1/4. Here, it is a straightforward calculation to find
that

EXθ
2 (30)

∣∣∣∣
θ=1/4

≈ 79.941 and
d

dθ
EXθ

2 (30)

∣∣∣∣
θ=1/4

≈ −318.073
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Table 1

95% confidence intervals and computational complexity for (i) crude Monte Carlo (CMC),
(ii) the common reaction path (CRP) method of [18], and (iii) the coupled finite difference (CFD)
method proposed here, applied to (19) in order to approximate J(1/4) for different choices of R
and ε. The exact value is J(1/4) = −318.073. Note that the bias of the centered finite difference is
apparent when ε = 1/20 and R = 40,000.

Method R ε = 1/20 ε = 1/100 # updates CPU time

CMC 1,000 −276.2 ± 46.3 −472.7.1± 237.3 ≈ 8.4× 106 ≈ 9.6 S

CRP 1,000 −323.1 ± 18.4 −321.0 ± 60.2 ≈ 8.4× 106 ≈ 10.1 S

CFD 1,000 −323.7± 8.7 −333.8 ± 28.0 ≈ 4.4× 106 ≈ 6.5 S

CMC 10,000 −324.8 ± 14.7 −305.4 ± 74.3 ≈ 8.4× 107 ≈ 98.8 S

CRP 10,000 −325.5± 5.8 −328.6 ± 18.6 ≈ 8.4× 107 ≈ 105.4 S

CFD 10,000 −320.0± 2.8 −316.6± 8.9 ≈ 4.4× 107 ≈ 64.9 S

CMC 40,000 −322.7± 7.5 −341.9 ± 37.3 ≈ 3.4× 108 ≈ 395.3 S

CRP 40,000 −319.6± 2.9 −310.6± 9.3 ≈ 3.4× 108 ≈ 411.5 S

CFD 40,000 −321.6± 1.4 −317.8± 4.4 ≈ 1.8× 108 ≈ 263.3 S

if the initial condition is Xθ(0) = [0, 0]T . Defining

J(θ)
def
=

d

dθ
E
[
Xθ

2 (30)
]
,

our goal is to efficiently estimate J(1/4), and we compare the following methods on
this problem:
(i) the usual crude Monte Carlo (CMC) estimator with independent samples,
(ii) the CRP method of [18] using the coupled processes (8),
(iii) the coupled finite difference (CFD) method being proposed in this paper using

the coupling (7), and
(iv) a Girsanov transformation method of Plyasunov and Arkin detailed in [17].
For all simulations, we assume an initial condition of zero mRNA and zero protein
molecules. We will denote the number of sample paths used in the construction of the
relevant estimators (5) via R and the perturbation in the centered finite difference
via ε.

In Table 1, we provide the 95% confidence intervals computed using the CMC
method with independent paths, the CRP method, and the CFD method for dif-
ferent choices of R, the number of paths simulated, and ε, the perturbation of θ.
For each method and choice of R, we also provide (i) an approximate total number
of steps (and random numbers used) over the course of the entire simulation, and
(ii) an approximation of the CPU time required. These numbers, which quantify the
computational work required from each method, are essentially independent of ε, and
the numbers provided are the average of the actual values for the two different values
of ε for a given method and choice of R. These numbers should be used as a reference
for the computational complexity required by the different methods with the under-
standing that CPU time will depend greatly upon implementation (the author used
MATLAB for all computations, which were performed on an Apple machine with a
2.2 GHz Intel i7 processor). In Table 2, we provide similar data for the Girsanov
transformation method of [17].

While Tables 1 and 2 demonstrate that the method being proposed here can
produce a more accurate estimate in less CPU time than the other methods, a more
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Table 2

95% confidence intervals and computational complexity for the Girsanov transformation method
of [17] applied to (19) in order to approximate J(1/4). The exact value is J(1/4) = −318.073.

R Approximation # updates CPU time

1,000 −441.5 ± 156.5 4.2× 106 5.2 S

10,000 −324.2± 49.2 4.2× 107 54.5 S

40,000 −327.8± 25.1 1.7× 108 207.6 S

Table 3

Required R, # updates, and CPU time for each method to provide a 95% confidence of ± 6.0.
Each finite difference method used ε = 1/40. The exact value is J(1/4) = −318.073.

Method R Approximation # updates CPU time

Girsanov 689,600 −312.1± 6.0 2.9× 109 3,506.6 S

CMC 246,000 −319.3± 6.0 2.1× 109 2,364.8 S

CRP 25,980 −316.7± 6.0 2.2× 108 270.9 S

CFD 4,580 −319.9± 6.0 2.0× 107 29.2 S

important statistic is the CPU time needed for each method to achieve a desired
tolerance. Therefore, we applied each method until the 95% confidence interval was
± 6.0. The finite difference methods were applied with a perturbation size of ε = 1/40.
Table 3 provides the number of updates needed by each method combined with the
CPU time needed on our machine. We see that the CFD method was approximately
9 times more efficient that the CRP method, and vastly more efficient than both the
Girsanov transformation method and the CMC method with independent samples.

Next, we simulated the system (20) 5,000 times using each of the different methods
and plotted the variance of the estimators versus time up to T = 60; see Figure 1.
The finite difference methods were computed with a perturbation of size ε = 1/40.
We note that the variance of each of the finite difference methods appears to converge,
though the limiting value for the CFD method being proposed here converges to a
value that is approximately 6.5 times lower than that of the CRP method and 52
times lower than the CMC method. Also note that the variance of the Girsanov
transform method grows linearly in time, as expected, and is quite large for even
moderate values of time, t.

Numerical Example 2. We revisit Example 1, which modeled an mRNA molecule
being created and degraded (or an M/M/∞ queue),

(21) ∅
θ

�
0.1

M.

We suppose that we want to understand the sensitivity of the expected number of
particles (or customers in the queuing setting) with respect to the parameter θ ≈ 2.
In Figure 2 we provide a plot of the variances of the different estimators as functions
of time. So as to demonstrate the different behaviors of the different estimators, the
scales on both the time and variance axes are dramatically different for the different
methods. For each of the methods, we chose R = 1,000, and we used ε = 1/100 for the
perturbation methods. Recall that in Example 1, we proved that the variance of the
difference between Xθ+ε and Xθ will converge to ε/0.1 if they are coupled using (7).
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(a) Coupled finite differences and common reaction
path

(b) Crude Monte Carlo

(c) Girsanov transformation

Fig. 1. Variance of the different estimators applied to (20). For each, R = 5,000 sample paths
were used to construct the relevant estimators. For each of the finite difference methods (Figures
1(a) and 1(b)), a perturbation of ε = 1/40 was used. Note that the scales on the variance axis are
dramatically different for the different methods.

Therefore, the variance of the estimator (5) will converge to

ε

0.1

1

ε2
1

R
=

1

R

1

0.1ε

as t → ∞. In our case, ε = 1/100 and R = 1,000, and the above value is equal
to one. This predicted behavior is born out in Figure 2(e). Also in Example 1,
we predicted (though did not prove) that after a long enough time the variance of
both the CRP estimator and Gillespie’s algorithm plus CRN should converge to the
variance of the CMC estimator constructed with independent paths. In essence, we
are predicting that the processes will decouple after a long enough time and behave
independently. This behavior is demonstrated in Figures 2(a) and 2(c) (for CRP)
and 2(f) (for Gillespie + CRN), though we note that the time for a full decoupling is
quite large in this example. Also note that we plotted the variance of the estimator
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(a) Crude Monte Carlo (b) Girsanov transformation (c) Common reaction path,
T = 10, 000

(d) Common reaction path,
T = 100

(e) Coupled finite differences
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(f) Gillespie + common random
numbers

Fig. 2. Variance of the different estimators applied to (21). R = 1, 000 sample paths were
used to construct the relevant estimators. For each of the finite difference methods (plots 2(a), 2(c),
2(d), 2(e), and 2(f)), a perturbation of ε = 1/100 was used. So as to demonstrate the different
behaviors of the different estimators, the scales both on the time and variance axes are dramatically
different for the different methods. Also, note that we plotted the variance of the estimator for the
CRP method up to both times T = 100 and T = 10,000 so as to demonstrate the different behaviors
exhibited. Note that the CRP and Gillespie + CRN methods appear equivalent for this example.

for the CRP method up to both times T = 100 and T = 10,000 so as to demon-
strate the different behaviors exhibited. Finally, we point out that the full “decou-
pling” of the CRP method described here does not seem to take place in Example 1.
The estimator built using the Girsanov transformation method exhibits a variance
that grows linearly in time.

Next, we considered the sensitivity to the decay parameter at 0.1. That is, we
considered

(22) ∅
2

�
θ
M,

with θ = 0.1. In Figure 3 we provide a plot of the variance of the CFD estimator
versus the CRP estimator. Each plot was generated using 1,000 sample paths in which
a perturbation of ε = 1/100 was used. We again see the lower variance exhibited by
the CFD estimator, though the difference is now less dramatic.
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Fig. 3. Time plot of the variance of the CFD estimator versus the CRP estimator for the model
(22) with decay rate perturbed. Each plot was generated using 1,000 sample paths. A perturbation
of ε = 1/100 was used.

Numerical Example 3. We consider a model for a genetic toggle switch found in
[18]:

∅
λ1(X)

�
λ2(X)

X1, ∅
λ3(X)

�
λ4(X)

X2,(23)

with intensity functions

λ1(X(t)) =
α1

1 +X2(t)β
, λ2(X(t)) = X1(t),

λ3(X(t)) =
α2

1 +X1(t)γ
, λ4(X(t)) = X2(t)

and parameter choices

α1 = 50, α2 = 16, β = 2.5, γ = 1.

We begin the process with initial condition [0, 0] and consider the sensitivity of X1 as
a function of α1. In Figure 4 we provide a plot of the variance of the CFD estimator
versus the CRP estimator as a function of time. Each plot was generated using
10,000 sample paths in which a perturbation of ε = 1/10 was used. We see that the
CFD method performs substantially better for times t > 5, whereas the CRP method
performs better for shorter times, t < 5.
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(a) Variance to time T = 40 (b) Variance to time T = 7

Fig. 4. Time plot of the variance of the CFD estimator versus the CRP estimator for the model
(23). Each plot was generated using 10, 000 sample paths. A perturbation of ε = 1/10 was used. It
is worth noting that here the CRP estimator outperforms the CFD estimator for times t < 5, though
CFD still greatly outperforms CRP for larger times.
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